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Abstract

We prove that phase transition occurs in the dilute ferromagnetic nearest-neighbour q-state clock model
in Zd , for every q ≥ 2 and d ≥ 2. This follows from the fact that the Edwards–Sokal random-cluster
representation of the clock model stochastically dominates a supercritical Bernoulli bond percolation
probability, a technique that has been applied to show phase transition for the low-temperature Potts model.
The domination involves a combinatorial lemma which is one of the main points of this article.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The q-state clock model assigns a random spin to each site of Zd . The spins take values in a
discrete set S of equidistant angles or hours, hence the name. Let σ = (σx , x ∈ Zd) be a spin
configuration, σx the angle of the spin at x ∈ Zd . Let E (Zd) := {⟨xy⟩ : ∥x − y∥ = 1} be the set
of edges connecting nearest neighbour sites, ∥·∥ the Euclidean norm. We study the dilute clock
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model associated to a disorder, namely a collection

J = (J⟨xy⟩ : ⟨xy⟩ ∈ E (Zd)) (1)

of independent identically distributed Bernoulli random variables with parameter p. A disorder
realization J and a finite set Λ ⊂ Zd determine the Hamiltonian on spin configurations:

HΛ,J (σ ) :=


⟨xy⟩∈E(Zd )
{x,y}∩Λ≠∅

J⟨xy⟩

1− cos(σx − σy)


. (2)

When q = 2, we recover the Ising model; as q → ∞, the clock model approximates the XY
model, which has a continuum of spin angles.

Given a set Λ ⊂ Zd and configurations σ, η ∈ SZd
, we write

σ
Λ
= η if σx = ηx ∀ x ∈ Λ. (3)

The specification µ
η

Λ,J associated to a finite set Λ, a disorder J , and a boundary condition η, is
the probability

µ
η

Λ,J (σ ) :=
1

Zη

Λ,J

e−β HΛ,J (σ )1[σ Λc

= η], (4)

where β > 0 is a parameter proportional to the inverse temperature and Zη

Λ,J is the normalizing
constant. A Gibbs measure associated to the disorder J is a probability µJ that satisfies the DLR
condition:

µJ f =


SZd
µJ (dη) µ

η

Λ,J f (5)

for every finite subset Λ ⊂ Zd and every local function f : SZd
→ R. Here, µ f denotes the

expectation of f with respect to µ. The underlying σ -algebra where the Gibbs measures and the
specifications are defined is the one generated by projections over finite subsets of Zd . We call
G J the set of Gibbs measures associates to J . Since S is finite, G J is not empty. In case |G J | > 1,
we say that phase co-existence occurs.

The homogeneous version of the model is obtained by taking p = 1 or, equivalently, J⟨xy⟩ ≡ 1
for every ⟨xy⟩. In this case, non-uniqueness methods such as the Pirogov–Sinai theory [12] or
reflection positivity as in Fröhlich, Israel, Lieb and Simon [7], see also Biskup [2], prove that, for
sufficiently low temperature, there exist at least q different Gibbs measures. On the other hand,
when the temperature is large enough, techniques similar to those developed by Dobrushin [3] or
by van den Berg and Maes [13] show that there exists only one Gibbs measure. Phase transition
occurs when a system undergoes a change in its phase diagram depending on the value of a
parameter; these results hence establish occurrence of phase transition for the homogeneous
clock model.

Both Pirogov–Sinai theory and reflection positivity depend on the graph determined by the
interacting edges in the Hamiltonian (2) being symmetric, an assumption that breaks down for
the properly dilute model p < 1. Instead, our main tool is the Fortuin–Kasteleyn random-cluster
representation [10], originally introduced for the Ising and the Ashkin–Teller–Potts models, and
then generalized to arbitrary models by Edwards and Sokal [5]; here, we build the clock model
random-cluster representation in detail. The core idea of this approach is to relate non-uniqueness
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of Gibbs measure in the statistical–mechanical model to the existence of an infinite cluster in the
random-cluster model: a percolation problem. It was first applied by Aizenman, Chayes, Chayes
and Newman to study the phase diagram of the dilute Ising and Potts models in [1]; we presently
adapt their ideas to our context.

