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ABSTRACT: Sisal fibers were added to wood particle
composites to enhance their toughness. The selected matrix
was a commercial styrene diluted unsaturated polyester
thermoset resin. Fracture tests were carried out using single-
edge notched beam geometries. Stiffness, strength, critical
stress intensity factor KIQ, and work of fracture Wf of
notched specimens were determined. The incorporation of
sisal fibers into wood particle composites significantly
changed the fracture mode of the resulting hybrid compos-
ite. For the neat matrix and the wood particle composites,
once the maximum load was reached, the crack propagated
in a catastrophic way. For hybrid composites, fiber bridging

and pull-out were the mechanisms causing increased crack
growth resistance. Addition of a 7% wt of sisal fibers almost
doubled the KIQ value of a composite containing 12% wt of
woodflour. Moreover, the Wf increased almost 10-fold, for
the same sample. In general, the two composite toughness
parameters KIQ and Wf increased when the fraction of sisal
fibers was increased. © 2006 Wiley Periodicals, Inc. J Appl Polym
Sci 00: 000–000, 2006

Key words: wood particle; sisal; mechanical properties; frac-
ture toughness; fiber bridging

INTRODUCTION

The use of long fibers to enhance the toughness of
brittle matrix composites is a well-established prac-
tice.1–3 However, most of the previous studies were
carried out on synthetic fiber-composites, rather than
on natural fiber-reinforced composites.4 The study of
toughening composites by addition of natural fibers is
justified because of the increasing interest in these
materials as reinforcements. Fibers such as hemp,
wood, sisal, jute, and others originate from renewable
resources and often show low cost, low density, avail-
ability in large quantities, biodegradability, and cause
little wear to processing equipment.5 Composites re-
inforced with natural fibers often show lower cost in
comparison to glass fibers-reinforced composites.
Therefore, the use of natural fibers is often economi-
cally and environmentally attractive in the manufac-
turing of composite materials.

Present applications of natural fiber composites are
mainly in the automotive, packaging, and furniture
industries,5 but they are also used in building, floor-

ing, decorative laminates, and general industrial ap-
plications. Such composites are often subjected to high
mechanical loads. Therefore, the improvement of
toughness is important in composites based on brittle
thermoset matrices.

Wood particles are used in many commercially im-
portant composites. In the often termed “wood-plastic
composites,” woodflour particles or very short fibers
are mixed with thermoplastics. The compounded ma-
terial is extruded into, for instance, low-cost decking
applications or injection molding components. Parti-
cle-board is another example of a low cost material
based on wood particles. Compared with fiber com-
posites, wood particle materials are brittle because of
the lack of strong energy absorption mechanisms.

It is usual to think of the fiber as a reinforcing
constituent in terms of Young’s modulus and ulti-
mate strength. However, in brittle matrices, fibers
also contribute significantly to the work of fracture
in the material. Kelly and Tyson demonstrated the
importance of fiber pull-out as the major energy
absorbing mechanism in fiber composites.6 The ar-
gument is based on the critical fiber length concept
lc. For fiber lengths shorter than lc , the fiber is
pulled out of the matrix. The work of fracture per
fiber is obtained from interfacial frictional shear
stress during pull-out, pull-out length, and the fiber
surface area of that length. The work of fracture
increases with fiber length until lc is reached. It then
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decreases with fiber length above lc since the
amount of pull-out decreases.

Toughness is a problem if fibers are short, as in the
woodflour case. Devi et al.7 studied the impact behav-
ior of pineapple leaf fiber-reinforced polyester com-
posites as a function of fiber length. They determined
that the fiber pull-out process was the main energy
absorption mechanism. The authors observed a lower
work of fracture for composites with fiber length
shorter than a critical length. Ray et al.8 investigated
the fracture behavior of jute-reinforced vinylester
composites. They improved the interfacial bonding by
alkali-treating the jute fibers and observed that a
stronger interface led to less fiber pull-out having
shorter pull-out lengths, which decreased the impact
fatigue resistance.

