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Dynamics of entanglement in systems of identical fermions undergoing decoherence
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Information that is stored in quantum-mechanical systems can be easily lost because of the interaction with
the environment in a process known as decoherence. Possible physical implementations of many processes in
quantum information theory involve systems of identical particles, whence comprehension of the dynamics of
entanglement induced by decoherence processes in identical-particle open systems becomes relevant. Here we
study the effects and concomitant entanglement evolution arising from the interaction between a system of
two identical fermions and the environment for two paradigmatic quantum channels. Entanglement measures
are introduced to quantify the entanglement between the different parties, and a study of the dynamics of
entanglement for some particular examples is carried out. Our analysis, which includes also the evolution of
an entanglement indicator based on an entropic criteria, offers insights into the dynamics of entanglement in
open systems of identical particles, involving the emergence of multipartite genuine entanglement. The results
improve our understanding of the phenomenon of decoherence and will provide strategies to control it.
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I. INTRODUCTION

Decoherence is a quantum phenomenon that plays an
important role in connection both with the foundations of
quantum physics and with its technological applications [1–3].
Decoherence is also intimately connected to another key
ingredient of the quantum world: quantum entanglement [4].
Indeed, the various effects associated with the phenomenon
of decoherence are due to the emergence of entanglement
between the system under study and its environment. The
interaction between an imperfectly isolated system and its
surroundings leads to the gradual disappearance of several
quantum features exhibited by the system. These effects are
at the core of the nowadays orthodox, decoherence-based
explanation of the emergence of the classical world from
quantum physics [3,5,6].

Possible physical implementations of most of the processes
in quantum information involve systems composed of iden-
tical particles [7]. Just to mention a few, systems such as
semiconductor quantum dots, in which charge carriers are
confined in all three dimensions [8], or neutral atoms in
magnetic [9] or optical [10] microtraps. However, contrary
to what occurs in multipartite systems of distinguishable
particles—in which much attention has been paid to analyze
the dynamics of entanglement (mainly in qubit systems)—
the evolution of entanglement and decoherence in systems
composed of indistinguishable particles remains a largely
unexplored field. On one hand, the concept of entanglement in
these kinds of systems exhibits some differences from the
corresponding concept as applied to systems consisting of
distinguishable subsystems, being perhaps more controversial.
However, there is general consensus that in systems of identical
fermions the minimum quantum correlations between the
particles that are required by the indistinguishability and
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the antisymmetry of the fermionic state do not contribute
to the state’s entanglement [7,11–24]. On the other hand,
a resource theory based on local operations and classical
communication (LOCCs) is no longer suitable: Due to the
necessary (anti)symmetrization of identical particles’ states,
the notion of local operations does not apply anymore.

The aim of the present contribution is thus to advance
in the investigation of the dynamics of entanglement and
decoherence in an open system composed of identical par-
ticles. Specifically, we analyze the effects and concomitant
entanglement evolution arising from the interaction between a
pair of identical fermions and the environment.

The article is organized as follows. Exchange-symmetry-
preserving transformations are discussed in Sec. II, where
it is evinced that the notion of local operations is foreign
to identical-particle systems. Section III contains the pre-
liminaries for the subsequent analysis of the entanglement
distribution. First we present a brief review of the defini-
tion and quantification of the entanglement between two
identical fermions. Then we define appropriate measures
for the entanglement between one fermion and the rest of
the system (fermion plus environment) and also between
one of the fermions and the environment. In Sec. IV we
investigate the dynamics of the entanglement in an open
system consisting of two identical fermions. We do this by
considering two decoherence processes that are paradigmatic
in quantum information theory. Our results open the possibility
to study the efficiency of some previously developed entropic
entanglement criteria, a task that is carried out in Sec. V.
Finally, some conclusions are drawn in Sec. VI.

II. EXCHANGE-SYMMETRY-PRESERVING
TRANSFORMATIONS

Consider a bipartite system S composed of a pair of
subsystems a and b, immersed in an environment E. Initially,
S is in an arbitrary state ρab(0), whereas E is assumed to be in
a pure state denoted as |0〉E . The initial density matrix of the
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complete system is thus given by

ρ(0) = ρab(0) ⊗ |0〉〈0|E. (1)

At t = 0, S starts to interact with the environment E by
means of a unitary transformation U = exp (−iH t/�), with
H the total (S plus E) Hamiltonian. As a result, the effective
evolution of the bipartite system ab is written

ρab(t) = TrE[Uρ(0)U †] =
∑

μ

Kμ(t)ρab(0)K†
μ(t), (2)

where the Kμ = 〈μ|U |0〉E are the Kraus operators associated
with the transformation U , and {|μ〉E} is an orthonormal
basis of the Hilbert space HE . Since Trρab(t) = 1, the Kraus
operators satisfy the relation

∑
μ KμK†

μ = I.
We now assume that both subsystems a and b possess the

same dimension, say, n. The n2-dimensional Hilbert space HS

can thus be decomposed into two subspaces, namely, H− with
dimH− = n(n − 1)/2 and H+ with dimH+ = n(n + 1)/2,
that are spanned by basis vectors that are antisymmetric and
symmetric, respectively, under the exchange of the subsystems
a and b. Let {|ψ±

k 〉S} be an orthonormal basis of the subspace
H±, where k = 1,2, . . . ,n(n ± 1)/2. If the initial state of the
composite system S has a well-defined symmetry under the
exchange a ↔ b, it decomposes as