Precisely, we derive a lower bound for the critical temperature: for every dimension d and
every number q of spins, we take p sufficiently large to guarantee that the disorder almost surely
contains an infinite bond-percolation cluster, and then determine a value β0 = β0(q, d, p) > 0
such that there is more than one Gibbs measure at inverse temperatures β > β0, for almost all
disorders J . A crucial step in the proof consists of dominating from below the random-cluster
probability associated to the clock model by a supercritical Bernoulli product probability on
the bonds. While for the Potts model this domination is immediate, the clock model requires a
combinatorial argument, given in Lemma 2.4.

The following is our main result.

Theorem 1.1. Let p > pc, where pc is the Bernoulli bond percolation critical probability in
Zd . Let the disorder J be distributed as a product Pp of i.i.d. Bernoulli random variables
with parameter p. Then there exists β0 > 0 such that, for β > β0, the q-state dilute clock
model associated to the random specifications µ

η

Λ,J defined in (4) exhibits phase co-existence for
Pp-almost every realization of J . More precisely, β > β0 implies Pp(J : |G J | ≥ q) = 1.

The value β0 in the later theorem depends on d, q and p. We show in the Appendix
that, for fixed d and p, β0(q, d, p) ∼ q2 log q as q → ∞, the same asymptotics provided
by Pirogov–Sinai theory and reflection positivity in the 2-dimensional homogeneous case. In
particular, limq→∞ β0(q, d, p) = ∞, implying that our approach is not suitable to study the XY
model; see van Enter, Külske and Opoku [14] for results concerning the approximation of the
XY model via the clock model. On the other hand, for d ≥ 3 and p = 1, reflection positivity
computes a threshold β0 independent of q , see Maes and Shlosman [11] for a discussion.

The ideas presented in this article can be further developed in two directions, which are
explored by Soprano-Loto in collaboration with Roberto Fernández in a separate article [6].
The first one is a generalization of the current work to the so called Abelian spin models; see
Dubédat [4] for a precise definition. The second direction of research seeks to obtain a unique-
ness criterion, also via random-cluster representation, at a higher level of generality.

Organization of the article. We introduce the random-cluster model and state the results leading
to the proof of Theorem 1.1 in Section 2. Section 3 contains the proofs and the Appendix collects
some auxiliary computations.

2. Clock model and random-cluster in a finite graph

We define the clock model and its random-cluster representation for a fixed non-oriented
finite graph (V, E ) without loops or multiple edges, and not necessarily connected. We fix a non-
empty subset U ⊂ V playing the role of boundary. For simplicity, we suppose there are no edges
connecting vertices in U : {⟨xy⟩ ∈ E : {x, y} ⊂ U } = ∅.

In the case of the dilute clock in a finite set Λ ⊂ Zd , the boundary is given by ∂Λ := {y ∈
Λc, ∃x ∈ Λ : ∥x − y∥2 = 1}, and the vertex and edge sets are

Λ ∪ ∂Λ and {⟨xy⟩ , {x, y} ⊄ Λc, ∥x − y∥ = 1, J⟨xy⟩ = 1}. (6)
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The clock model. Let S be the set of angles defined by

S :=


2π i

q
: i = 0, . . . , q − 1


. (7)

Elements of S are called spins and denoted a, b and c, while spin or vertex-configurations in SV

are denoted by σ and η.
The clock Hamiltonian H = H(V, E ) is the function H : SV

→ R defined by

H(σ ) :=

⟨xy⟩∈E


1− cos(σx − σy)


. (8)

We write σ
U
= a when σx = a for all x ∈ U . The clock probability µ = µ(V, U, E , β) with

0-boundary condition is defined as

µ(σ) :=
1
Z

e−β H(σ )1[σ U
= 0], (9)

where β is a strictly positive parameter and Z = Z(V, U, E , β) is the normalizing constant.

The random-cluster measure. Define a weight function W : S→ (0, 1] by

W (a) := e−β(1−cos a) (10)

and let I := {W (a), a ∈ S} be its image. This set has cardinality |I| = k + 1, where k = q/2
for even q and k = (q − 1)/2 for odd q . Write I = {t0, t1, . . . , tk} with 0 < t0 < t1 < · · · <

tk = W (0) = e−β(1−cos 0)
= 1, and denote

r0 := t0, ri := ti − ti−1, 1 ≤ i ≤ k. (11)

By construction, 0 ≤ ri ≤ 1 for all 0 ≤ i ≤ k and


i ri = 1.
Let θ be the probability on I given by

θ(ti ) := ri , 0 ≤ i ≤ k, (12)

and let φ̂ = φ̂(E , β) be the product measure on the set of edge-configurations ω ∈ I E with
marginals θ :

φ̂(ω) :=

⟨xy⟩∈E

θ(ω⟨xy⟩). (13)

We say that an edge-configuration ω ∈ I E and a vertex-configuration σ ∈ SV are compatible,
and write ω ≼ σ , if the value of ω on any edge is dominated by the weight of the gradient of σ

over that edge:

ω ≼ σ ⇔ ω⟨xy⟩ ≤ W (σx − σy) for every ⟨xy⟩ ∈ E . (14)

Notice that, if ω ≼ σ and ω⟨xy⟩ = 1, then σx = σy ; on the other hand, ω⟨xy⟩ = 0 imposes no
restriction on the values of σx and σy .

