Phase transition for the dilute clock model

Inés Armendáriz ${ }^{\text {a }}$, Pablo A. Ferrari ${ }^{\text {a,b,c }}$, Nahuel Soprano-Loto ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Departamento de Matemática, UBA, Buenos Aires, Argentina
${ }^{\mathrm{b}}$ IMAS-CONICET, Buenos Aires, Argentina
${ }^{\mathrm{c}}$ IME-USP, São Paulo, Brazil

Received 14 April 2014; received in revised form 15 May 2015; accepted 16 May 2015
Available online 28 May 2015

Abstract

We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model in \mathbb{Z}^{d}, for every $q \geq 2$ and $d \geq 2$. This follows from the fact that the Edwards-Sokal random-cluster representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation probability, a technique that has been applied to show phase transition for the low-temperature Potts model. The domination involves a combinatorial lemma which is one of the main points of this article.

(C) 2015 Elsevier B.V. All rights reserved.

MSC: 82B

Keywords: Dilute clock model; Phase transition

1. Introduction

The q-state clock model assigns a random spin to each site of \mathbb{Z}^{d}. The spins take values in a discrete set S of equidistant angles or hours, hence the name. Let $\sigma=\left(\sigma_{x}, x \in \mathbb{Z}^{d}\right)$ be a spin configuration, σ_{x} the angle of the spin at $x \in \mathbb{Z}^{d}$. Let $\mathcal{E}\left(\mathbb{Z}^{d}\right):=\{\langle x y\rangle:\|x-y\|=1\}$ be the set of edges connecting nearest neighbour sites, $\|\cdot\|$ the Euclidean norm. We study the dilute clock

[^0]model associated to a disorder, namely a collection
\[

$$
\begin{equation*}
J=\left(J_{\langle x y\rangle}:\langle x y\rangle \in \mathcal{E}\left(\mathbb{Z}^{d}\right)\right) \tag{1}
\end{equation*}
$$

\]

of independent identically distributed Bernoulli random variables with parameter p. A disorder realization J and a finite set $\Lambda \subset \mathbb{Z}^{d}$ determine the Hamiltonian on spin configurations:

$$
\begin{equation*}
H_{\Lambda, J}(\sigma):=\sum_{\substack{\langle x y\rangle \in \mathcal{E}\left(\mathbb{Z}^{d}\right) \\\{x, y\rangle \cap \neq \emptyset}} J_{\langle x y\rangle}\left(1-\cos \left(\sigma_{x}-\sigma_{y}\right)\right) . \tag{2}
\end{equation*}
$$

When $q=2$, we recover the Ising model; as $q \rightarrow \infty$, the clock model approximates the $X Y$ model, which has a continuum of spin angles.

Given a set $\Lambda \subset \mathbb{Z}^{d}$ and configurations $\sigma, \eta \in S^{\mathbb{Z}^{d}}$, we write

$$
\begin{equation*}
\sigma \stackrel{\Lambda}{=} \eta \quad \text { if } \sigma_{x}=\eta_{x} \forall x \in \Lambda \tag{3}
\end{equation*}
$$

The specification $\mu_{\Lambda, J}^{\eta}$ associated to a finite set Λ, a disorder J, and a boundary condition η, is the probability

$$
\begin{equation*}
\mu_{\Lambda, J}^{\eta}(\sigma):=\frac{1}{Z_{\Lambda, J}^{\eta}} e^{-\beta H_{\Lambda, J}(\sigma)} \mathbf{1}\left[\sigma \stackrel{\Lambda^{c}}{=} \eta\right], \tag{4}
\end{equation*}
$$

where $\beta>0$ is a parameter proportional to the inverse temperature and $Z_{\Lambda, J}^{\eta}$ is the normalizing constant. A Gibbs measure associated to the disorder J is a probability μ_{J} that satisfies the DLR condition:

$$
\begin{equation*}
\mu_{J} f=\int_{S_{\mathbb{Z}^{d}}} \mu_{J}(d \eta) \mu_{\Lambda, J}^{\eta} f \tag{5}
\end{equation*}
$$

for every finite subset $\Lambda \subset \mathbb{Z}^{d}$ and every local function $f: S^{\mathbb{Z}^{d}} \rightarrow \mathbb{R}$. Here, μf denotes the expectation of f with respect to μ. The underlying σ-algebra where the Gibbs measures and the specifications are defined is the one generated by projections over finite subsets of \mathbb{Z}^{d}. We call \mathcal{G}_{J} the set of Gibbs measures associates to J. Since S is finite, \mathcal{G}_{J} is not empty. In case $\left|\mathcal{G}_{J}\right|>1$, we say that phase co-existence occurs.

The homogeneous version of the model is obtained by taking $p=1$ or, equivalently, $J_{\langle x y\rangle} \equiv 1$ for every $\langle x y\rangle$. In this case, non-uniqueness methods such as the Pirogov-Sinai theory [12] or reflection positivity as in Fröhlich, Israel, Lieb and Simon [7], see also Biskup [2], prove that, for sufficiently low temperature, there exist at least q different Gibbs measures. On the other hand, when the temperature is large enough, techniques similar to those developed by Dobrushin [3] or by van den Berg and Maes [13] show that there exists only one Gibbs measure. Phase transition occurs when a system undergoes a change in its phase diagram depending on the value of a parameter; these results hence establish occurrence of phase transition for the homogeneous clock model.

Both Pirogov-Sinai theory and reflection positivity depend on the graph determined by the interacting edges in the Hamiltonian (2) being symmetric, an assumption that breaks down for the properly dilute model $p<1$. Instead, our main tool is the Fortuin-Kasteleyn random-cluster representation [10], originally introduced for the Ising and the Ashkin-Teller-Potts models, and then generalized to arbitrary models by Edwards and Sokal [5]; here, we build the clock model random-cluster representation in detail. The core idea of this approach is to relate non-uniqueness
of Gibbs measure in the statistical-mechanical model to the existence of an infinite cluster in the random-cluster model: a percolation problem. It was first applied by Aizenman, Chayes, Chayes and Newman to study the phase diagram of the dilute Ising and Potts models in [1]; we presently adapt their ideas to our context.

Precisely, we derive a lower bound for the critical temperature: for every dimension d and every number q of spins, we take p sufficiently large to guarantee that the disorder almost surely contains an infinite bond-percolation cluster, and then determine a value $\beta_{0}=\beta_{0}(q, d, p)>0$ such that there is more than one Gibbs measure at inverse temperatures $\beta>\beta_{0}$, for almost all disorders J. A crucial step in the proof consists of dominating from below the random-cluster probability associated to the clock model by a supercritical Bernoulli product probability on the bonds. While for the Potts model this domination is immediate, the clock model requires a combinatorial argument, given in Lemma 2.4.

The following is our main result.
Theorem 1.1. Let $p>p_{c}$, where p_{c} is the Bernoulli bond percolation critical probability in \mathbb{Z}^{d}. Let the disorder J be distributed as a product P_{p} of i.i.d. Bernoulli random variables with parameter p. Then there exists $\beta_{0}>0$ such that, for $\beta>\beta_{0}$, the q-state dilute clock model associated to the random specifications $\mu_{\Lambda, J}^{\eta}$ defined in (4) exhibits phase co-existence for P_{p}-almost every realization of J. More precisely, $\beta>\beta_{0}$ implies $P_{p}\left(J:\left|\mathcal{G}_{J}\right| \geq q\right)=1$.