ρab(0) =
∑

k

pk|ψ±
k 〉〈ψ±

k |ab. (3)

Clearly, a necessary and sufficient condition for the evolved
state (2) to preserve the initial symmetry is that

[H,Pab ⊗ IE] = 0, (4)

with Pab the subsystem-exchange operator.
Up to now we have referred to E as the environment in

which the bipartite system ab is immersed, without making
further assumptions about its nature. In particular, E may also
be a bipartite system, composed of independent environments
A and B. Such decomposition of E allows for a local evolution,
in which each subsystem a and b can couple independently
(or locally) with its own environment A and B, respectively. A
local evolution corresponds thus to a Hamiltonian of the form

H = HaA + H ′
bB, (5)

where HaA = H free
a + H free

A + H int
aA, and similarly for H ′

bB .
In this case the unitary evolution factorizes as U =
UaAU ′

bB , and the Kraus operators decompose as Kμ=(μA,μB ) =
〈μA|UaA|0A〉 ⊗ 〈μB |UbB |0B〉. If, on the contrary, E does not
decompose into two independent environments but stands for
the common environment of both (noninteracting) subsystems
a and b, the total Hamiltonian is written

H = H free
a + H ′free

b + H free
E + H int

aE + H ′int
bE . (6)

This case corresponds to a global evolution, in which U cannot,
in general, be decomposed as UaEU ′

bE , and the subsystems a

and b do not evolve independently.
Now it is easy to see that the condition (4) holds if and

only if the evolution is global and symmetric, i.e., if H has
the structure (6) with H = H ′ for all the free and interaction
Hamiltonians. Indeed, for

H = H free
a + H free

b + H free
E + H int

aE + H int
bE, (7)

it is immediate to verify that (Pab ⊗ IE)H (Pab ⊗ IE) = H .
The converse, that (4) implies a global, symmetric evolution,
can be verified assuming that the evolution is local and
symmetric and showing that the corresponding Hamiltonian,
namely,

H = H free
a + H free

b + H free
A + H free

B + H int
aA + H int

bB, (8)

does not comply with Eq. (4). That this is so follows
immediately from the interaction terms H int

aA + H int
bB , which

under Pab ⊗ IE transform into H int
bA + H int

aB , thus preventing
the invariance of H under the exchange a ↔ b.

These results show that an open bipartite system preserves
the symmetry under the exchange of its (noninteracting) parts
a and b if and only if there is a common environment so that the
evolution is global (nonlocal). This is especially relevant when
studying decoherence processes in identical-particle systems,
a matter that is analyzed below, in relation with systems of two
identical fermions. In fact, in the particular case when a and b

are indistinguishable subsystems, clearly the Hamiltonian (5)
can be ruled out from the start, since there is no possibility of
distinguishing them through an interaction.

III. PRELIMINARIES

A. Entanglement in systems of identical fermions

Consider that a and b represent two identical fermions.
(Though indistinguishable, in what follows we often use the
notation a and b to refer to “one” and “the other” fermion.
Such notation is introduced for clarity purposes and must not
be understood as a labeling that distinguishes between the two
fermions.) Let |φκ〉 and |φκ ′ 〉 be two single-fermion states. The
antisymmetric combination

∣∣ψsl
k

〉 = 1√
2

(|φκ〉a|φκ ′ 〉b − |φκ ′ 〉a|φκ〉b) (9)

defines what is called a Slater determinant (and is said to have
Slater rank 1). A composite system consisting of two identical
fermions is regarded as separable (i.e., nonentangled) if and
only if its density matrix is of the form [11]

ρ
sep

ab =
∑

k

pk

∣∣ψsl
k

〉〈
ψsl

k

∣∣, (10)

with
∑

k pk = 1. That is, a pure state of two identical fermions
is simply a single Slater determinant, whereas mixed separable
states are those that can be expressed as a statistical mixture
of pure states of Slater rank 1. Here, by “entanglement”
we mean entanglement between particles (as opposed to
entanglement between modes). Comparison of Eq. (3) with
Eq. (10) indicates that in order to describe nonseparable states
of indistinguishable fermions we need to resort to more general
basis {|ψ−

k 〉S} that include elements different from Slater
determinants.

Since there are n(n − 1)/2 different k′s and n = 2s + 1,
with s being the spin of the particle, the dimension of H−
equals s(2s + 1). For s = 1/2 the basis {|ψ−

k 〉S} possess a
single element; it thus possess Slater rank 1, and hence no en-
tanglement is present. Therefore, the fermion system of lowest
dimensionality exhibiting the phenomenon of entanglement
corresponds to s ≥ 3/2, for which n ≥ 4 and dimH− ≥ 6.
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Denoting with {|i〉} = {|1〉,|2〉, . . . ,|n〉} an orthonormal basis
of the n-dimensional Hilbert space of each subsystem, we can
identify each |i〉 with the states |s,ms〉, with ms = −s . . . ,s, [7]
so that

{|1〉 = |s,s〉,|2〉 = |s,s − 1〉, . . . ,|n〉 = |s,−s〉}. (11)

Within this angular momentum representation, the antisym-
metric joint eigenstates {|j,m〉, − j � m � j, 0 � j � 2s}
of the total angular momentum operators Jz and J 2 constitute
a natural basis {|ψ−

k 〉S} for the Hilbert space associated with
the pair of identical fermions. Such antisymmetric states are
those characterized by an even value of the quantum number
j [25,26]. In what follows, the notation |j,m〉 is always meant
to refer to the angular momentum representation.