We define the random-cluster probability φ = φ(V, U, E , β) on I E as the measure obtained
from φ̂ by assigning to each edge-configuration ω a weight proportional to the number of vertex-
configurations σ that are compatible with ω and satisfy the boundary condition, using φ̂ as
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reference measure:

φ(ω) :=
1
Z

{σ : σ ≽ ω, σ
U
= 0}

 φ̂(ω). (15)

Here Z is the same normalizing constant appearing in (9).

The Edwards–Sokal coupling. Let µ̂ = µ̂(V, U ) be the uniform probability on the set of vertex
configurations SV that are identically 0 at sites in U :

µ̂(σ ) :=
1

q |V \U |
1[σ U
= 0]. (16)

We define a joint edge–vertex probability Q = Q(V, U, E , β) on I E
× SV by

Q(ω, σ ) :=
1
Z ′

1[ω ≼ σ ] φ̂(ω) µ̂(σ ), (17)

where Z ′ := Z/q |V \U | with Z as in (9). That is, Q is the product probability φ̂ × µ̂ conditioned
to the compatibility event {(ω, σ ) : ω ≼ σ } ⊂ I E

× SV .

Theorem 2.1 (Edwards–Sokal [5]). The measures φ and µ are respectively the first and second
marginals of Q.

We prove this theorem in Section 3. The measure Q can be seen as a coupling between the
clock measure µ and the random-cluster measure φ. As a corollary, it follows that the conditional
distribution under Q of σ given ω is uniform on the set of configurations compatible with ω and

such that σ
U
= 0:

Q

σ | ω


=

Q(ω, σ )
σ ′

Q(ω, σ ′)
=

µ̂(σ ) 1[ω ≼ σ ]

µ̂

σ ′ : ω ≼ σ ′

 . (18)

This implies that a random vertex-configuration distributed according to µ may be sampled by
first choosing an edge-configuration ω with law φ, and then sampling a vertex-configuration
uniformly among those that are compatible with ω and satisfy the boundary restriction. That is,

µ(σ) =


ω∈I E

µ̂(σ ) 1[ω ≼ σ ]

µ̂

σ ′ : ω ≼ σ ′

 φ(ω). (19)

Given x, y ∈ V and ω ∈ I E , we write x
ω
←→ y if there is a path of vertices x1, . . . , xn ∈ V

with x1 = x , xn = y, ⟨xi xi+1⟩ ∈ E and ω⟨xi xi+1⟩
= 1 for 1 ≤ i ≤ n − 1. We say that x

is connected to U by an ω-open path, and write x
ω
←→ U , if x

ω
←→ y for some y ∈ U ; let

x
ω

U denote the complementary event. The µ-marginal of the spin at x can be related to the
connection probabilities between x and the boundary, under φ and Q:

µ(σ : σx = a) = φ

ω : x

ω
←→ U


1[a = 0] + Q


(ω, σ ) : σx = a, x

ω
U

. (20)

Identity (20) follows immediately from the coupling of Theorem 2.1 and the inclusion {(ω, σ ) :

x
ω
←→ U } ⊂ {(ω, σ ) : σx = 0}.
The coupling of Theorem 2.1 also implies that the µ-probability of seeing a 0 at any site

x is larger than the probability of seeing any other spin plus the φ-probability of x being



3884 I. Armendáriz et al. / Stochastic Processes and their Applications 125 (2015) 3879–3892

connected to the boundary. This is the content of the next result; its proof depends crucially
on the combinatorial Lemma 2.4 stated later.