The value β_{0} in the later theorem depends on d, q and p. We show in the Appendix that, for fixed d and $p, \beta_{0}(q, d, p) \sim q^{2} \log q$ as $q \rightarrow \infty$, the same asymptotics provided by Pirogov-Sinai theory and reflection positivity in the 2 -dimensional homogeneous case. In particular, $\lim _{q \rightarrow \infty} \beta_{0}(q, d, p)=\infty$, implying that our approach is not suitable to study the $X Y$ model; see van Enter, Külske and Opoku [14] for results concerning the approximation of the $X Y$ model via the clock model. On the other hand, for $d \geq 3$ and $p=1$, reflection positivity computes a threshold β_{0} independent of q, see Maes and Shlosman [11] for a discussion.

The ideas presented in this article can be further developed in two directions, which are explored by Soprano-Loto in collaboration with Roberto Fernández in a separate article [6]. The first one is a generalization of the current work to the so called Abelian spin models; see Dubédat [4] for a precise definition. The second direction of research seeks to obtain a uniqueness criterion, also via random-cluster representation, at a higher level of generality.
Organization of the article. We introduce the random-cluster model and state the results leading to the proof of Theorem 1.1 in Section 2. Section 3 contains the proofs and the Appendix collects some auxiliary computations.

2. Clock model and random-cluster in a finite graph

We define the clock model and its random-cluster representation for a fixed non-oriented finite graph (V, \mathcal{E}) without loops or multiple edges, and not necessarily connected. We fix a nonempty subset $U \subset V$ playing the role of boundary. For simplicity, we suppose there are no edges connecting vertices in $U:\{\langle x y\rangle \in \mathcal{E}:\{x, y\} \subset U\}=\emptyset$.

In the case of the dilute clock in a finite set $\Lambda \subset \mathbb{Z}^{d}$, the boundary is given by $\partial \Lambda:=\{y \in$ $\left.\Lambda^{c}, \exists x \in \Lambda:\|x-y\|^{2}=1\right\}$, and the vertex and edge sets are

$$
\begin{equation*}
\Lambda \cup \partial \Lambda \quad \text { and } \quad\left\{\langle x y\rangle,\{x, y\} \not \subset \Lambda^{c},\|x-y\|=1, J_{\langle x y\rangle}=1\right\} . \tag{6}
\end{equation*}
$$

The clock model. Let S be the set of angles defined by

$$
\begin{equation*}
S:=\left\{\frac{2 \pi i}{q}: i=0, \ldots, q-1\right\} . \tag{7}
\end{equation*}
$$

Elements of S are called spins and denoted a, b and c, while spin or vertex-configurations in S^{V} are denoted by σ and η.

The clock Hamiltonian $H=H(V, \mathcal{E})$ is the function $H: S^{V} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
H(\sigma):=\sum_{\langle x y\rangle \in \mathcal{E}}\left(1-\cos \left(\sigma_{x}-\sigma_{y}\right)\right) . \tag{8}
\end{equation*}
$$

We write $\sigma \stackrel{U}{=} a$ when $\sigma_{x}=a$ for all $x \in U$. The clock probability $\mu=\mu(V, U, \mathcal{E}, \beta)$ with 0 -boundary condition is defined as

$$
\begin{equation*}
\mu(\sigma):=\frac{1}{Z} e^{-\beta H(\sigma)} \mathbf{1}[\sigma \stackrel{U}{=} 0], \tag{9}
\end{equation*}
$$

where β is a strictly positive parameter and $Z=Z(V, U, \mathcal{E}, \beta)$ is the normalizing constant.
The random-cluster measure. Define a weight function $W: S \rightarrow(0,1]$ by

$$
\begin{equation*}
W(a):=e^{-\beta(1-\cos a)} \tag{10}
\end{equation*}
$$

and let $\mathcal{I}:=\{W(a), a \in S\}$ be its image. This set has cardinality $|\mathcal{I}|=k+1$, where $k=q / 2$ for even q and $k=(q-1) / 2$ for odd q. Write $\mathcal{I}=\left\{t_{0}, t_{1}, \ldots, t_{k}\right\}$ with $0<t_{0}<t_{1}<\cdots<$ $t_{k}=W(0)=e^{-\beta(1-\cos 0)}=1$, and denote

$$
\begin{equation*}
r_{0}:=t_{0}, \quad r_{i}:=t_{i}-t_{i-1}, \quad 1 \leq i \leq k . \tag{11}
\end{equation*}
$$

By construction, $0 \leq r_{i} \leq 1$ for all $0 \leq i \leq k$ and $\sum_{i} r_{i}=1$.
Let θ be the probability on \mathcal{I} given by

$$
\begin{equation*}
\theta\left(t_{i}\right):=r_{i}, \quad 0 \leq i \leq k, \tag{12}
\end{equation*}
$$

and let $\hat{\phi}=\hat{\phi}(\mathcal{E}, \beta)$ be the product measure on the set of edge-configurations $\omega \in \mathcal{I}^{\mathcal{E}}$ with marginals θ :

$$
\begin{equation*}
\hat{\phi}(\omega):=\prod_{\langle x y\rangle \in \mathcal{E}} \theta\left(\omega_{\langle x y\rangle}\right) . \tag{13}
\end{equation*}
$$

We say that an edge-configuration $\omega \in \mathcal{I}^{\mathcal{E}}$ and a vertex-configuration $\sigma \in S^{V}$ are compatible, and write $\omega \preceq \sigma$, if the value of ω on any edge is dominated by the weight of the gradient of σ over that edge:

$$
\begin{equation*}
\omega \preceq \sigma \Leftrightarrow \omega_{\langle x y\rangle} \leq W\left(\sigma_{x}-\sigma_{y}\right) \quad \text { for every }\langle x y\rangle \in \mathcal{E} . \tag{14}
\end{equation*}
$$

Notice that, if $\omega \preceq \sigma$ and $\omega_{\langle x y\rangle}=1$, then $\sigma_{x}=\sigma_{y}$; on the other hand, $\omega_{\langle x y\rangle}=0$ imposes no restriction on the values of σ_{x} and σ_{y}.

We define the random-cluster probability $\phi=\phi(V, U, \mathcal{E}, \beta)$ on $\mathcal{I}^{\mathcal{E}}$ as the measure obtained from $\hat{\phi}$ by assigning to each edge-configuration ω a weight proportional to the number of vertexconfigurations σ that are compatible with ω and satisfy the boundary condition, using $\hat{\phi}$ as
reference measure:

$$
\begin{equation*}
\phi(\omega):=\frac{1}{Z}|\{\sigma: \sigma \succeq \omega, \sigma \stackrel{U}{=} 0\}| \hat{\phi}(\omega) \tag{15}
\end{equation*}
$$

Here Z is the same normalizing constant appearing in (9).
The Edwards-Sokal coupling. Let $\hat{\mu}=\hat{\mu}(V, U)$ be the uniform probability on the set of vertex configurations S^{V} that are identically 0 at sites in U :

$$
\begin{equation*}
\hat{\mu}(\sigma):=\frac{1}{q^{|V \backslash U|}} \mathbf{1}[\sigma \stackrel{U}{=} 0] . \tag{16}
\end{equation*}
$$

We define a joint edge-vertex probability $Q=Q(V, U, \mathcal{E}, \beta)$ on $\mathcal{I}^{\mathcal{E}} \times S^{V}$ by

$$
\begin{equation*}
Q(\omega, \sigma):=\frac{1}{Z^{\prime}} \mathbf{1}[\omega \preceq \sigma] \hat{\phi}(\omega) \hat{\mu}(\sigma) \tag{17}
\end{equation*}
$$

where $Z^{\prime}:=Z / q^{|V \backslash U|}$ with Z as in (9). That is, Q is the product probability $\hat{\phi} \times \hat{\mu}$ conditioned to the compatibility event $\{(\omega, \sigma): \omega \preceq \sigma\} \subset \mathcal{I}^{\mathcal{E}} \times S^{V}$.