The following is a list of the antisymmetric total angular
momentum eigenstates for two fermions of spin 3

2 with the
value for the concurrence [see Eq. (12)] indicated on the right
(we use a compact notation according to which, for instance,
the ket |0,0〉 stands for |j = 0,m = 0〉):

C

|ψ−
1 〉 = |2,2〉 = 1√

2
|12〉 − 1√

2
|21〉 0

|ψ−
2 〉 = |2,1〉 = 1√

2
|13〉 − 1√

2
|31〉 0

|ψ−
3 〉 = |2,0〉 = 1

2 |23〉 + 1
2 |14〉 − 1

2 |41〉 − 1
2 |32〉 1

|ψ−
4 〉 = |2,−1〉 = 1√

2
|24〉 − 1√

2
|42〉 0

|ψ−
5 〉 = |2,−2〉 = 1√

2
|34〉 − 1√

2
|43〉 0

|ψ−
6 〉 = |0,0〉 = 1

2 |32〉 − 1
2 |23〉 + 1

2 |14〉 − 1
2 |41〉 1

.

Notice that the states |0,0〉 and |2,0〉 are maximally entangled,
while all the other states in the list correspond to single Slater
determinants thus have zero entanglement.

Necessary and sufficient separability criteria for pure states
of two identical fermions have been formulated in terms of
appropriate entropic measures evaluated on the single-particle
reduced density matrix (see [16] and references therein). For
mixed states, however, the development of entanglement cri-
teria and entanglement measures remains largely unexplored.
Only for fermionic systems described by a single-particle
Hilbert space of dimension 4 is a closed analytical expression
for the amount of entanglement, or concurrence C(ρab), in a
general (pure or mixed) two-fermion state ρab known [7],

C(ρab) = max{0,λ1 − λ2 − λ3 − λ4 − λ5 − λ6}, (12)

where the λi’s are, in decreasing order, the square roots of the
eigenvalues of ρabρ̃ab with ρ̃ab = DρabD

−1, where D is given
by

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

κ, (13)

κ is the complex conjugation operator, and D is expressed with
respect to the total angular momentum basis in the following
order: |2,2〉, |2,1〉, |2,0〉, |2,−1〉, |2,−2〉, and i|0,0〉.

B. Entanglement between one fermion and the rest of the system

Considering that the tripartite system consisting of two
identical fermions and the environment E is in a pure state
|ψ〉, we now look for a quantitative indicator of the amount of
entanglement between one of the fermions and the rest of the
system. In order to do so, we first notice the following.

(i) Since both fermions are identical, the amount of the
entanglement exhibited by one of them with the rest of the
system must be the same for both of them.

(ii) If each fermion can be regarded as disentangled from
the rest, then the fermion pair as a whole is disentangled from
the environment E.

It is natural to use as an indicator of the amount of
entanglement of one fermion with the rest an entropic measure
evaluated on the single-fermion reduced density matrix ρf

(here f is either a or b), obtained after tracing the full state
ρ = |ψ〉〈ψ | over one fermion and over the environment. Let
us consider the von Neumann entropy,

SvN (ρf ) = −Tr(ρf ln ρf ). (14)

Now the global state |ψ〉 can be expressed in terms of the
Schmidt decomposition,

|ψ〉 =
∑

i

√
λi |φ−

i 〉|Ei〉, (15)

where λi are the Schmidt coefficients such that
∑

i λi = 1,
and {|φ−

i 〉} and {|Ei〉} are sets of orthonormal states belonging,
respectively, to H− and HE . Let ρf i denote the single-particle
density matrix corresponding to the two-fermion state |φ−

i 〉.
Then

ρf =
∑

i

λiρf i . (16)

Using the concavity of SvN we get

SvN (ρf ) �
∑

i

λiSvN (ρf i). (17)

On the other hand, it holds that [16]

SvN (ρf i) � ln 2. (18)

Therefore, combining (17) and (18) we obtain

SvN (ρf ) �
∑

i

λiSvN (ρf i) � ln 2. (19)

The equality sign in (18) holds only if each |φ−
i 〉 corresponds to

one-single Slater determinant. The equality in (17) occurs only
if all the ρf i are equal to each other [27]. Combining these two
conditions, it follows that the lower bound in (19), SvN (ρf ) =
ln 2, happens only if the two fermions are disentangled from the
environment and disentangled from each other, that is, when
the two-fermion state is described by a Slater determinant.