Proposition 2.2 (Positive Correlations). For any vertex x ∈ V and any spin a ≠ 0,

µ(σ : σx = 0) ≥ µ(σ : σx = a)+ φ

ω : x

ω
←→ U


. (21)

Stochastic domination. Given I ⊂ R, consider the partial order on I E defined by ω ≤ ω′ if
and only if ω⟨xy⟩ ≤ ω′

⟨xy⟩ for every ⟨xy⟩ ∈ E . A function f : I E
→ R is said to be increasing

if f (ω) ≤ f (ω′) whenever ω ≤ ω′, while an event E ⊂ I E is said to be increasing when its
indicator function f (ω) = 1[ω ∈ E] is. Given two probabilities P and P ′ on I E , we say that
P is stochastically dominated by P ′, and write P ≤st P ′, if and only if P f ≤ P ′ f for every
increasing f : I E

→ R. This is equivalent to P(E) ≤ P ′(E) for any increasing event E .
Given ρ ∈ [0, 1], let Bρ be the Bernoulli product measure on {0, 1}E with parameter ρ. In

order to stochastically compare φ and Bρ , we consider them defined on the common space I E ,
where I = {0} ∪ I .

Theorem 2.3 (Stochastic Domination). For any ρ ∈ [0, 1), there exists β0 = β0(ρ) > 0, in-
dependent of the graph (V, E ) and the boundary U, such that, if β ≥ β0, Bρ is stochastically
dominated by φ.

The key to the proofs of Proposition 2.2 and Theorem 2.3 is the following combinatorial
lemma, proved in Section 3.

Lemma 2.4. For every x ∈ V, a ∈ S and ω ∈ I E ,{σ : σ ≽ ω, σ
U
= 0, σx = a}

 ≤ {σ : σ ≽ ω, σ
U
= 0, σx = 0}

. (22)

Equivalently,

µ̂(σ : σx = a, σ ≽ ω) ≤ µ̂(σ : σx = 0, σ ≽ ω). (23)

The lemma in fact holds for any spin set S′ and weight function W ′ provided they satisfy
certain symmetry properties: for any pair of elements a, b ∈ S′ it must be possible to define a
reflection R = Ra,b : S′ → S′, R(a) = b, such that (i) it splits S′ into two hemispheres Hem(a)

and Hem(b), a ∈ Hem(a), b ∈ Hem(b), in such a way that W ′(c− R(d)) < W ′(c− d) implies
c and d belong to the same hemisphere, and (ii) R preserves the compatibility of neighbouring
vertices when applied to both spins. These extensions are explored in detail in [6].

In the dilute Potts model with q spins, the Hamiltonian is given by

⟨xy⟩ J⟨xy⟩1[σx ≠ σy],

and the associated random-cluster probability is defined on {0, 1}E ; see [8,9], for example.
In this case, if σ and ω are compatible, the values of σx and σy must coincide whenever
ω⟨xy⟩ = 1, and there are no restrictions if ω⟨xy⟩ = 0. Call a connected component of the graph
(V, {⟨xy⟩ : ω⟨xy⟩ = 1}) an ω-cluster. Then ω ≼ σ implies that σ is constant over each of the
ω-clusters and the values achieved on different clusters not connected with U can take any value
in {1, . . . , q}. Hence, for the diluted Potts model, the combinatorial term appearing in expression
(15) reduces to

|{σ : σ ≽ ω, σ
U
= 0}| = qnumber of ω-clusters. (24)
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In contrast, for the clock model, the larger range of edge-configurations in I E gives rise to a
more delicate combinatorial structure which will be managed using the inequality (22).

3. Proofs

Proof of Theorem 1.1 (Phase Co-Existence). Let us identify a disorder J defined in (1) with its
associated set of open edges

⟨xy⟩ ∈ E (Zd) : J⟨xy⟩ = 1


. (25)

We say that C ⊂ Zd is a J -open cluster if it is a maximal set with the property that x
J
←→ y

for all x, y ∈ C . Denote x
J
←→∞ when x belongs to an infinite J -open cluster. Let pc be the

critical value for bond percolation in Zd . If p > pc, then Pp(J : x
J
←→∞) > 0; see [8,9] and

references therein for a treatment of percolation theory.
Let ρ ∈ (0, 1) be such that pρ > pc and let J ′ be an independently sampled Pρ-disorder.

Denote by J J ′ the set of vertices that are open for both J and J ′ and note that J J ′ is a Ppρ-
disorder. Also, once J is fixed, J J ′ is a random thinning, each open edge of J is kept open with
probability ρ and closed with probability (1− ρ), independently.