Theorem 2.1 (Edwards-Sokal [5]). The measures ϕ and μ are respectively the first and second marginals of Q.

We prove this theorem in Section 3. The measure Q can be seen as a coupling between the clock measure μ and the random-cluster measure ϕ. As a corollary, it follows that the conditional distribution under Q of σ given ω is uniform on the set of configurations compatible with ω and such that $\sigma \stackrel{U}{=} 0$:

$$
\begin{equation*}
Q(\sigma \mid \omega)=\frac{Q(\omega, \sigma)}{\sum_{\sigma^{\prime}} Q\left(\omega, \sigma^{\prime}\right)}=\frac{\hat{\mu}(\sigma) \mathbf{1}[\omega \preceq \sigma]}{\hat{\mu}\left(\sigma^{\prime}: \omega \preceq \sigma^{\prime}\right)} \tag{18}
\end{equation*}
$$

This implies that a random vertex-configuration distributed according to μ may be sampled by first choosing an edge-configuration ω with law ϕ, and then sampling a vertex-configuration uniformly among those that are compatible with ω and satisfy the boundary restriction. That is,

$$
\begin{equation*}
\mu(\sigma)=\sum_{\omega \in \mathcal{I}^{\mathcal{E}}} \frac{\hat{\mu}(\sigma) \mathbf{1}[\omega \preceq \sigma]}{\hat{\mu}\left(\sigma^{\prime}: \omega \preceq \sigma^{\prime}\right)} \phi(\omega) \tag{19}
\end{equation*}
$$

Given $x, y \in V$ and $\omega \in \mathcal{I}^{\mathcal{E}}$, we write $x \stackrel{\omega}{\longleftrightarrow} y$ if there is a path of vertices $x_{1}, \ldots, x_{n} \in V$ with $x_{1}=x, x_{n}=y,\left\langle x_{i} x_{i+1}\right\rangle \in \mathcal{E}$ and $\omega_{\left\langle x_{i} x_{i+1}\right\rangle}=1$ for $1 \leq i \leq n-1$. We say that x is connected to U by an ω-open path, and write $x \stackrel{\omega}{\longleftrightarrow} U$, if $x \stackrel{\omega}{\longleftrightarrow} y$ for some $y \in U$; let $x \stackrel{\omega}{\leftrightarrows} U$ denote the complementary event. The μ-marginal of the spin at x can be related to the connection probabilities between x and the boundary, under ϕ and Q :

$$
\begin{equation*}
\mu\left(\sigma: \sigma_{x}=a\right)=\phi(\omega: x \stackrel{\omega}{\longleftrightarrow} U) \mathbf{1}[a=0]+Q\left((\omega, \sigma): \sigma_{x}=a, x \stackrel{\omega}{\leftrightarrows} U\right) . \tag{20}
\end{equation*}
$$

Identity (20) follows immediately from the coupling of Theorem 2.1 and the inclusion $\{(\omega, \sigma)$: $x \stackrel{\omega}{\longleftrightarrow} U\} \subset\left\{(\omega, \sigma): \sigma_{x}=0\right\}$.

The coupling of Theorem 2.1 also implies that the μ-probability of seeing a 0 at any site x is larger than the probability of seeing any other spin plus the ϕ-probability of x being
connected to the boundary. This is the content of the next result; its proof depends crucially on the combinatorial Lemma 2.4 stated later.

Proposition 2.2 (Positive Correlations). For any vertex $x \in V$ and any spin $a \neq 0$,

$$
\begin{equation*}
\mu\left(\sigma: \sigma_{x}=0\right) \geq \mu\left(\sigma: \sigma_{x}=a\right)+\phi(\omega: x \stackrel{\omega}{\longleftrightarrow} U) . \tag{21}
\end{equation*}
$$

Stochastic domination. Given $I \subset \mathbb{R}$, consider the partial order on $I^{\mathcal{E}}$ defined by $\omega \leq \omega^{\prime}$ if and only if $\omega_{\langle x y\rangle} \leq \omega_{\langle x y\rangle}^{\prime}$ for every $\langle x y\rangle \in \mathcal{E}$. A function $f: I^{\mathcal{E}} \rightarrow \mathbb{R}$ is said to be increasing if $f(\omega) \leq f\left(\omega^{\prime}\right)$ whenever $\omega \leq \omega^{\prime}$, while an event $E \subset I^{\mathcal{E}}$ is said to be increasing when its indicator function $f(\omega)=\mathbf{1}[\omega \in E]$ is. Given two probabilities P and P^{\prime} on $I^{\mathcal{E}}$, we say that P is stochastically dominated by P^{\prime}, and write $P \leq_{s t} P^{\prime}$, if and only if $P f \leq P^{\prime} f$ for every increasing $f: I^{\mathcal{E}} \rightarrow \mathbb{R}$. This is equivalent to $P(E) \leq P^{\prime}(E)$ for any increasing event E.

Given $\rho \in[0,1]$, let B_{ρ} be the Bernoulli product measure on $\{0,1\}^{\mathcal{E}}$ with parameter ρ. In order to stochastically compare ϕ and B_{ρ}, we consider them defined on the common space $I^{\mathcal{E}}$, where $I=\{0\} \cup \mathcal{I}$.

Theorem 2.3 (Stochastic Domination). For any $\rho \in[0,1)$, there exists $\beta_{0}=\beta_{0}(\rho)>0$, independent of the graph (V, \mathcal{E}) and the boundary U, such that, if $\beta \geq \beta_{0}, B_{\rho}$ is stochastically dominated by ϕ.

The key to the proofs of Proposition 2.2 and Theorem 2.3 is the following combinatorial lemma, proved in Section 3.

Lemma 2.4. For every $x \in V, a \in S$ and $\omega \in \mathcal{I}^{\mathcal{E}}$,

$$
\begin{equation*}
\left|\left\{\sigma: \sigma \succeq \omega, \sigma \stackrel{U}{\underline{U}} 0, \sigma_{x}=a\right\}\right| \leq\left|\left\{\sigma: \sigma \succeq \omega, \sigma \stackrel{U}{=} 0, \sigma_{x}=0\right\}\right| . \tag{22}
\end{equation*}
$$

Equivalently,

$$
\begin{equation*}
\hat{\mu}\left(\sigma: \sigma_{x}=a, \sigma \succeq \omega\right) \leq \hat{\mu}\left(\sigma: \sigma_{x}=0, \sigma \succeq \omega\right) \tag{23}
\end{equation*}
$$

The lemma in fact holds for any spin set S^{\prime} and weight function W^{\prime} provided they satisfy certain symmetry properties: for any pair of elements $a, b \in S^{\prime}$ it must be possible to define a reflection $R=R_{a, b}: S^{\prime} \rightarrow S^{\prime}, R(a)=b$, such that (i) it splits S^{\prime} into two hemispheres $\operatorname{Hem}(a)$ and $\operatorname{Hem}(b), a \in \operatorname{Hem}(a), b \in \operatorname{Hem}(b)$, in such a way that $W^{\prime}(c-R(d))<W^{\prime}(c-d)$ implies c and d belong to the same hemisphere, and (ii) R preserves the compatibility of neighbouring vertices when applied to both spins. These extensions are explored in detail in [6].

