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In Northern Patagonia, Argentina, the ovine mating season starts on March 15, which is the
timewhen rams are submitted to summer temperatures. This study assessed the adaptability
of 12 Australian Merino rams, six unshorn and six shorn, half of which were treated in a heat
chamber for five days (09.00 hours to 17.00 hours) that gradually reached 40 �C. In an attempt
to quantify the effects of heat stress on sperm head morphology, ellipticity was analyzed to
establish the relationship between the distributions of subpopulations, light hours, temper-
ature andhumidity. Ellipticitywasmeasuredon9224 spermheads thatwere obtained over 12
weeks starting in the summer time. Four sperm head subpopulations (S) were identified by
comparison with a sperm head population of ejaculates obtained in the late breeding season
without theeffectofheatstress (S1¼headswithellipticity�2.00;S2¼ spermheadwith range
of ellipticity between1.80 and1.99; S3¼ spermheadwith range of ellipticity from1.60 to1.79;
and S4 ¼ sperm head with range of ellipticity from 1.30 to 1.59). The variable sperm head
ellipticity foreachejaculatewasexpressed as themeansand frequenciesof subpopulation. The
results demonstrate changes in ram sperm head ellipticity in different conditions (control/
treated, unshorn/shorn) throughout the experiment (P < 0.05). Treated shorn rams had a
higher mean ellipticity and frequency of elliptical heads (mean ellipticity value¼ 2.06 and S1
frequency¼ 76.35%), peaking in the seventhweek posttreatment (on the basis of the action of
heat stress on seminiferous tubules). According to this study, unshorn rams were better
adapted to heat stress than the shorn ones.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Sheep production is the primary livestock activity in
Argentinean Patagonia [1]. The mating season in Northern
x:þ54 299 498 2200.
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Patagonia begins on March 15, which is the time when
rams are exposed to summer temperatures.

In temperate regions, mean temperatures are expected to
increase because of climate change. This increased tempera-
ture could have negative effects on agriculture, biodiversity,
theenergysector,hydrology,andhumanandanimalhealth[2].

Climate is one of the most important factors in animal
adaptation to its surrounding environment [3]. The
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variation in climatic variables such as temperature, hu-
midity, airmovement, photoperiod, and solar radiationmay
impose stress on the productive and reproductive perfor-
mance traits of sheep. However, the effect of ambient tem-
perature is aggravated in the presence of high relative
humidity [4,5]. Such effects evoke a series of drastic changes
in the animals’ biological functions that include depressed
food intake efficiency and utilization; disturbances in the
metabolismofwater, protein, energy, andmineral balances;
enzymatic reactions; hormonal secretions; blood flow; and
metabolites [6,7]. Such changes result in depressed repro-
duction including a decline inmale semenquality or fertility
[7–9], failure of the ewe to exhibit estrus, failure of ova to be
fertilized in the ewe, loss of fertilized ova shortly after
mating, and fetal dwarfing [10–13].

Optimal climatic conditions for sheep and goats would
be approximately an air temperature of 13 �C to 20 �C, wind
velocity of 5 to 18 km/h, relative humidity of 55% to 65%,
and a moderate level of sunshine [14–17]. However, these
factors are interrelated [7].

The coexistence of different sperm morphometric sub-
populations within the mammalian ejaculate is widely
accepted [18,19]. Sperm dimensions and shapes could be
related to its fertilizing ability [20]. Ellipticity is a shape
parameter that is influenced by season and most likely by
exogenous environmental factors [19].

In the Argentinean Northern Patagonia, traditional flock
shearing is in November to December (late spring); thus, the
rams spend the summer with fleece less than 1-in long.
Opinions regarding whether wool protects individuals from
heat are divided. Dutt and Hamm [21] concluded that for
Southdown rams, shearing before exposure in a heat cham-
ber reduced heat stress as measured by changes in body
temperature, pulse rate, and respiration rate compared with
the responses in unshorn rams under similar treatment. Al-
Ramamneh et al. [22] determined that under temperate
conditions, shearing significantly reduced core body tem-
perature, water intake, and respiratory rate, indicating heat
stress infleecedanimals.On theotherhand, there is scientific
evidence thatwool protects sheep fromextremeheat. A thick
fleecemostly guards against temperature changes because of
its insulatingproperties. According to research studies, sheep
with a 1-in fleece aremore comfortable than sheepwith less
wool because wool fibers dissipate heat more rapidly. Sheep
with longwoolwere reportedly less sensitive to solarheating
than newly shorn animals [23,24].

Thus, we considered it important to perform a study
that would enable us to analyze the adaptation capacity of
Table 1
Climatologic information of experiment location.

Time period Temperature (�C) Relative hum

Mean SD Mean

December 21–31, 2010 23.44 7.27 48.07
January 1–31, 2011 22.00 6.75 48.49
February 1–28, 2011 22.00 6.77 49.54
March 1–31, 2011 16.77 7.75 50.87
April 1–30, 2011 12.44 7.24 53.82
May 1–9, 2011 10.41 8.00 54.47

Mean day temperature, relative humidity, temperature–humidity index (THI), a
Abbreviation: SD, standard deviation.
unshorn and shorn Australian Merino rams in Northern
Patagonia to high temperatures and to quantify the effects
of heat stress and recovery capacity through mean head
ellipticity of different sperm subpopulations.