Let X ⊂ {0, 1}E (Zd ) be the set of disorders J such that there is an infinite J J ′-open cluster
with probability 1:

X := {J : Pρ(J ′ : there is an infinite J J ′-open cluster) = 1}. (26)

From Fubini’s Theorem, the fact that J J ′ is a Ppρ-disorder, and pρ > pc, it is easy to see that
Pp(X ) = 1. Also,

J ′ : there is an infinite J J ′-open cluster

=


x∈Zd


J ′ : x

J J ′
←→∞


.

Hence, for each J ∈ X , there exists a vertex x ∈ Zd belonging to an infinite J J ′-open cluster
with positive Pρ-probability:

Pρ


J ′ : x

J J ′
←→∞


> 0. (27)

Let β0 = β0(ρ) be as in the statement of Theorem 2.3. Fix a disorder J ∈ X and a vertex x
satisfying (27). Given n ∈ N, let Λn := [−n, n]d ∩ Zd and consider the choices

V = Λn ∪ ∂Λn, E = {⟨xy⟩ ∈ E (Zd) : {x, y} ∩ Λn ≠ ∅, J⟨xy⟩ = 1},

U = ∂Λn,
(28)

for the vertex, edge and boundary sets in Section 2. Let µ, φ and Bρ denote the clock probability
on SV , random-cluster distribution on I E and product Bernoulli probability on {0, 1}E associated
to this choice, respectively. Note that µ = µ0

Λn ,J as defined in (4) with the convention that the
superscript a in µa

Λn ,J indicates the boundary condition ηy ≡ a on ∂Λn .

Since the event {x
ω
←→ U } is increasing, Theorem 2.3 implies

φ

ω : x

ω
←→ U


≥ Bρ


ω : x

ω
←→ U


= Pρ


J ′ : x

J J ′
←→ ∂Λn


≥ Pρ


J ′ : x

J J ′
←→∞


.
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Replacing in (21) with µ = µ0
Λn ,J , we obtain

µ0
Λn ,J (σ : σx = 0) ≥ µ0

Λn ,J (σ : σx = a)+ Pρ


J ′ : x

J J ′
←→∞


, for any a ≠ 0. (29)

We conclude that any weak limit µ0
J of µ0

Λn ,J as n→∞ satisfies

µ0
J (σ : σx = 0) > µ0

J (σ : σx = a) for any a ≠ 0. (30)

By the rotational symmetry in the set S of spins, the same holds with any boundary condition
b: the weak limit µb

J assigns maximal probability to having a spin b at x , µb
J (σ : σx = b) >

µb
J (σ : σx = a), a ≠ b, and therefore the q-Gibbs measures µb

J , b ∈ S, must be different. �

Proof of Proposition 2.2 (Positive Correlations). For any spin a ≠ 0, by (19) and the fact that
x

ω
←→ U implies σ(x) = 0,

µ(σ : σx = a) =


ω: x
ω

U

µ̂(σ : σx = a, ω ≼ σ)

µ̂(σ : ω ≼ σ)
φ(ω)

≤


ω: x

ω

U

µ̂(σ : σx = 0, ω ≼ σ)

µ̂(σ : ω ≼ σ)
φ(ω) = Q


(ω, σ ) : σx = 0, x

ω
U

,

where the inequality holds by (23). Apply (20) to conclude. �

Proof of Theorem 2.3 (Stochastic Domination). The measure φ gives positive probability to ev-
ery edge configuration. Under this hypothesis, Holley’s inequality (Theorem 4.8 of [8] for in-
stance) asserts that the stochastic domination Bρ ≤st φ follows from the single-bond inequalities

ρ ≤ φ

ω : ω⟨xy⟩ = 1

ω : ω E\⟨xy⟩
= ω′


=: α(⟨xy⟩, ω′), ⟨xy⟩ ∈ E , ω′ ∈ I E . (31)

Given t ∈ I , we define t⟨xy⟩ω
′
∈ I E by

(t⟨xy⟩ω
′)⟨xy⟩ = t and t⟨xy⟩ω

′ E\⟨xy⟩
= ω′.

Omitting the dependence of α on (⟨xy⟩, ω′) in the notation,

α =
φ(1⟨xy⟩ω

′)

k
i=0

φ((ti )⟨xy⟩ω′)

=
rk |{σ : σ ≽ 1⟨xy⟩ω

′, σ
U
= 0}|

k
i=0

ri |{σ : σ ≽ (ti )⟨xy⟩ω′, σ
U
= 0}|

, (32)

and

α−1
=

k
i=0

ri

rk

|{σ : σ ≽ (ti )⟨xy⟩ω
′, σ

U
= 0}|

|{σ : σ ≽ 1⟨xy⟩ω′, σ
U
= 0}|

. (33)

Let (V, Ẽ ) be the auxiliary graph obtained from (V, E ) by adding all edges connecting vertices
in U :

Ẽ := E ∪

⟨uv⟩ : {u, v} ⊂ U


. (34)
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Let ω̃ ∈ I Ẽ be defined by

ω̃
Ẽ\E
= 1 and ω̃

E
= ω′.