In the present study, long sisal fibers in the form of
a mat were incorporated to enhance the toughness of
wood particle-unsaturated polyester (UPE) compos-
ites. These hybrid composites were manufactured us-
ing the hand-lay-up technique followed by compres-
sion molding. Wood particles are generally incorpo-
rated to reduce the overall composite cost and, at the
same time, improve certain mechanical properties,
such as Young’s modulus.9 Furthermore, the presence
of wood particles reduces matrix shrinkage and pre-
vents resin cracking during the curing step.

The effect of long fibers on composites toughness,
strength, and modulus was analyzed through the
preparation of two series of hybrid composites. In one
series, a fixed weight percentage of long fiber-mat was
added to composites with different weight content of
wood particles. In the second series, different weight
percentages of long fiber-mat were added to a com-
posite with a fixed wood particle content. The inves-
tigation of the mechanical properties emphasized
toughness properties.

EXPERIMENTAL

Materials

A commercial styrene-diluted unsaturated polyester
(UPE) matrix (Reichhold Norpol PO-4571, Norway)
was selected for the work. The resin was mixed with 2
wt % of hardener (Peroxide Norpol 1, Norway). As
filler, pine woodflour particle (Scandinavian Wood
Fiber, Sweden) with a maximum particle size of 200
�m was used. The reinforcement consisted of non-
woven mats of sisal fibers (Mühlmeir Type SIMAT),
with diameters in the range of 0.11–0.23 mm and
lengths ranging from 10.0 to 18.5 cm.

The wood particles were oven-dried at 70°C for 1
day, until constant weight was achieved. The wood
particles were mixed with the UPE resin, using a
mechanical stirrer at high speed. The wood particle
filled resin was then used to prepare both wood par-

ticle and hybrid composites. The wood particle com-
posites were simply prepared by compression mold-
ing, whereas the hybrid composites were manufac-
tured incorporating one or two layers of mats of long
fibers, using a hand-lay-up technique followed by
compression molding. The plaques were cured at
room temperature under pressure for 6 h and post-
cured at 150°C for 1.5 h. Final sample surface dimen-
sions were 250 mm by 250 mm while thickness varied
from 3 to 4 mm depending on the total weight of the
material in the mold.

Different materials were prepared: neat crosslinked
UPE, wood particle composites (WFC-XX, where XX
stands for the volume fraction of wood particle), and
hybrid composites (HC-XX-YY, where XX and YY
stand for the wood particle and sisal volume fraction,
respectively).

Hybrid composites with relatively high wood par-
ticle content were prepared by incorporating a single
mat of sisal fibers to wood particle filled resins. The
resulting sisal volume fractions were about (7 � 0.4)%
for all these composites (HC-XX-07). On the other
hand, hybrid composites (HC-13-YY) were prepared
varying the amount of sisal fibers and keeping the
wood particle volume fraction approximately constant
((13 � 1.2)%). This series of hybrid composites was
prepared by incorporating two layers of mats and
alternating layers of wood particle-filled resin, which
were pressed to ensure impregnation of the filled
polymer into the sisal mats.

Mechanical testing

Tensile tests

Tensile modulus and strength of the different materi-
als were determined using a universal-testing ma-
chine, according to the procedures of the standard
ASTM D3039. Specimens were cut and carefully pol-
ished to their final surface dimensions (120.0 � 15.0
mm2). Samples were tested at room temperature at a
crosshead speed of 2 mm/min.

In the study of the wood particle and hybrid com-
posites with high wood particle content, an Instron
4411 universal-testing machine was used, while the
study of the hybrid composites prepared with a mod-
erate wood particle concentration (HC-13-YY) was re-
alized in an Instron 8500 plus universal-testing ma-
chine.

Fracture mechanics tests (single edge notched beam)

The tests were performed in a universal-testing ma-
chine, according to the procedures of ASTM D5045.
Specimens were cut, carefully polished to the final
dimension, and a prenotch was machined. A sharp
crack was introduced in each of the precracked spec-
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imens by sliding a fresh microtome blade. The fracture
test was carried out using a single edge notched beam
(SENB) configuration at room temperature at a cross-
head speed of 1 mm/min.