The above considerations show that the lower bound in (19)
corresponds to the physical situation in which each of the
fermions has to be regarded as disentangled form the rest of
the system. Also, the quantity

ε = SvN (ρf ) − ln 2 (20)

provides a useful quantitative indicator of the amount of
entanglement between one fermion and the rest of the system.
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Notice that ε vanishes if and only if the two fermions are
disentangled from the environment and disentangled from
each other. The measure ε has a nonzero value if the two
fermions are entangled with each other, or entangled with the
environment, or both.

The measure ε is different from a measure of entanglement
between the two fermions and is also different from a measure
of the entanglement between two fermions (as a whole) and the
environment. In addition, ε is fully consistent with previous
approaches to entanglement between identical fermions (see,
for instance, [11]). In particular, it takes into account the fact
that the minimum correlations required by antisymmetry do
not contribute to entanglement.

Basically, the same reasoning used above can be applied to
argue that

1
2 − Tr

(
ρ2

f

)
(21)

is an appropriate quantifier of the entanglement between one
fermion and the rest of the system. This is based on the fact
that 1 − Tr(ρ2

f ) is a concave functional of ρf and that for a

pure state |φ〉 of two fermions we always have 1 − Tr(ρ2
f ) � 1

2
with equality if and only if |φ〉 is a Slater determinant [16].
Consequently, we can resort to

Ca|Eb =
√

2d

d − 2

(
1

2
− Trρ2

a

)
(22)

to quantify the entanglement between one of the fermions and
the rest, when the two-fermion plus environment system is in a
pure state. Here d � 4 is the dimension of the single-fermion
Hilbert space, and the factor 2d/(d − 2) is introduced so that
Ca|Eb lies between 0 and 1.

C. Entanglement between one fermion and the environment

For the tripartite system abE, let us consider the observ-
ables of the form

O = 1

2

∑
i

(Ai ⊗ I + I ⊗ Ai) ⊗ Bi. (23)

In this equation the Ai’s act on the single-fermion Hilbert
space; that is, they correspond to observables representing
properties of one single fermion. I is the identity operator act-
ing on the single-fermion space, and the Bi’s are observables
referred to the environment. The expectation value of O in the
tripartite state ρ reads

〈O〉 = Tr

{[
1

2

∑
i

(Ai ⊗ I + I ⊗ Ai) ⊗ Bi

]
ρ

}

= Tr

[(∑
i

Ai ⊗ Bi

)
ρf E

]
, (24)

where ρf E is the density matrix obtained after tracing the
global density matrix over the degrees of freedom of one
fermion, e.g., ρaE = Trbρ.

The observables of the form (23) are those representing
properties referred to one fermion and the environment. Equa-
tion (24) means that, as far as these observables are concerned,
all the statistics associated with quantum measurements are

described by the reduced density matrix ρf E . That is, ρf E

jointly describes single-fermion and environment features
of the system, including the concomitant correlations (both
quantum and classical) between single-fermion properties
and environment properties. Consequently, it is physically
meaningful to regard the entanglement of the state ρf E

(measured in the usual sense when considering distinguishable
subsystems) as describing the entanglement between one
fermion and the environment. Therefore, the entanglement
between one fermion and the environment can be operationally
defined as the effective entanglement between the fermions and
the environment when only single-fermion properties can be
measured.

As we are dealing with pure global (tripartite) states ρ,
the reduced density matrix ρf E will, in general, be a mixed
state of an n-level and an m-level system, m being the
dimension of HE , whence we will use the negativity [28,29]
as an indicator of entanglement between one fermion and the
environment. The negativity N is given by the sum of the
negative eigenvalues αi of the partial transpose (with respect
to either E or f ) of the matrix ρf E ,

N =
∑

i

|αi |. (25)

By virtue of the positive partial transpose criterion, a positive
value of N indicates that the state ρf E is entangled.

IV. DECOHERENCE PROCESS IN
TWO-FERMION SYSTEMS

In this section we analyze the dynamics of entanglement
in an open system consisting of two identical fermions.
According to the discussion in Sec. II, we focus on fermions
that share a common environment and that evolve under
different decoherence processes when the initial state has the
form (1). We compute analytically the entanglement between
different parts of the complete (fermion + environment) sys-
tem, restricting the study to fermions with a single-particle
Hilbert space of dimension four, immersed in a two-level
environment E whose states are |0〉, |1〉.

In particular, we resort to Eqs. (12) and (22) to compute the
entanglement between the fermions (Cab) and the entangle-
ment between one fermion and the rest of the system (Ca|Eb),
respectively. In addition, we use the expression

CE|ab =
√

2
(
1 − Trρ2

E

) =
√

2
(
1 − Trρ2

ab

)
, (26)

to calculate the entanglement between E and the fermionic
subsystem. Recall that Eq. (26) provides indeed an entangle-
ment measure whenever the total state is pure, i.e., described
by a vector |ψ〉abE [30]. As for the entanglement between
one fermion and the environment, we proceed as explained in
Sec. III C and use the negativity (25) to detect the entanglement
between f = a,b and E.