Extend the definition of t⟨xy⟩ω̃ ∈ I Ẽ and the compatibility notion σ ≼ ω̃ to the enlarged graph
in the obvious way and use the rotation invariance of S to get

|{σ : σ ≽ (ti )⟨xy⟩ω
′, σ

U
= 0}| =

1
q
|{σ : σ ≽ (ti )⟨xy⟩ω̃}|, (35)

and replacing in (33),

α−1
=

k
i=0

ri

rk

|{σ : σ ≽ (ti )⟨xy⟩ω̃}|

|{σ : σ ≽ 1⟨xy⟩ω̃}|
. (36)

For 0 ≤ i ≤ k, let

Ki := |{(a, b) ∈ S × S : W (a − b) = ti }|. (37)

We have

|{σ : σ ≽ (ti )⟨xy⟩ω̃}| =

k
j=i

|{σ : σ ≽ ω̃, W (σy − σx ) = t j }| (38)

=

k
j=i

K j |{σ : σ ≽ ω̃, σy = 0, σx = a j }|, (39)

where a j ∈ S is an angle such that W (a j ) = t j . The second identity holds again by rotational
invariance. Replacing in expression (36),

α−1
=

k
i=0

k
j=i

ri

rk

K j

Kk

|{σ : σ ≽ ω̃, σy = 0, σx = a j }|

|{σ : σ ≽ ω̃, σy = 0, σx = 0}|
. (40)

By Lemma 2.4 applied to U = {y}, we get

α−1
≤

k
i=0

k
j=i

ri

rk

K j

Kk
=

k
j=0

t j

rk

K j

Kk
, (41)

since t j =
 j

i=0 ri . From (31), we conclude that the stochastic domination Bρ ≤st φ follows for
β satisfying

ρ ≤ γ (β) :=


k

j=0

t j

rk

K j

Kk

−1

. (42)

The function γ is increasing. Indeed, for each j , rk
t j

is of the form eβ A(1− e−β B) with A and B
positive numbers, and hence increasing. On the other hand limβ→∞ rk = 1 and limβ→∞ ti = 0
for i < k; as a consequence, limβ→∞ γ (β) = 1. Finally, limβ↓0 rk = 0 and limβ↓0 ti = 1 for ev-
ery i , so limβ↓0 γ (β) = 0. See Fig. 1 for the graph of γ when q = 4. In particular, γ is injective
and its inverse γ−1

: (0, 1) → (0,∞) is well defined. We conclude that, if β0 = γ−1(ρ), then
Eq. (31) holds for β ≥ β0. �



3888 I. Armendáriz et al. / Stochastic Processes and their Applications 125 (2015) 3879–3892

Fig. 1. Graph of γ for q = 4. As β goes to infinity, γ asymptotically approaches 1.

Fig. 2. The reflection R with respect to the angle a/2. The point b is mapped orthogonally with respect to the line ℓ.

Proof of Lemma 2.4. The case x ∈ U is trivial, so let us suppose x ∈ V \ U . If |U | > 1, the
model can be reduced to the case |U | = 1 by identifying all vertices in U . We may then suppose
U = {y} for some y ≠ x .

Let

Lω(a) := {σ : σ ≽ ω, σy = 0, σx = a}. (43)

We will construct an injection F : Lω(a) ↩→ Lω(0). Here is a brief description of the procedure.
Fix a ∈ S and consider the reflection R : S → S with respect to the line ℓ at angle a/2 with the
horizontal axis (see Fig. 2), that is, Rb = a − b mod 2π . Clearly, R(a) = 0. We progressively
transform an initial configuration σ ∈ Lω(a) into a configuration σ ′ ∈ Lω(0). The first step is to
modify σ by applying the reflection R to the spin at the vertex x . The resulting configuration may
present incompatibilities with respect to ω and, if it does, they will appear at edges {⟨ux⟩}u∈V .
If this is the case, we modify the configuration by applying the transformation R to the spins of
the conflicting vertices. We obtain a configuration without incompatibilities in the edges having
one endpoint at x , but we might have created new incompatibilities at a second level of edges,
that is, edges with one endpoint at a vertex that is a neighbour of x . We solve this by applying
R once more to the spins of the new conflicting vertices, and keep repeating the procedure until
there are no more incompatibilities. We need to show that the resulting configuration σ ′ belongs
to Lω(0), and that the construction is indeed injective. The most delicate part is to prove that this
process stops before reaching the vertex y.