Woodflour composites and hybrid materials with
high wood particle content were cut to final surface
dimensions of 56 � 12.7 mm2. The specimens corre-
sponding to the hybrid composites named HC-13-YY
were manufactured from two layers of mats instead of
one to achieve a higher concentration of the long sisal
fibers. Larger samples were used in these fracture
tests, 80 � 20 mm2. Linear dimensions were measured
with an accuracy of 0.01 mm.

The critical stress intensity factor, KIC , is regularly
used as a fracture toughness parameter. Since the
validity of this parameter was not verified rigorously,
it was denoted KIQ and it was determined from the
maximum load so as to characterize the resistance to
crack initiation. The work of fracture (Wf) was calcu-
lated from the area under the load/displacement
curve divided by twice the area of the fracture surface
(since two new faces are created).10–12 The work of
fracture was defined simply as the total energy con-
sumed to produce a unit area of fracture surface dur-
ing the “complete” fracture process. The analysis re-
quires no information on stress intensity at the crack
tip, notch tip acuity, the elastic properties of the ma-
terial, or its mechanical linearity.12 This simple testing
and data reduction procedure is motivated by the
purpose to compare the performance of different ma-
terial compositions.

RESULTS AND DISCUSSION

Wood particle composites

The addition of wood to the neat UPE polyester resin
increased Young’s modulus but reduced tensile
strength (Table I). If the Halpin-Tsai equation for
spherical particle composites is used, a particle with a
modulus of 11.6 GPa predicts both experimental data
with an accuracy of 95% or better. The reduction in
strength is most likely due to early fracture initiation
by particle-matrix debonding. The value of the mod-
ulus for the woodflour is in the range of values re-
ported in the literature.13,14 The longitudinal Young’s
modulus of clear Swedish pine-wood is typically in
the range 10–15 GPa. The “effective” modulus of 11.6

GPa derived for a spherical Halpin-Tsai particle is,
therefore, fairly high. Contributing reasons may in-
clude resin in the lumen and more favorable wood
particle geometry than spherical. During the tensile
tests of the wood particle composites, the load-dis-
placement curves showed a slight deviation from lin-
earity.

To characterize the material toughness in terms of
KIQ, the SENB testing geometry was used. For the neat
UPE, the load increases linearly with displacement up
to fracture. For the wood particle composites, a small
deviation from linear elastic behavior was observed.
In both cases, once the maximum load was reached,
the crack instantaneously propagated through the ma-
terial. The low KIQ value measured for the neat matrix
is in agreement with typical values KIc-values reported
for thermoset polymers.15,16 The wood particle addi-
tion increased the toughness of the starting material
(Table I), an effect that has been previously observed
in thermosets loaded with rigid particles.15,17 For in-
stance, the addition of 21% vol of wood particle in-
creased the KIQ value three times. Although the work
of fracture Wf was low for the neat polyester, the wood
particle composites could store or dissipate more en-
ergy prior to final failure so that Wf was increased (Wf

for the 21% vol. Sample is 6.25 times that of the neat
thermoset). As load-displacement curves are ana-
lyzed, we see that the reason was that initiation of
catastrophic crack growth required higher loads with
increased wood particle addition (see also Fig. 1). One
may speculate that subcritical crack growth was more
difficult in the composites because of local irreversible
deformation and crack stopping due to the wood par-
ticles.

Hybrid composites of high wood particle content

During the tensile test of these hybrid composites, the
matrix fractured catastrophically toward the end of
the test, although most of the sisal fibers were undam-
aged. The fibers pulled out from the matrix and held
the two pieces of the specimen together up to the final
breakage (Fig. 2). As the volume fraction of wood
particle was increased, the hybrid composite modulus
increased (Table II). The distribution of wood flour
and sisal fibers was uneven, and this may explain the
unexpected modulus difference between materials

TABLE I
Mechanical Properties of Neat Unsaturated Polyester and Wood Particle Composites

Tensile modulus
(GPa)

Tensile strength
(MPa) KIQ (Mpa � m1/2) Wf (kJ/m2)