In the study of decoherence processes, the Kraus represen-
tation introduced in Sec. II is particularly useful, since it makes
it possible to represent the unitary evolution of the fermion (S)
plus environment (E) system by the quantum map [1],

|φ−
k 〉S |0〉E → (K0|φ−

k 〉S)|0〉E + (K1|φ−
k 〉S)|1〉E. (27)
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Two paradigmatic quantum channels, widely used in studying
the decoherence in open qubit systems, are the amplitude-
damping channel (ADC) and the phase-damping channel
(PDC). The former represents the dissipative interaction
between the qubit and its environment and the later can
represent the coupling of the system to a noisy environment [2].
Here we generalize the main features of these channels to
extend the corresponding quantum map to the six-dimensional
joint Hilbert space of the two fermions.

A. Amplitude-damping channel

The main feature of the ADC is that it preserves the total
(system plus environment) excitation number. Considering that
in the bipartite states |2,m〉, m stands for an excitation that can
be exchanged with the environment, the AD map in this case
reads

|2,m〉S |0〉E →
√

1 − p|2,m〉S |0〉E + √
p|2,m − 1〉S |1〉E

m = −1, . . . ,2,
(28)|0,0〉S |0〉E → |0,0〉S |0〉E,

|2,−2〉S |0〉|E → |2,−2〉S |0〉E,

where p ∈ [0,1] is a continuous parameter characterizing the
evolution. Let us consider the initial state

|ψ(0)〉SE = |2,0〉S |0〉E. (29)

According to Eq. (28), the whole tripartite system evolves to

|ψ(p)〉SE =
√

1 − p|2,0〉S |0〉E + √
p|2,−1〉S |1〉E. (30)

We obtain expressions for the squared concurrences (tangles)
as a function of p,

C2
ab(p) = (1 − p)2, (31)

C2
E|ab(p) = 4p(1 − p), (32)

C2
a|Eb(p) = 1 − p2, (33)

and plot them in Fig. 1. The solid (orange) line shows a
typical feature of decoherence processes: As a result of the
interaction of the fermionic system with the environment,
C2

ab decreases monotonically until it completely disappears.
The dotted (purple) curve, representing C2

E|ab, shows that
along the evolution the environment gets entangled with the
fermionic system, disentangling from it only at p = 1. It is
also observed that the bipartite entanglement between a and
the rest (Eb) (green dashed curve) decreases at a slower
rate than C2

ab, with C2
a|Eb ≥ C2

ab. In the inset of Fig. 1 we
plot the evolution of the negativity N (ρf E). Such quantity
is positive for all p ∈ (0,1), indicating that in this interval
there exists entanglement between each single fermion and
the environment.

The dynamics of entanglement induced by the ADC has
been previously studied in the context of two initially entangled
(distinguishable) qubits, q1 and q2, when only q2 interacts
(locally) with its environment E2 (see, e.g., Ref. [31]).
Though in the present fermionic system the environment
is common to both particles so the evolution is nonlocal,
the comparison between the distinguishable-qubit and the
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FIG. 1. (Color online) Entanglement evolution for the initial
state (29) under the amplitude-damping decoherence channel. Evo-
lution of the entanglement between the fermions (orange solid line),
evolution of the entanglement between the environment and the pair
of fermions (violet dotted line), and evolution of the entanglement
between one fermion and the rest of the system (green dashed line).
(Inset) Evolution of the negativity of the reduced state of one fermion
and the environment. All depicted quantities are dimensionless.

identical-fermion case seems useful to evince the main features
that distinguishes one and the other types of evolution. In
particular, in the qubit case, it is found [31] that, as a
result of the decoherence channel, there is an entanglement
swapping between q1q2 and q1E2; that is, the initial (p = 0)
entanglement between q1 and q2 is completely converted (at
p = 1) into entanglement between q1 and E2. In this sense
the net effect of the ADC is to redistribute and transfer the
initial bipartite entanglement without losses. In the fermion
case this no longer holds. This can be seen by taking p = 1
in the state (30) and observing that since |2,−1〉 is a two-
fermion separable state (see the table), the final tripartite state
|ψ(1)〉SE = |2,−1〉S |1〉E is completely disentangled. Thus, the
initial (maximal) entanglement between the fermions is finally
lost due to the decoherence process, yet during the evolution
(i.e., for 0 < p < 1) the entanglement redistribution due to
the ADC is, of course, present, as seen in Fig. 1. These
observations would thus indicate that the open qubit system is
more robust against decoherence than the identical-fermion
system. This is reinforced by the fact that for an initial
maximally entangled state in the qubit case we have [31]
C2

q1q2
(p) = 1 − p, whereas here the tangle between the two

fermions is given by Eq. (31), namely C2
ab(p) = (1 − p)2, so

the entanglement between the fermions decays faster than the
entanglement between the qubits.

As a second example we consider the initial state,

|φ(0)〉SE = (α|2,1〉S + β|2,−1〉S)|0〉E, (34)

with |α|2 + |β|2 = 1. Applying the map (28), the state evolves
to

|φ(p)〉SE = α[
√

1 − p|2,1〉S |0〉E + √
p|2,0〉S |0〉E]

+β[
√

1 − p|2,−1〉S |0〉E + √
p|2,−2〉S |1〉E],

(35)
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and in this case we obtain

C2
ab(p) = [(1 − p)(αβ∗ + α∗β) − p|α|2]2,

C2
E|ab(p) = 4p(1 − p),

(36)
C2

a|Eb(p) = 2 − 4p|α|2|β|2 − [1 + (1 − p)2]|α|4

− 2[p + (1 − p)2]|β|4.
Three qualitatively different cases are now analyzed for
different values of the parameters α and β. For α = 0 (β = 1)
we get C2

ab(p) = 0; thus, the fermions remain in a separable
state along the whole evolution, whose only effect is that
of continuously transforming the state |2,−1〉 (at p = 0)
into |2,−2〉 (at p = 1) without modifying the entanglement
between the identical parties.