In the dilute Potts model with q spins, the Hamiltonian is given by $\sum_{\langle x y\rangle} J_{\langle x y\rangle} \mathbf{1}\left[\sigma_{x} \neq \sigma_{y}\right]$, and the associated random-cluster probability is defined on $\{0,1\}^{\mathcal{E}}$; see $[8,9]$, for example. In this case, if σ and ω are compatible, the values of σ_{x} and σ_{y} must coincide whenever $\omega_{\langle x y\rangle}=1$, and there are no restrictions if $\omega_{\langle x y\rangle}=0$. Call a connected component of the graph $\left(V,\left\{\langle x y\rangle: \omega_{\langle x y\rangle}=1\right\}\right)$ an ω-cluster. Then $\omega \preceq \sigma$ implies that σ is constant over each of the ω-clusters and the values achieved on different clusters not connected with U can take any value in $\{1, \ldots, q\}$. Hence, for the diluted Potts model, the combinatorial term appearing in expression (15) reduces to

$$
\begin{equation*}
|\{\sigma: \sigma \succeq \omega, \sigma \stackrel{U}{=} 0\}|=q^{\text {number of } \omega \text {-clusters }} \tag{24}
\end{equation*}
$$

In contrast, for the clock model, the larger range of edge-configurations in $\mathcal{I}^{\mathcal{E}}$ gives rise to a more delicate combinatorial structure which will be managed using the inequality (22).

3. Proofs

Proof of Theorem 1.1 (Phase Co-Existence). Let us identify a disorder J defined in (1) with its associated set of open edges

$$
\begin{equation*}
\left\{\langle x y\rangle \in \mathcal{E}\left(\mathbb{Z}^{d}\right): J_{\langle x y\rangle}=1\right\} \tag{25}
\end{equation*}
$$

We say that $C \subset \mathbb{Z}^{d}$ is a J-open cluster if it is a maximal set with the property that $x \stackrel{J}{\longleftrightarrow} y$ for all $x, y \in C$. Denote $x \stackrel{J}{\longleftrightarrow} \infty$ when x belongs to an infinite J-open cluster. Let p_{c} be the critical value for bond percolation in \mathbb{Z}^{d}. If $p>p_{c}$, then $P_{p}(J: x \stackrel{J}{\longleftrightarrow} \infty)>0$; see [8,9] and references therein for a treatment of percolation theory.

Let $\rho \in(0,1)$ be such that $p \rho>p_{c}$ and let J^{\prime} be an independently sampled P_{ρ}-disorder. Denote by $J J^{\prime}$ the set of vertices that are open for both J and J^{\prime} and note that $J J^{\prime}$ is a $P_{p \rho^{-}}$ disorder. Also, once J is fixed, $J J^{\prime}$ is a random thinning, each open edge of J is kept open with probability ρ and closed with probability $(1-\rho)$, independently.

Let $\mathcal{X} \subset\{0,1\}^{\mathcal{E}\left(\mathbb{Z}^{d}\right)}$ be the set of disorders J such that there is an infinite $J J^{\prime}$-open cluster with probability 1 :

$$
\begin{equation*}
\mathcal{X}:=\left\{J: P_{\rho}\left(J^{\prime}: \text { there is an infinite } J J^{\prime} \text {-open cluster }\right)=1\right\} . \tag{26}
\end{equation*}
$$

From Fubini's Theorem, the fact that $J J^{\prime}$ is a $P_{p \rho}$-disorder, and $p \rho>p_{c}$, it is easy to see that $P_{p}(\mathcal{X})=1$. Also,

$$
\left\{J^{\prime}: \text { there is an infinite } J J^{\prime} \text {-open cluster }\right\}=\bigcup_{x \in \mathbb{Z}^{d}}\left\{J^{\prime}: x \stackrel{J J^{\prime}}{\longleftrightarrow} \infty\right\}
$$

Hence, for each $J \in \mathcal{X}$, there exists a vertex $x \in \mathbb{Z}^{d}$ belonging to an infinite $J J^{\prime}$-open cluster with positive P_{ρ}-probability:

$$
\begin{equation*}
P_{\rho}\left(J^{\prime}: x \stackrel{J J^{\prime}}{\longleftrightarrow} \infty\right)>0 . \tag{27}
\end{equation*}
$$

Let $\beta_{0}=\beta_{0}(\rho)$ be as in the statement of Theorem 2.3. Fix a disorder $J \in \mathcal{X}$ and a vertex x satisfying (27). Given $n \in \mathbb{N}$, let $\Lambda_{n}:=[-n, n]^{d} \cap \mathbb{Z}^{d}$ and consider the choices

$$
\begin{align*}
V & =\Lambda_{n} \cup \partial \Lambda_{n}, \quad \mathcal{E}=\left\{\langle x y\rangle \in \mathcal{E}\left(\mathbb{Z}^{d}\right):\{x, y\} \cap \Lambda_{n} \neq \emptyset, \quad J_{\langle x y\rangle}=1\right\}, \\
U & =\partial \Lambda_{n}, \tag{28}
\end{align*}
$$

for the vertex, edge and boundary sets in Section 2. Let μ, ϕ and B_{ρ} denote the clock probability on S^{V}, random-cluster distribution on $\mathcal{I}^{\mathcal{E}}$ and product Bernoulli probability on $\{0,1\}^{\mathcal{E}}$ associated to this choice, respectively. Note that $\mu=\mu_{\Lambda_{n}, J}^{0}$ as defined in (4) with the convention that the superscript a in $\mu_{\Lambda_{n}, J}^{a}$ indicates the boundary condition $\eta_{y} \equiv a$ on $\partial \Lambda_{n}$.