UPE 3.42 � 0.05 53 � 6 0.41 � 0.14 0.04 � 0.01
WFC-12 4.03 � 0.25 35 � 4 0.87 � 0.33 0.17 � 0.04
WFC-21 4.94 � 0.23 28 � 6 1.23 � 0.30 0.25 � 0.04

TOUGHENING OF WOOD PARTICLE COMPOSITES 3
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T2
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HC-21–07 and HC-25–07. The HC-25–07 also showed
decreased tensile strength when compared with the
other hybrid composites in Table II. The local volume
fraction of wood particles in the nonfibrous layers of
the laminate was very high whereas the impregnated
sisal fiber layers showed low wood content. The
present wood particle/resin mixture showed very
high viscosity, and wood particles became concen-
trated in the regions outside the sisal mat (Fig. 3). In
contrast, the sisal mat was impregnated by resin of
low wood particle content. It is possible that high
wood content layers show wood particle debonding at
low strain, so that the overall laminate tensile strength
is lowered.

Figure 1 shows representative load-displacement
curves for the materials in SENB fracture mechanics
configurations. Considerable differences are observed
between wood particle and hybrid composites. Wood
particle composites showed catastrophic crack propa-
gation at lower loads, whereas cracks in hybrid com-
posites propagated in a more stable manner. An illus-
trative example is the comparison between WFC-12
and HC-12–07. Addition of 7% by volume of sisal
fibers more than doubled the peak load where macro-
scopic crack growth started. During subsequent crack
growth, much more energy was dissipated as appar-
ent from the gradual rather than dramatic decrease in
load-displacement data, which resulted in an increase
of the Wf of 10 times over the value of the neat ther-
moset.

For the hybrid composites with constant fiber con-
tent, increased wood content was accompanied by
decreased load at crack initiation. For this reason, KIQ
was decreased with increasing wood particle content.
Crack growth apparently initiated at lower load as the
concentration of wood particles increased. In addition,
Wf decreased with increasing wood content. The im-
proved crack growth toughness was not sufficient to
compensate for the lowered load at crack growth ini-
tiation.

The hybrid composites showed improved ability to
carry load also after maximum load was reached. The
long sisal fibers increased the energy required for
crack growth, primarily by fiber pull-out, see Figure 4.

TABLE II
Mechanical Properties of Hybrid Composites with a

High Content of Woodflour

Tensile
Modulus

(GPa)

Tensile
Strength

(MPa)
KIQ

(MPa�m1/2) Wf (kJ/m2)

HC-12–07 4.32 � 0.35 27 � 3 2.18 � 0.25 1.79 � 0.32
HC-21–07 4.72 � 0.17 26 � 2 1.84 � 0.31 1.73 � 0.54
HC-25–07a 5.64 � 0.28 22 � 2 1.58 � 0.64 1.00 � 0.30

One mat of sisal fiber was used in the preparation.
a This sample showed a sandwich-like structure.

Figure 2 HC-12–07 specimen after being tested in tensile
test.

Figure 3 Photograph of hybrid samples, thickness side: (a)
HC-12–07 (b) HC-25–07.

Figure 1 Representative load-displacement curves for neat
polyester, wood particle composites, and hybrid composites
with high wood particle content.
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The debonded fibers presented a clean surface, which
indicated a weak interface between the sisal and the
polyester matrix.

The addition of sisal fibers affected the toughness of
the composites strongly (Fig. 5). For instance, as 12%
by volume of wood particle was added (WFC-12), the
toughness KIQ increased to 2.1 times the value mea-
sured for the neat matrix (UPE). Adding also a mat of
long fibers at 7% by volume (HC-12–07), the KIQ value
became 5.3 times that of the matrix. All hybrid com-
posites showed higher toughness values than the ma-
trix and wood particle composites because of the de-
velopment of fiber bridging and fiber pull-out in the
process zone.