I. Armendáriz et al. / Stochastic Processes and their Applications 125 (2015) 3879–3892 3889

It suffices to prove the result when a ≠ 0, which we assume from now on. We may also
assume that a ∈ (0, π], as the other case is symmetric. As before, the boundary ∂V ′ of a vertex
set V ′ ⊂ V denotes the set of vertices u ∈ V \ V ′ such that ⟨uv⟩ ∈ E for some v ∈ V ′.

Let now σ ∈ Lω(a). Define a sequence of sets A0 ⊂ A1 ⊂ · · · ⊂ V associated to σ by
A0 := {x} and, for n ≥ 0,

An+1 := An ∪

u ∈ ∂ An : W (σu − Rσv) < ω⟨uv⟩ for some v ∈ An


. (44)

At each step, An+1 \ An consists of those vertices where new incompatibilities would arise when
applying the reflection to An . Let

A :=

n≥0

An . (45)

Define the function F : Lω(a)→ SV by

(Fσ)u :=


Rσu if u ∈ A
σu if u ∉ A.

(46)

We now show that (i) the image of F is contained in Lω(0) and (ii) that F : Lω(a)→ Lω(0) is
an injection.

(i) Fσ ∈ Lω(0). In order to prove that Fσ ≽ ω, we need to show that

W

(Fσ)u − (Fσ)v


≥ ω⟨uv⟩ (47)

for any ⟨uv⟩ ∈ E . The cases {u, v} ⊂ A or {u, v} ⊂ Ac are trivial. If u ∉ A and v ∈ A, condition
(47) reads W (σu − Rσv) ≥ ω⟨uv⟩, which must hold; otherwise u would have belonged to A in
the first place.

It remains to prove that (Fσ)y = 0, which follows if we show that y ∉ A. The line ℓ (see
Fig. 2) separates the two open hemispheres Hem(0) and Hem(a) defined by

Hem(0) := {b ∈ S : sin(b − a/2) < 0}

Hem(a) := {b ∈ S : sin(b − a/2) > 0} .

Since 0 ∈ Hem(0), it is enough to prove that σu ∈ Hem(a) for every u ∈ A \ {x}. We proceed
by induction. If A1 ≠ ∅, let u ∈ A1 \ {x} with σu = b. By the definition of A1, we have
W (b − 0) < ω⟨ux⟩ ≤ W (b − a), where the inequality follows from the fact that σ ≽ ω. Now,
W (b − 0) < W (b − a) is equivalent to cos(b) < cos(b − a). But

cos(b) < cos(b − a)⇐⇒ cos


b −
a

2
+

a

2


< cos


b −

a

2
−

a

2


(48)

⇐⇒ cos


b −
a

2


cos
a

2


− sin


b −

a

2


sin
a

2


< cos


b −

a

2


cos
a

2


+ sin


b −

a

2


sin
a

2


(49)

⇐⇒ 0 < 2 sin


b −
a

2


sin
a

2


⇐⇒ 0 < sin


b −

a

2


⇐⇒ b ∈ Hem(a), (50)

and the claim holds for A1. Suppose now that σu ∈ Hem(a), that is

sin

σu −

a

2


> 0, (51)



3890 I. Armendáriz et al. / Stochastic Processes and their Applications 125 (2015) 3879–3892

for every u ∈ An . If An+1 ≠ ∅, let v ∈ An+1 and w ∈ An be such that W (σv − Rσw) <

W (σv − σw), which is equivalent to cos

σv − (a − σw)


< cos(σv − σw). By the inductive

hypothesis, sin

σw −

a
2


> 0. An argument similar to the one leading from (48) to (50) yields

0 < 2 sin

σv −

a

2


sin

σw −

a

2


,

and then 0 < sin

σv −

a
2


, i.e. σv ∈ Hem(a). This completes the induction.