Since the event $\{x \stackrel{\omega}{\longleftrightarrow} U\}$ is increasing, Theorem 2.3 implies

$$
\phi(\omega: x \stackrel{\omega}{\longleftrightarrow} U) \geq B_{\rho}(\omega: x \stackrel{\omega}{\longleftrightarrow} U)=P_{\rho}\left(J^{\prime}: x \stackrel{J J^{\prime}}{\longleftrightarrow} \partial \Lambda_{n}\right) \geq P_{\rho}\left(J^{\prime}: x \stackrel{J J^{\prime}}{\longleftrightarrow} \infty\right) .
$$

Replacing in (21) with $\mu=\mu_{\Lambda_{n}, J}^{0}$, we obtain

$$
\begin{equation*}
\mu_{\Lambda_{n}, J}^{0}\left(\sigma: \sigma_{x}=0\right) \geq \mu_{\Lambda_{n}, J}^{0}\left(\sigma: \sigma_{x}=a\right)+P_{\rho}\left(J^{\prime}: x \stackrel{J J^{\prime}}{\longleftrightarrow} \infty\right), \quad \text { for any } a \neq 0 . \tag{29}
\end{equation*}
$$

We conclude that any weak limit μ_{J}^{0} of $\mu_{\Lambda_{n}, J}^{0}$ as $n \rightarrow \infty$ satisfies

$$
\begin{equation*}
\mu_{J}^{0}\left(\sigma: \sigma_{x}=0\right)>\mu_{J}^{0}\left(\sigma: \sigma_{x}=a\right) \quad \text { for any } a \neq 0 \tag{30}
\end{equation*}
$$

By the rotational symmetry in the set S of spins, the same holds with any boundary condition b : the weak limit μ_{J}^{b} assigns maximal probability to having a spin b at $x, \mu_{J}^{b}\left(\sigma: \sigma_{x}=b\right)>$ $\mu_{J}^{b}\left(\sigma: \sigma_{x}=a\right), a \neq b$, and therefore the q-Gibbs measures $\mu_{J}^{b}, b \in S$, must be different.

Proof of Proposition 2.2 (Positive Correlations). For any spin $a \neq 0$, by (19) and the fact that $x \stackrel{\omega}{\longleftrightarrow} U$ implies $\sigma(x)=0$,

$$
\begin{aligned}
\mu\left(\sigma: \sigma_{x}=a\right) & =\sum_{\substack{\omega \\
\omega: x \leftrightarrow}} \frac{\hat{\mu}\left(\sigma: \sigma_{x}=a, \omega \preceq \sigma\right)}{\hat{\mu}(\sigma: \omega \preceq \sigma)} \phi(\omega) \\
& \leq \sum_{\substack{\omega \\
\omega: x \leftrightarrow}} \frac{\hat{\mu}\left(\sigma: \sigma_{x}=0, \omega \preceq \sigma\right)}{\hat{\mu}(\sigma: \omega \preceq \sigma)} \phi(\omega)=Q\left((\omega, \sigma): \sigma_{x}=0, x \stackrel{\omega}{\leftrightarrow} U\right),
\end{aligned}
$$

where the inequality holds by (23). Apply (20) to conclude.
Proof of Theorem 2.3 (Stochastic Domination). The measure ϕ gives positive probability to every edge configuration. Under this hypothesis, Holley's inequality (Theorem 4.8 of [8] for instance) asserts that the stochastic domination $B_{\rho} \leq_{s t} \phi$ follows from the single-bond inequalities

$$
\begin{equation*}
\rho \leq \phi\left(\omega: \omega_{\langle x y\rangle}=1 \mid \omega: \omega \stackrel{\mathcal{E} \backslash\langle x y\rangle}{=} \omega^{\prime}\right)=: \alpha\left(\langle x y\rangle, \omega^{\prime}\right), \quad\langle x y\rangle \in \mathcal{E}, \quad \omega^{\prime} \in \mathcal{I}^{\mathcal{E}} \tag{31}
\end{equation*}
$$

Given $t \in \mathcal{I}$, we define $t_{\langle x y\rangle} \omega^{\prime} \in \mathcal{I}^{\mathcal{E}}$ by

$$
\left(t_{\langle x y\rangle} \omega^{\prime}\right)_{\langle x y\rangle}=t \quad \text { and } \quad t_{\langle x y\rangle} \omega^{\prime} \stackrel{\mathcal{E} \backslash\langle x y\rangle}{=} \omega^{\prime} .
$$

Omitting the dependence of α on $\left(\langle x y\rangle, \omega^{\prime}\right)$ in the notation,

$$
\begin{equation*}
\alpha=\frac{\phi\left(1_{\langle x y\rangle} \omega^{\prime}\right)}{\sum_{i=0}^{k} \phi\left(\left(t_{i}\right)_{\langle x y\rangle} \omega^{\prime}\right)}=\frac{r_{k}\left|\left\{\sigma: \sigma \succeq 1_{\langle x y\rangle} \omega^{\prime}, \sigma \stackrel{U}{\underline{U}} 0\right\}\right|}{\sum_{i=0}^{k} r_{i}\left|\left\{\sigma: \sigma \succeq\left(t_{i}\right)_{\langle x y\rangle} \omega^{\prime}, \sigma \stackrel{U}{=} 0\right\}\right|}, \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha^{-1}=\sum_{i=0}^{k} \frac{r_{i}}{r_{k}} \frac{\left|\left\{\sigma: \sigma \succeq\left(t_{i}\right)_{\langle x y\rangle} \omega^{\prime}, \sigma \stackrel{U}{=} 0\right\}\right|}{\left|\left\{\sigma: \sigma \succeq 1_{\langle x y\rangle} \omega^{\prime}, \sigma \stackrel{U}{=} 0\right\}\right|} . \tag{33}
\end{equation*}
$$

Let $(V, \tilde{\mathcal{E}})$ be the auxiliary graph obtained from (V, \mathcal{E}) by adding all edges connecting vertices in U :

$$
\begin{equation*}
\tilde{\mathcal{E}}:=\mathcal{E} \cup\{\langle u v\rangle:\{u, v\} \subset U\} . \tag{34}
\end{equation*}
$$

Let $\tilde{\omega} \in \mathcal{I}^{\tilde{\mathcal{E}}}$ be defined by

$$
\tilde{\omega} \stackrel{\tilde{\mathcal{E}} \backslash \mathcal{E}}{=} 1 \quad \text { and } \quad \tilde{\omega} \stackrel{\mathcal{E}}{=} \omega^{\prime} .
$$

Extend the definition of $t_{\langle x y\rangle} \tilde{\omega} \in \mathcal{I}^{\tilde{\mathcal{E}}}$ and the compatibility notion $\sigma \preceq \tilde{\omega}$ to the enlarged graph in the obvious way and use the rotation invariance of S to get

$$
\begin{equation*}
\left|\left\{\sigma: \sigma \succeq\left(t_{i}\right)_{\langle x y\rangle} \omega^{\prime}, \sigma \stackrel{U}{=} 0\right\}\right|=\frac{1}{q}\left|\left\{\sigma: \sigma \succeq\left(t_{i}\right)_{\langle x y\rangle} \tilde{\omega}\right\}\right| \tag{35}
\end{equation*}
$$

and replacing in (33),

$$
\begin{equation*}
\alpha^{-1}=\sum_{i=0}^{k} \frac{r_{i}}{r_{k}} \frac{\left|\left\{\sigma: \sigma \succeq\left(t_{i}\right)_{\langle x y\rangle} \tilde{\omega}\right\}\right|}{\left|\left\{\sigma: \sigma \succeq 1_{\langle x y\rangle} \tilde{\omega}\right\}\right|} . \tag{36}
\end{equation*}
$$

For $0 \leq i \leq k$, let

$$
\begin{equation*}
K_{i}:=\left|\left\{(a, b) \in S \times S: W(a-b)=t_{i}\right\}\right| \tag{37}
\end{equation*}
$$