The lowered toughness of hybrid composites due to
increased wood content deserves further discussion. It
was related to the inhomogeneous dispersion of wood
particles at high concentrations (HC-25–07). The mi-
croscopic details of crack growth were also different in
the hybrid composites (sequence of events, interaction
between mechanisms, etc.) so that simple additive
toughness contributions from sisal and wood particle
were not expected. A more homogeneous microstruc-
ture is most likely a desirable feature of hybrid com-
posites with improved toughness.

Figure 6 shows the large differences in the work of
fracture Wf between the hybrid and wood particle
composites. This was due to the fact that the hybrids
were capable of bearing load after reaching the max-
imum load, while the wood particle composites broke
catastrophically at that point. The load at crack initia-
tion was increased when long fibers were added. In
addition, more energy was required to propagate the
crack in the hybrid composites.

Hybrid composites of moderate wood particle
content (HC-13-YY)

These materials showed linear and brittle stress–strain
behavior during tensile tests. Strength and modulus

increased as the sisal fiber content was increased (Ta-
ble III). As previously observed in hybrid composites
with higher wood particle content, the tensile tests
ended by fracture of the matrix, with the long fibers
pulled out of the matrix, but still joining the two
broken specimen parts.

A relatively large data scatter was observed in the
fracture parameters (Table III), which was due to the
inhomogeneous distribution of the reinforcing fibers
in front of the crack path. The load-displacement be-
havior is sensitive to local fiber volume fraction, spa-
tial distribution, strength, and interfacial friction stress
of the fibers in the path of the crack. Differences be-
tween the data corresponding to HC-12–07 (Table II)
and HC-13–09 (Table III) are most likely due to the
different preparation processes, only one sisal mat for

Figure 4 HC-12–07 specimen after the 3-point bending
test.

Figure 5 Stress intensity factor for neat polyester, wood
particle composites, and hybrid composites with high wood
particle content.

Figure 6 Work of fracture for neat polyester, wood particle
composites, and hybrid composites with high wood particle
content.
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the first sample and two sisal mats for the second one.
The method of impregnation of one or two layers of
mats certainly affected the final properties, because of
the sensitivity of the parameters (especially fracture
parameters) to the distribution of the reinforcing fi-
bers.

In general, the toughness parameters increased
when the fraction of long fibers was increased (Table
III). Increased fiber content caused increased energy
dissipation through fiber bridging and pull-out.

CONCLUSIONS

A significant toughening effect was demonstrated in
wood particle composites as long sisal fibers were
added. In the reference material, composites based on
wood particles and polymer only, the modulus was
increased whereas tensile strength decreased with
wood particle content. A Halpin-Tsai analysis assum-
ing spherical particles resulted in an effective wood
particle modulus of 11.6 GPa. The decreased tensile
strength was most likely due to fracture initiation
from interfacial debonding of wood particles at low
strain. Increased KIQ toughness was measured with
increased wood particle content.

Hybrid composites based on wood particle and sisal
fiber mat reinforcement showed a large increase in KIQ
toughness and work of fracture. For instance, a com-

posite with 12% by volume of wood particles shows a
10-fold increase in work of fracture by addition of just
a 7% by volume of sisal. The addition of fibers com-
pletely changed the brittle mode of fracture in the
wood particle composites. After peak load, the load-
displacement curve for fracture mechanics specimens
showed a much more gradual decrease. The reason
was crack bridging from sisal fibers and the associated
fiber pull-out process. This increased the energy re-
quired to break the specimen. As expected, a higher
fiber content increased composite toughness.

The authors thank CONICET (National Research Council,
Argentina) for the fellowship awarded to one of the authors
(A. J. Nuñez).
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TABLE III
Mechanical Properties of Hybrid Composites

Tensile
Modulus

(GPa)

Tensile
Strength

(MPa)
KIQ

(Mpa � m1/2) Wf (kJ/m2)

HC-13–09 4.73 � 0.25 23 � 3 1.86 � 0.17 0.84 � 0.12
HC-13–13 5.21 � 0.23 22 � 3 2.78 � 0.20 2.43 � 0.15
HC-13–14 5.64 � 0.33 27 � 2 3.67 � 0.68 2.51 � 0.33

Two mats of sisal fiber were used in the preparation of
these materials.
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