For α = β = 1/
√

2, we obtain the following:

C2
ab(p) = (

1 − 3
2p

)2
,

C2
E|ab(p) = 4p(1 − p), (37)

C2
a|Eb(p) = 1 − 3

4p2.

Thus, C2
ab(p) decreases monotonically from its maximum

value to zero, at p = 2/3, where it starts to increase, as
shown in Fig. 2. Such increase in the entanglement between
noninteracting entities is a result of the nonlocal dynamics due
to the common (or global) environment [1,32]. A more drastic
example of the increase in the entanglement between the
fermions due to the global environment can be seen by taking
β = 0 (α = 1) in Eqs. (36). In this case the initial state |2,1〉
is separable (see table), but as p increases the entanglement
between fermions increases as well, since C2

ab(p) = p2, so
that at p = 1 the fermions end up maximally entangled. In
other words, when applied to appropriate initial states, the
decoherence channel is capable of increasing the entanglement
between the fermions.
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FIG. 2. (Color online) Entanglement evolution for the initial
state (34) with α = β = 1/

√
2 under the amplitude-damping deco-

herence channel. Evolution of the entanglement between the fermions
(orange solid line), evolution of the entanglement between the
environment and the two fermions (violet dotted line), and evolution
of the entanglement between one fermion and the rest of the system
(green dashed line). (Inset) Evolution of the negativity of the reduced
state of one fermion and the environment. All depicted quantities are
dimensionless.

The negativity for the case α = β = 1/
√

2, shown in the
inset of Fig. 2, is qualitatively the same as in the previous case
[initial state (29) subject to the ADC]. Again, in the interval
p ∈ (0,1) there exists a nonzero entanglement between one
fermion and the environment.

B. Phase-damping channel

This process describes the loss of quantum information
with probability p without any exchange of energy. The PDC
is described by the quantum map

|j,m〉S |0〉E →
√

1 − p|j,m〉S |0〉E + √
p|j,m〉S |1〉E

j = 2,m = −2, . . . ,2

|0,0〉S |0〉E → |0,0〉S |0〉E. (38)

We apply the map to the initial state,

|η(0)〉SE = (δ|2,0〉S + iγ |0,0〉S)|0〉E, (39)

with |δ|2 + |γ |2 = 1. The evolved state reads

|η(p)〉 = δ|2,0〉S |P (p)〉E + iγ |0,0〉S |0〉E, (40)

where we defined

|P (p)〉E =
√

1 − p|0〉E + √
p|1〉E. (41)

The squared concurrences for this case are given by

C2
ab(p) = ζ (p,δ,γ )

−
√

ζ 2(p,δ,γ ) − [ζ (p,δ,γ ) − 2p|δ|2|γ |2],
(42)

C2
E|ab(p) = 2[1 − ζ (p,δ,γ )],

C2
a|Eb(p) = 1 − (1 − p)(δ∗γ − δγ ∗)2,

where ζ (p,δ,γ ) = |δ|4 + |γ |4 + 2(1 − p)|δ|2|γ |2. Setting
δ = 1/

√
2,γ = −iδ, we get the expressions

C2
ab(p) = 1 − p,

C2
E|ab(p) = p, (43)

C2
a|Eb(p) = 1,

and plot them in Fig. 3. Now C2
ab decreases linearly in p,

whereas C2
E|ab increases at the same rate, so the sum C2

ab +
C2

E|ab remains constant along the evolution and equal to C2
a|Eb.

Unlike the previous (ADC) case, here the environment ends
up being maximally entangled with the bipartite system S at
the expense of the disentangling between the fermions.

As for the entanglement between one fermion and the
environment, we resort to Eq. (40) to obtain the reduced density
matrix ρaE(p) = Trb|η(p)〉〈η(p)|. Direct calculation leads to

ρaE(p) = 1
4 [|1〉〈1|a + |4〉〈4|a]|ϕ+(p)〉〈ϕ+(p)|E
+ 1

4 [|2〉〈2|a + |3〉〈3|a]|ϕ−(p)〉〈ϕ−(p)|E, (44)

where |i〉a (i = 1,2,3,4) are the single-fermion states defined
in Sec. III A, and |ϕ±(p)〉 stands for the vector

|ϕ±(p)〉 = 1√
2

[|0〉 ± |P (p)〉]

= 1√
2

[(1 ±
√

1 − p)|0〉 ± √
p|1〉]. (45)
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FIG. 3. (Color online) Entanglement evolution for the initial
state (39) with δ = 1/

√
2,γ = −iδ under the phase-damping deco-

herence channel. Evolution of the entanglement between the fermions
(orange solid line), evolution of the entanglement between the
environment and the two fermions (violet dotted line), and evolution
of the entanglement between one fermion and the rest of the system
(green dashed line). All depicted quantities are dimensionless.