We have

$$
\begin{align*}
\left|\left\{\sigma: \sigma \succeq\left(t_{i}\right)_{\langle x y\rangle} \tilde{\omega}\right\}\right| & =\sum_{j=i}^{k}\left|\left\{\sigma: \sigma \succeq \tilde{\omega}, W\left(\sigma_{y}-\sigma_{x}\right)=t_{j}\right\}\right| \tag{38}\\
& =\sum_{j=i}^{k} K_{j}\left|\left\{\sigma: \sigma \succeq \tilde{\omega}, \sigma_{y}=0, \sigma_{x}=a_{j}\right\}\right|, \tag{39}
\end{align*}
$$

where $a_{j} \in S$ is an angle such that $W\left(a_{j}\right)=t_{j}$. The second identity holds again by rotational invariance. Replacing in expression (36),

$$
\begin{equation*}
\alpha^{-1}=\sum_{i=0}^{k} \sum_{j=i}^{k} \frac{r_{i}}{r_{k}} \frac{K_{j}}{K_{k}} \frac{\left|\left\{\sigma: \sigma \succeq \tilde{\omega}, \sigma_{y}=0, \sigma_{x}=a_{j}\right\}\right|}{\left|\left\{\sigma: \sigma \succeq \tilde{\omega}, \sigma_{y}=0, \sigma_{x}=0\right\}\right|} \tag{40}
\end{equation*}
$$

By Lemma 2.4 applied to $U=\{y\}$, we get

$$
\begin{equation*}
\alpha^{-1} \leq \sum_{i=0}^{k} \sum_{j=i}^{k} \frac{r_{i}}{r_{k}} \frac{K_{j}}{K_{k}}=\sum_{j=0}^{k} \frac{t_{j}}{r_{k}} \frac{K_{j}}{K_{k}} \tag{41}
\end{equation*}
$$

since $t_{j}=\sum_{i=0}^{j} r_{i}$. From (31), we conclude that the stochastic domination $B_{\rho} \leq_{s t} \phi$ follows for β satisfying

$$
\begin{equation*}
\rho \leq \gamma(\beta):=\left(\sum_{j=0}^{k} \frac{t_{j}}{r_{k}} \frac{K_{j}}{K_{k}}\right)^{-1} \tag{42}
\end{equation*}
$$

The function γ is increasing. Indeed, for each $j, \frac{r_{k}}{t_{j}}$ is of the form $e^{\beta A}\left(1-e^{-\beta B}\right)$ with A and B positive numbers, and hence increasing. On the other hand $\lim _{\beta \rightarrow \infty} r_{k}=1$ and $\lim _{\beta \rightarrow \infty} t_{i}=0$ for $i<k$; as a consequence, $\lim _{\beta \rightarrow \infty} \gamma(\beta)=1$. Finally, $\lim _{\beta \downarrow 0} r_{k}=0$ and $\lim _{\beta \downarrow 0} t_{i}=1$ for every i, so $\lim _{\beta \downarrow 0} \gamma(\beta)=0$. See Fig. 1 for the graph of γ when $q=4$. In particular, γ is injective and its inverse $\gamma^{-1}:(0,1) \rightarrow(0, \infty)$ is well defined. We conclude that, if $\beta_{0}=\gamma^{-1}(\rho)$, then Eq. (31) holds for $\beta \geq \beta_{0}$.

Fig. 1. Graph of γ for $q=4$. As β goes to infinity, γ asymptotically approaches 1 .

Fig. 2. The reflection R with respect to the angle $a / 2$. The point b is mapped orthogonally with respect to the line ℓ.
Proof of Lemma 2.4. The case $x \in U$ is trivial, so let us suppose $x \in V \backslash U$. If $|U|>1$, the model can be reduced to the case $|U|=1$ by identifying all vertices in U. We may then suppose $U=\{y\}$ for some $y \neq x$.

Let

$$
\begin{equation*}
L_{\omega}(a):=\left\{\sigma: \sigma \succeq \omega, \sigma_{y}=0, \sigma_{x}=a\right\} . \tag{43}
\end{equation*}
$$

We will construct an injection $F: L_{\omega}(a) \hookrightarrow L_{\omega}(0)$. Here is a brief description of the procedure. Fix $a \in S$ and consider the reflection $R: S \rightarrow S$ with respect to the line ℓ at angle $a / 2$ with the horizontal axis (see Fig. 2), that is, $R b=a-b \bmod 2 \pi$. Clearly, $R(a)=0$. We progressively transform an initial configuration $\sigma \in L_{\omega}(a)$ into a configuration $\sigma^{\prime} \in L_{\omega}(0)$. The first step is to modify σ by applying the reflection R to the spin at the vertex x. The resulting configuration may present incompatibilities with respect to ω and, if it does, they will appear at edges $\{\langle u x\rangle\}_{u \in V}$. If this is the case, we modify the configuration by applying the transformation R to the spins of the conflicting vertices. We obtain a configuration without incompatibilities in the edges having one endpoint at x, but we might have created new incompatibilities at a second level of edges, that is, edges with one endpoint at a vertex that is a neighbour of x. We solve this by applying R once more to the spins of the new conflicting vertices, and keep repeating the procedure until there are no more incompatibilities. We need to show that the resulting configuration σ^{\prime} belongs to $L_{\omega}(0)$, and that the construction is indeed injective. The most delicate part is to prove that this process stops before reaching the vertex y.

It suffices to prove the result when $a \neq 0$, which we assume from now on. We may also assume that $a \in(0, \pi]$, as the other case is symmetric. As before, the boundary ∂V^{\prime} of a vertex set $V^{\prime} \subset V$ denotes the set of vertices $u \in V \backslash V^{\prime}$ such that $\langle u v\rangle \in \mathcal{E}$ for some $v \in V^{\prime}$.

Let now $\sigma \in L_{\omega}(a)$. Define a sequence of sets $A_{0} \subset A_{1} \subset \cdots \subset V$ associated to σ by $A_{0}:=\{x\}$ and, for $n \geq 0$,

$$
\begin{equation*}
A_{n+1}:=A_{n} \cup\left\{u \in \partial A_{n}: W\left(\sigma_{u}-R \sigma_{v}\right)<\omega_{\langle u v\rangle} \text { for some } v \in A_{n}\right\} . \tag{44}
\end{equation*}
$$

At each step, $A_{n+1} \backslash A_{n}$ consists of those vertices where new incompatibilities would arise when applying the reflection to A_{n}. Let

$$
\begin{equation*}
A:=\bigcup_{n \geq 0} A_{n} . \tag{45}
\end{equation*}
$$

Define the function $F: L_{\omega}(a) \rightarrow S^{V}$ by

$$
(F \sigma)_{u}:= \begin{cases}R \sigma_{u} & \text { if } u \in A \tag{46}\\ \sigma_{u} & \text { if } u \notin A\end{cases}
$$

We now show that (i) the image of F is contained in $L_{\omega}(0)$ and (ii) that $F: L_{\omega}(a) \rightarrow L_{\omega}(0)$ is an injection.
(i) $F \sigma \in L_{\omega}(0)$. In order to prove that $F \sigma \succeq \omega$, we need to show that

$$
\begin{equation*}
W\left((F \sigma)_{u}-(F \sigma)_{v}\right) \geq \omega_{\langle u v\rangle} \tag{47}
\end{equation*}
$$

for any $\langle u v\rangle \in \mathcal{E}$. The cases $\{u, v\} \subset A$ or $\{u, v\} \subset A^{c}$ are trivial. If $u \notin A$ and $v \in A$, condition (47) reads $W\left(\sigma_{u}-R \sigma_{v}\right) \geq \omega_{\langle u v\rangle}$, which must hold; otherwise u would have belonged to A in the first place.