(ii) F is injective. Let σ, σ ′ ∈ Lω(0, a) be two different configurations and denote by
A, A1, A2, . . . and A′, A′1, A′2, . . . their associated incompatibility sets. If A = A′, we are done
because R is injective. Suppose A ≠ A′ and let

n = min


j ≥ 1 : A j ≠ A′j

;

so that in particular An−1 = A′n−1. If there is a vertex u ∈ An−1 such that σu ≠ σ ′u , we are

done. Suppose σ
An−1
= σ ′. Without loss of generality, let us take u ∈ An \ A′n . We claim that

(Fσ)u ≠ (Fσ ′)u . We know that σu ≠ σ ′u , as otherwise we would have u ∈ A′n . If u ∈ A′, we
are done. Suppose then u ∉ A′. Let v ∈ An−1 be such that W (σu − Rσv) < ω⟨uv⟩. Using that
W (a′ − b′) = W (Ra′ − Rb′) for any a′, b′ ∈ S, that R2 is the identity and that (Fσ)u = Rσu ,
we have W (σu − Rσv) = W


(Fσ)u − σv


, and then

W

(Fσ)u − σv


< ω⟨uv⟩. (52)

On the other hand, since σ ′ ≽ ω, we have W (σ ′u−σ ′v) ≥ ω⟨uv⟩. But W (σ ′u−σ ′v) = W

(Fσ ′)u−

σv


because u ∉ A′ and σ

An−1
= σ ′, and hence

W

(Fσ ′)u − σv


≥ ω⟨uv⟩. (53)

From inequalities (52) and (53), we obtain (Fσ)u ≠ (Fσ ′)u , as claimed. �
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Appendix

Proof of Theorem 2.1 (The Edwards–Sokal Random-Cluster Representation). The first step is
to write the density of µ with respect to µ̂ as

µ(σ) = µ̂(σ )
1
Z ′


⟨xy⟩∈E

W (σx − σy), (54)

with Z ′ the normalizing constant in (17). Since W (σx − σy) = θ

t ∈ I : t ≤ W (σx − σy)


,

the weight of a spin configuration can be realized as the probability of a related event on the
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associated edge set:
⟨xy⟩∈E

W (σx − σy) = φ̂
 
⟨xy⟩∈E


ω ∈ I E

: ω⟨xy⟩ ≤ W (σx − σy)

= φ̂


ω : ω ≼ σ


. (55)

Here is where the definition of compatibility appears naturally. Inserting (55) in (54), we get

µ(σ) =


ω∈I E

1
Z ′

1[ω ≼ σ ] φ̂(ω) µ̂(σ ) =


ω∈I E

Q

(ω, σ )


. (56)

Hence µ is the second marginal of Q. Adding over all the possible vertex-configurations, it is
easy to see that φ is its first marginal. �

Asymptotics for β0. The threshold β0 introduced in Theorem 1.1 is β0 = γ−1(ρ), where
γ : (0,∞)→ (0, 1) is the function defined in the proof of Theorem 2.3, and ρ is the parameter
defined in the proof of Theorem 1.1, such that ρ >

pc
p . Since γ−1 is increasing, we can take the

infimum over ρ to optimize β0 = γ−1
 pc

p


.

For any fixed β > 0, we have that limq→∞ γ (β) = 0. Indeed, limq→∞ rk = 0 and
ti

Ki
Kk

is bounded away from zero uniformly in q. As a consequence, for every fixed p̃ ∈

(0, 1), limq→∞ γ−1( p̃) = ∞. We conclude that our method is not informative as a discretiza-
tion of the XY model, that is, when the number of spins goes to infinity.

Note that

γ (β)−1
=

1
rk
+

k−1
i=0

ti
rk

Ki

Kk
≤

1
rk
+

k−1
i=0

tk−1

rk
2 ≤

1
rk
+

tk−1

rk
q, (57)

so that

γ (β) ≥
rk

1+ qtk−1
. (58)

Then β0 is bounded from above by the solution to the equation

pc

p
=

rk

1+ qtk−1
. (59)

Using that rk = 1 − tk−1 and tk−1 = e
−β


1−cos


2π
q


, this solution can be explicitly computed

as

log


p+qpc
p−pc


1− cos


2π
q

 . (60)

If we fix p and d , this expression is of order q2 log(q) as q → ∞, the same order given by
Pirogov–Sinai theory and reflection positivity in the 2-dimensional homogeneous case. If we fix
p and q, it is of order

log


1+ 1
d


1− cos


2π
q

 (61)

as d →∞, taking into account that pc ∼
1

2d . In particular, β0 → 0 as d →∞.
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