Equation (44) shows that the state ρaE is separable for all p, so
that any measure CaE quantifying the entanglement between
one fermion and the environment vanishes; i.e., CaE(p) = 0.

It is interesting to observe that this latter result, together
with Eqs. (43), coincide with the qubit concurrences obtained
in the previously discussed three-qubit system [31]. Thus,
contrary to what happened in the ADC case, the effect of
the PDC on both (qubit and fermion) systems seems to be
the same regardless of the local (or nonlocal) nature of the
interaction. In order to go further in the comparison between
the distinguishable-qubit and the identical-fermion case, we
recall the monogamy inequality

C2
i|jk − C2

ij − C2
ik � 0 (46)

satisfied by the usual concurrence, i.e., involving distinguish-
able qubits i, j , and k [33]. Motivated by this inequality, we
define

Ra = C2
a|Eb − C2

aE − C2
ab (47)

and

RE = C2
E|ab − C2

Ea − C2
Eb, (48)

where CaE = CEa = CEb is an appropriate measure (con-
sistent with the previously defined concurrences) of the
entanglement between the two-level environment and the
four-level fermion. Using Cf E(p) = 0 and Eqs. (43) leads
to

Ra(p) = RE(p) = r(p) = p � 0. (49)

Since Ra,E encodes information of the entanglement that
cannot be written as entanglement between two parties (hence
reflect multipartite entanglement), a positive value of Ra,E

exhibits the presence of tripartite entanglement. Moreover,
since Ra = RE , such tripartite entanglement is the same in
all bipartitions (fermion|rest, environment|rest). In the three
(distinguishable)-qubit system the corresponding residual en-
tanglement is just the 3-tangle τijk = τ = C2

i|jk − C2
ij − C2

ik ,

which measures the genuine tripartite entanglement of those
states pertaining to the Greenberger-Horne-Zeilinger (GHZ)-
type family [34]. Thus, we can say that r(p) here measures the
genuine tripartite entanglement shared by the two fermions
and the environment and that the state (40) is analogous of
the GHZ-family states for systems involving two fermions and
their common environment. According to Eq. (49), the genuine
tripartite entanglement increases linearly in p, and becomes
maximum at p = 1, where the “fermion-environment GHZ”
state,

|GHZ〉SE = |η(1)〉 = 1√
2

(|2,0〉S |1〉E + |0,0〉S |0〉E), (50)

is reached. The state (50) shares with the usual (three-
qubit) GHZ state the property of having maximal genuine
entanglement, while having zero entanglement between the
parties when one of them (any) is traced out.

V. ENTROPIC ENTANGLEMENT CRITERIA

As we mentioned before, the particular case of systems
of two identical fermions with a four-dimensional, single-
particle Hilbert space (the simplest fermion system admitting
entanglement) is the only one for which we have a closed,
analytical expression for the concurrence. No such expression
is known for fermion systems of higher dimensionality.

In order to study the entanglement dynamics of systems of
N -fermions undergoing decoherence, it is possible to use an
entanglement indicator based upon entropic criteria [21]. In
this section we use our previous results for the case of systems
of dimension 4 to investigate the efficiency of these criteria.

All separable states (pure or mixed) of N identical fermions
comply with the entropic inequalities

S
(α)
R (ρF ) + ln N � S

(α)
R (ρf ), (51)

where S
(α)
R is the Rényi entropy with α � 1, ρF is the global N -

fermions density matrix, and ρf is the single-particle reduced
density matrix. The equality sign in the above inequality
occurs, for instance, in the case of pure separable states. Now,
if ones considers the quantity

Q(α)(ρF ) = S
(α)
R (ρf ) − S

(α)
R (ρF ) − ln N, (52)

then for all separable states (pure or mixed), one has

Q(α)(ρF ) � 0. (53)

Therefore, for Q(α) > 0 one knows for sure that the state is
entangled:

Q(α)(ρF ) > 0 ⇒ ρF entangled. (54)

Since the converse (ρF entangled ⇒ Q(α) > 0) does not hold,
in general, the condition Q(α) > 0 detects some (mixed)
entangled states but not all of them. For two-fermion states
the entanglement criterion improves as α increases and is the
most efficient in the limit α → ∞ [21]. Note that the criterion
associated with the von Neumann entropy constitutes a special
instance, corresponding to the particular value α → 1 of the
Rényi entropic parameter.

The quantity Q(α) can thus be regarded as an entanglement
indicator whose evolution under decoherence can be inves-
tigated. In particular, we study the evolution of Q(α) under
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FIG. 4. Entropic entanglement indicator evolution (dashed line)
and evolution of the fermionic concurrence (solid line) for the initial
state (29) under ADC. (Inset) Evolution of the entropic entanglement
indicator (dashed line) and fermionic concurrence dynamics (solid
line) for the initial state (34) with α = β = 1/

√
2 under ADC. The

logarithms in the entropic entanglement indicator are taken to the
base 2 and all depicted quantities are dimensionless.

decoherence for two previously considered examples setting
α = ∞. In this case we have (with Q(∞) = Q)

Q(ρF ) = S
(∞)
R (ρf ) − S

(∞)
R (ρF ) − ln 2, (55)

with

S
(∞)
R (ρF ) = − ln λmax, (56)

where λmax is the largest eigenvalue of ρF . Figure 4 shows the
evolution of Q (dashed lines) for the initial state (29) under the
amplitude-damping decoherence channel. It is observed that
the evolution of the entanglement indicator is qualitatively
the same as the evolution of the fermionic concurrence (solid
lines). The resemblance is stronger in the case of the initial
state (34) with α = β = 1/

√
2 (inset). However, in any case,

we can conclude that Q is a reasonably good entanglement
detector.