It remains to prove that $(F \sigma)_{y}=0$, which follows if we show that $y \notin A$. The line ℓ (see Fig. 2) separates the two open hemispheres $\operatorname{Hem}(0)$ and $\operatorname{Hem}(a)$ defined by

$$
\begin{aligned}
& \operatorname{Hem}(0):=\{b \in S: \sin (b-a / 2)<0\} \\
& \operatorname{Hem}(a):=\{b \in S: \sin (b-a / 2)>0\}
\end{aligned}
$$

Since $0 \in \operatorname{Hem}(0)$, it is enough to prove that $\sigma_{u} \in \operatorname{Hem}(a)$ for every $u \in A \backslash\{x\}$. We proceed by induction. If $A_{1} \neq \emptyset$, let $u \in A_{1} \backslash\{x\}$ with $\sigma_{u}=b$. By the definition of A_{1}, we have $W(b-0)<\omega_{\langle u x\rangle} \leq W(b-a)$, where the inequality follows from the fact that $\sigma \succeq \omega$. Now, $W(b-0)<W(b-a)$ is equivalent to $\cos (b)<\cos (b-a)$. But

$$
\begin{align*}
\cos (b) & <\cos (b-a) \Longleftrightarrow \cos \left(b-\frac{a}{2}+\frac{a}{2}\right)<\cos \left(b-\frac{a}{2}-\frac{a}{2}\right) \tag{48}\\
& \Longleftrightarrow \cos \left(b-\frac{a}{2}\right) \cos \left(\frac{a}{2}\right)-\sin \left(b-\frac{a}{2}\right) \sin \left(\frac{a}{2}\right) \\
& <\cos \left(b-\frac{a}{2}\right) \cos \left(\frac{a}{2}\right)+\sin \left(b-\frac{a}{2}\right) \sin \left(\frac{a}{2}\right) \tag{49}\\
& \Longleftrightarrow 0<2 \sin \left(b-\frac{a}{2}\right) \sin \left(\frac{a}{2}\right) \Longleftrightarrow 0<\sin \left(b-\frac{a}{2}\right) \Longleftrightarrow b \in \operatorname{Hem}(a) \tag{50}
\end{align*}
$$

and the claim holds for A_{1}. Suppose now that $\sigma_{u} \in \operatorname{Hem}(a)$, that is

$$
\begin{equation*}
\sin \left(\sigma_{u}-\frac{a}{2}\right)>0 \tag{51}
\end{equation*}
$$

for every $u \in A_{n}$. If $A_{n+1} \neq \emptyset$, let $v \in A_{n+1}$ and $w \in A_{n}$ be such that $W\left(\sigma_{v}-R \sigma_{w}\right)<$ $W\left(\sigma_{v}-\sigma_{w}\right)$, which is equivalent to $\cos \left(\sigma_{v}-\left(a-\sigma_{w}\right)\right)<\cos \left(\sigma_{v}-\sigma_{w}\right)$. By the inductive hypothesis, $\sin \left(\sigma_{w}-\frac{a}{2}\right)>0$. An argument similar to the one leading from (48) to (50) yields

$$
0<2 \sin \left(\sigma_{v}-\frac{a}{2}\right) \sin \left(\sigma_{w}-\frac{a}{2}\right)
$$

and then $0<\sin \left(\sigma_{v}-\frac{a}{2}\right)$, i.e. $\sigma_{v} \in \operatorname{Hem}(a)$. This completes the induction.
(ii) F is injective. Let $\sigma, \sigma^{\prime} \in L_{\omega}(0, a)$ be two different configurations and denote by A, A_{1}, A_{2}, \ldots and $A^{\prime}, A_{1}^{\prime}, A_{2}^{\prime}, \ldots$ their associated incompatibility sets. If $A=A^{\prime}$, we are done because R is injective. Suppose $A \neq A^{\prime}$ and let

$$
n=\min \left\{j \geq 1: A_{j} \neq A_{j}^{\prime}\right\}
$$

so that in particular $A_{n-1}=A_{n-1}^{\prime}$. If there is a vertex $u \in A_{n-1}$ such that $\sigma_{u} \neq \sigma_{u}^{\prime}$, we are done. Suppose $\sigma \stackrel{A_{n-1}}{=} \sigma^{\prime}$. Without loss of generality, let us take $u \in A_{n} \backslash A_{n}^{\prime}$. We claim that $(F \sigma)_{u} \neq\left(F \sigma^{\prime}\right)_{u}$. We know that $\sigma_{u} \neq \sigma_{u}^{\prime}$, as otherwise we would have $u \in A_{n}^{\prime}$. If $u \in A^{\prime}$, we are done. Suppose then $u \notin A^{\prime}$. Let $v \in A_{n-1}$ be such that $W\left(\sigma_{u}-R \sigma_{v}\right)<\omega_{\langle u v\rangle}$. Using that $W\left(a^{\prime}-b^{\prime}\right)=W\left(R a^{\prime}-R b^{\prime}\right)$ for any $a^{\prime}, b^{\prime} \in S$, that R^{2} is the identity and that $(F \sigma)_{u}=R \sigma_{u}$, we have $W\left(\sigma_{u}-R \sigma_{v}\right)=W\left((F \sigma)_{u}-\sigma_{v}\right)$, and then

$$
\begin{equation*}
W\left((F \sigma)_{u}-\sigma_{v}\right)<\omega_{\langle u v\rangle} . \tag{52}
\end{equation*}
$$

On the other hand, since $\sigma^{\prime} \succeq \omega$, we have $W\left(\sigma_{u}^{\prime}-\sigma_{v}^{\prime}\right) \geq \omega_{\langle u v\rangle}$. But $W\left(\sigma_{u}^{\prime}-\sigma_{v}^{\prime}\right)=W\left(\left(F \sigma^{\prime}\right)_{u}-\right.$ σ_{v}) because $u \notin A^{\prime}$ and $\sigma \stackrel{A_{n-1}}{=} \sigma^{\prime}$, and hence

$$
\begin{equation*}
W\left(\left(F \sigma^{\prime}\right)_{u}-\sigma_{v}\right) \geq \omega_{\langle u v\rangle} \tag{53}
\end{equation*}
$$

From inequalities (52) and (53), we obtain $(F \sigma)_{u} \neq\left(F \sigma^{\prime}\right)_{u}$, as claimed.

Acknowledgements

We are grateful to both referees for several comments that helped us give a clear focus to the article. Nahuel Soprano-Loto would like to thank Roberto Fernández for many useful discussions and his warm welcome to the University of Utrecht, a visit funded by grant 2010-MINCYT-NIO Interacting stochastic systems: fluctuations, hydrodynamics, scaling limits. This research has been supported by grant PICT 2012-2744 Stochastic Processes and Statistical Mechanics.

Appendix

Proof of Theorem 2.1 (The Edwards-Sokal Random-Cluster Representation). The first step is to write the density of μ with respect to $\hat{\mu}$ as

$$
\begin{equation*}
\mu(\sigma)=\hat{\mu}(\sigma) \frac{1}{Z^{\prime}} \prod_{\langle x y\rangle \in \mathcal{E}} W\left(\sigma_{x}-\sigma_{y}\right), \tag{54}
\end{equation*}
$$

with Z^{\prime} the normalizing constant in (17). Since $W\left(\sigma_{x}-\sigma_{y}\right)=\theta\left(t \in \mathcal{I}: t \leq W\left(\sigma_{x}-\sigma_{y}\right)\right)$, the weight of a spin configuration can be realized as the probability of a related event on the
associated edge set:

$$
\begin{equation*}
\prod_{\langle x y\rangle \in \mathcal{E}} W\left(\sigma_{x}-\sigma_{y}\right)=\hat{\phi}\left(\bigcap_{\langle x y\rangle \in \mathcal{E}}\left\{\omega \in \mathcal{I}^{\mathcal{E}}: \omega_{\langle x y\rangle} \leq W\left(\sigma_{x}-\sigma_{y}\right)\right\}\right)=\hat{\phi}(\omega: \omega \preceq \sigma) . \tag{55}
\end{equation*}
$$

Here is where the definition of compatibility appears naturally. Inserting (55) in (54), we get

$$
\begin{equation*}
\mu(\sigma)=\sum_{\omega \in \mathcal{I}^{\mathcal{E}}} \frac{1}{Z^{\prime}} \mathbf{1}[\omega \preceq \sigma] \hat{\phi}(\omega) \hat{\mu}(\sigma)=\sum_{\omega \in \mathcal{I}^{\mathcal{E}}} Q((\omega, \sigma)) \tag{56}
\end{equation*}
$$

Hence μ is the second marginal of Q. Adding over all the possible vertex-configurations, it is easy to see that ϕ is its first marginal.
Asymptotics for β_{0}. The threshold β_{0} introduced in Theorem 1.1 is $\beta_{0}=\gamma^{-1}(\rho)$, where $\gamma:(0, \infty) \rightarrow(0,1)$ is the function defined in the proof of Theorem 2.3, and ρ is the parameter defined in the proof of Theorem 1.1, such that $\rho>\frac{p_{c}}{p}$. Since γ^{-1} is increasing, we can take the infimum over ρ to optimize $\beta_{0}=\gamma^{-1}\left(\frac{p_{c}}{p}\right)$.

For any fixed $\beta>0$, we have that $\lim _{q \rightarrow \infty} \gamma(\beta)=0$. Indeed, $\lim _{q \rightarrow \infty} r_{k}=0$ and $t_{i} \frac{K_{i}}{K_{k}}$ is bounded away from zero uniformly in q. As a consequence, for every fixed $\tilde{p} \in$ $(0,1), \lim _{q \rightarrow \infty} \gamma^{-1}(\tilde{p})=\infty$. We conclude that our method is not informative as a discretization of the $X Y$ model, that is, when the number of spins goes to infinity.

Note that

$$
\begin{equation*}
\gamma(\beta)^{-1}=\frac{1}{r_{k}}+\sum_{i=0}^{k-1} \frac{t_{i}}{r_{k}} \frac{K_{i}}{K_{k}} \leq \frac{1}{r_{k}}+\sum_{i=0}^{k-1} \frac{t_{k-1}}{r_{k}} 2 \leq \frac{1}{r_{k}}+\frac{t_{k-1}}{r_{k}} q, \tag{57}
\end{equation*}
$$

so that

$$
\begin{equation*}
\gamma(\beta) \geq \frac{r_{k}}{1+q t_{k-1}} . \tag{58}
\end{equation*}
$$

Then β_{0} is bounded from above by the solution to the equation

$$
\begin{equation*}
\frac{p_{c}}{p}=\frac{r_{k}}{1+q t_{k-1}} . \tag{59}
\end{equation*}
$$

Using that $r_{k}=1-t_{k-1}$ and $t_{k-1}=e^{-\beta\left(1-\cos \left(\frac{2 \pi}{q}\right)\right)}$, this solution can be explicitly computed as

$$
\begin{equation*}
\frac{\log \left(\frac{p+q p_{c}}{p-p_{c}}\right)}{1-\cos \left(\frac{2 \pi}{q}\right)} \tag{60}
\end{equation*}
$$

If we fix p and d, this expression is of order $q^{2} \log (q)$ as $q \rightarrow \infty$, the same order given by Pirogov-Sinai theory and reflection positivity in the 2-dimensional homogeneous case. If we fix p and q, it is of order

$$
\begin{equation*}
\frac{\log \left(1+\frac{1}{d}\right)}{1-\cos \left(\frac{2 \pi}{q}\right)} \tag{61}
\end{equation*}
$$

as $d \rightarrow \infty$, taking into account that $p_{c} \sim \frac{1}{2 d}$. In particular, $\beta_{0} \rightarrow 0$ as $d \rightarrow \infty$.

References

[1] M. Aizenman, J.T. Chayes, L. Chayes, C.M. Newman, The phase boundary in dilute and random Ising and Potts ferromagnets, J. Phys. A 20 (5) (1987) L313-L318.
[2] Marek Biskup, Reflection positivity and phase transitions in lattice spin models, in: Methods of Contemporary Mathematical Statistical Physics, in: Lecture Notes in Math., vol. 1970, Springer, Berlin, 2009, pp. 1-86.
[3] R.L. Dobrushin, The description of a random field by means of conditional probabilities and conditions of its regularity, Theory Probab. Appl. 13 (1968) 197-224.
[4] Julien Dubédat, Topics on abelian spin models and related problems, Probab. Surv. 8 (2011) 374-402.
[5] Robert G. Edwards, Alan D. Sokal, Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm, Phys. Rev. D (3) 38 (6) (1988) 2009-2012.
[6] Roberto Fernández, Nahuel Soprano-Loto, in preparation.
[7] Jürg Fröhlich, Robert Israel, Elliott H. Lieb, Barry Simon, Phase transitions and reflection positivity. I. General theory and long range lattice models, Comm. Math. Phys. 62 (1) (1978) 1-34.
[8] Hans-Otto Georgii, Olle Häggström, Christian Maes, The random geometry of equilibrium phases, in: Phase Transitions and Critical Phenomena. Vol. 18, in: Phase Transit. Crit. Phenom., vol. 18, Academic Press, San Diego, CA, 2001, pp. 1-142.
[9] Geoffrey Grimmett, The Random-Cluster Model, in: Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 333, Springer-Verlag, Berlin, 2006.
[10] P.W. Kasteleyn, C.M. Fortuin, Phase transitions in lattice systems with random local properties, J. Phys. Soc. Japan 26 (1969) 11-14.
[11] Christian Maes, Senya Shlosman, Rotating states in driven clock- and XY-models, J. Stat. Phys. 144 (6) (2011) 1238-1246.
[12] S.A. Pirogov, Ja.G. Sină̆, Phase diagrams of classical lattice systems, Teoret. Mat. Fiz. 25 (3) (1975) 358-369.
[13] J. van den Berg, C. Maes, Disagreement percolation in the study of Markov fields, Ann. Probab. 22 (2) (1994) 749-763.
[14] Aernout C.D. van Enter, Christof Külske, Alex A. Opoku, Discrete approximations to vector spin models, J. Phys. A 44 (47) (2011) 475002. 11.

[^0]: * Corresponding author.

 E-mail addresses: iarmend@dm.uba.ar (I. Armendáriz), pferrari@dm.uba.ar (P.A. Ferrari), nsloto@dm.uba.ar (N. Soprano-Loto).