The entanglement indicators Q(α), as well as the entangle-
ment measures considered in Sec. III, are not straightforwardly
measurable in the sense that they are not equal to (or
function of a small number of) expectation values of quantum-
mechanical observables. However, if the global state of the
two-fermion system under consideration is first reconstructed
via appropriate quantum-state tomography techniques, then
the aforementioned entanglement quantities can also be exper-
imentally determined. More directly measurable entanglement
indicators for fermionic systems have not yet been as inten-
sively investigated as those for systems with distinguishable
parts. However, some progress in this direction has been made.
For instance, the entanglement indicators advanced in [20],
based upon uncertainty relations, are expressed in terms of
expectation values of measurable quantum observables.

VI. CONCLUSIONS

We studied the effects arising from the interaction between
a quantum system of two identical fermions and the envi-

ronment. We showed that for the exchange symmetry to be
preserved, the evolution of the system must be global, or
nonlocal, in the sense that each fermion interacts separately
with a common environment. Thus, in order to analyze the dy-
namics of entanglement under two paradigmatic decoherence
channels widely studied in the context of local qubit dynamics,
we generalized and extended the ADC and the PDC to the joint
Hilbert space of the two fermions.

In order to achieve a more complete analysis of the evo-
lution of the entanglement in the tripartite system (fermion +
fermion + environment), it was necessary to define two mea-
sures of entanglement: one that quantifies the entanglement
between one fermion and the rest of the system (fermion +
environment) and one that quantifies the entanglement be-
tween one (any) of the fermions and the environment. With
these tools we were able to study the dynamics of entanglement
for some initially entangled states subject to the ADC and the
PDC. Comparison with the three-qubit case was made, and
new insights into the mechanism of entanglement evolution in
open systems of identical particles were revealed.

In the case of the PDC and by resource of a monogamy
relation, we were able to detect genuine tripartite entanglement
and determined an analog to the GHZ state involving the two
fermions and the environment. Further progress in relation
with tripartite entanglement and monogamy relations in these
kinds of systems is, however, inherently constrained by
the advance in the problem of quantifying entanglement in
systems involving identical particles, and multipartite systems
in general, a problem that remains far from solved.

Finally, we showed the dynamics of an entanglement
indicator based on an entropic criterion which can be used
to study decoherence in more general (higher dimensions)
systems of identical fermions. For the four-dimensional case
studied here, the entanglement indicator turned out to be a
reasonably good indicator of entanglement between the pair
of fermions.

A possible experimental scenario in which to consider
the kind of processes discussed in the present work could
be provided by a system consisting of two electrons in two
laterally coupled quantum dots [8]. This system allows for the
implementation of quantum-information-related processes,
such as quantum gates, and can be described in terms of
an effective four-dimensional, single-particle Hilbert space
(leading to a six-dimensional, two-fermion Hilbert space).
The relevant single-particle Hilbert space is spanned by
single-electron states that, in self-explanatory notation, can
be expressed as {|A ↑〉,|A ↓〉,|B ↑〉,|B ↓〉}, where {|A〉,|B〉}
denote two orthogonal electronic spatial wave functions (or-
bitals) predominantly located around two particular locations
in the double quantum dot. This two-electron double quantum
dot system then constitutes a possible experimental realization
(of technological significance) of the type of two-fermion
systems considered in the present contribution.
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[19] P. Lévay, S. Nagy, and J. Pipek, Phys. Rev. A 72, 022302
(2005).

[20] C. Zander and A. R. Plastino, Phys. Rev. A 81, 062128
(2010).

[21] C. Zander, A. R. Plastino, M. Casas, and A. Plastino, Eur. Phys.
J. D 66, 14 (2012).

[22] J. Schliemann, J. I. Cirac, M. Kus, M. Lewenstein, and D. Loss,
Phys. Rev. A 64, 022303 (2001).

[23] A. D. Gottlieb and N. J. Mauser, Phys. Rev. Lett. 95, 123003
(2005).

[24] V. C. G. Oliveira, H. A. B. Santos, L. A. M. Torres, and A. M.
C. Souza, Int. J. Quantum Inf. 6, 379 (2008).

[25] R. P. Feynman, The Theory of Fundamental Processes (W. A.
Benjamin, New York, 1962).

[26] V. Devanathan, Angular Momentum Techniques in Quantum
Mechanics (Kluwer Academic Press, New York, 2002).

[27] A. Wehrl, Rev. Mod. Phys. 50, 221 (1978).
[28] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,

Phys. Rev. A 58, 883 (1998).
[29] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314

(2002).
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