2. Materials and methods

2.1. Experimental location and climate

The experiment was conducted for 16 weeks during the
summer season from 24 January to 9 May 2011 at Facultad
de Ciencias Agrarias (FCA), Universidad Nacional del
Comahue, near Cinco Saltos (Province of Río Negro, Pata-
gonia, Argentina). The meteorologic data were collected
daily from the thermohygrograph located 100 m from open
pens at FCA (38� 510 S, 68� 040 W, 281 MASL) in the Neu-
quén river valley that is surrounded by the Patagonian arid
plateau. The region has an arid environment with an
annual average rainfall of 186.24 mm (range ¼ 90.7 mm–

357.4 mm) and annual average temperatures of 14.91 �C
(range ¼ �1.4 �C to 33.7 �C; 2001–2010 data). Climatologic
information regarding this location during the course of the
study is summarized in Table 1.

2.2. Experimental animals

In total, 12 healthy mature Australian Merino rams
randomly selected from sheep farm, according to physical
condition and clinical examination of the reproductive sys-
tem, were evaluated; six unshorn (fleece 4.3-in long ¼ Us)
and six shorn (fleece 0.7-in long¼ S), aged3.5 to 4 years,with
live body weight ranging from 51 to 64 kg. The rams were
previously acclimatized for 3 months. The shearing was
applied before the adaptation period and to thewhole body;
the remaining fleece was 0.2-in long after shearing and was
0.7-in long at the beginning of the heat chamber experience.
Foodwasofferedonceadayat09.00hours (1.350gof Lucerne
drymatter and oat energy supplement).Waterwas available
ad libitum. The whole experiment was performed consid-
ering animal welfare conditions in accordance with the
statements at FCA, Universidad Nacional del Comahue.

2.3. Experimental design

The rams were randomly divided into two groups: one
group (n¼ 6, three Us and three S) was subjected to outdoor
conditions (Table 1), whereas the other group (n ¼ 6, three
Us and three S) was kept indoors (Table 2). The first
idity (%) THI Rainfall (mm)

SD Mean SD Mean SD

21.61 20.64 5.02 7.70 0.21
20.27 19.52 4.66 5.70 1.25
19.73 19.83 4.61 19.00 5.83
21.03 16.02 5.37 5.00 2.40
22.10 13.05 4.95 4.30 1.06
23.00 11.65 5.00 0.00 0.00

nd rainfall from December 21, 2010 to May 9, 2011.



Table 2
Microclimatic heat chamber conditions over 5 days (from 09.00 to 17.00
hours, totally 40 hours) of the experiment.

Days of treatment Temperature
(�C)

Relative
humidity
(%)

THI

Mean SD Mean SD Mean SD

February 14 38.2 2.8 42.4 3.2 37.84 2.77
February 15 38.6 3.7 38.0 3.6 38.20 3.60
February 16 39.6 3.4 37.0 4.3 39.24 3.36
February 17 39.4 3.2 41.0 2.2 39.04 3.17
February 18 37.2 4.0 43.2 3.2 36.92 3.87

Mean temperature, relative humidity, and temperature-humidity index
(THI).
Abbreviation: SD, standard deviation.
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experimental group served as the control group (C) and was
housed in open pens. The second group, the treated group
(T), was exposed to heat stress for 8 hours (from 09.00 hours
to 17.00 hours) over five days (14–18 February 2011) fol-
lowed by housing in open pens. Both groups were exposed
to same duration of natural photoperiods throughout the
experiment. Three weeks before the experiment (24 January
2011), the six rams of the treated groupwere transferred to a
place that had two spaces, one open connected to another
closed (heat chamber) where they kept on circulating freely
to ambient temperature. During five days of treatment
(14–18 February), they entered to the heat chamber at 9 AM,
were fed and subjected to heat, and 5 PM went into open
space, where they spent the night. During the eight hours
that the rams remained in the heat chamber, they were
subjected to a gradual increase in temperature of 25 �C to
40 �C, guaranteeing four hours at 40 �C daily. During the
remaining 12 weeks, called posttreatment (PT, 19 February
to 9 May), all the rams were kept in an open-sided shelter-
type barn. Those weeks were analyzed grouped in five pe-
riods: period 1 (P1¼weeks 1 and 2; Days 1–14 PT); period 2
(P2 ¼ weeks 4–6; Days 22–42 PT); period 3 (P3 ¼ week 7;
Days 43–49 PT); period 4 (P4¼weeks 9–10; Days 57–70 PT),
and period 5 (P5 ¼ weeks 11 and 12; Days 71–84 PT). Ac-
cording to the spermatogenic cycle (approximately 52 days)
[25,26], those periods are coincident with heat influence on
epididymal maturation (P1); seminiferous tubules (sper-
matogenesis and meiosis¼ P2), seminiferous tubules (part of
spermatocytogenesis ¼ P3), and recovery of the normal
semen production period (P4 and P5), respectively. Sperm
parameter values of 107 ejaculates (concentration > 500 �
106 cell/mL and volume > 0.3 mL) were included in the
Appendix. Future fertility of these types of heat-exposed an-
imals is out of the scope of the present study.

2.4. Estimation of heat stress severity and photoperiod

A means of estimating the severity of heat stress was
proposed using both ambient temperature and relative
humidity, termed the temperature–humidity index (THI).
The equation used was

THI ¼ Tdb � [(0.31 � 0.31 RH) (Tdb � 14.4)] [27–29]

where Tdb is the dry bulb temperature (�C) and RH is the
relative humidity (RH%)/100. Because heat stress was
analyzed and the maximum values of THI in summer in
studied areawere registered between 13.00 and 17.00 hours,
Tdb and RH at 15.00 hours every day were used as repre-
sentative of the maximum THI (THI/15.00) for both groups,
control and treated. In the special case of the treated rams,
Tdb and RH corresponding to 15.00 hours inside the heat
camera were used; in this case, the temperature was 40 �C.
Marai et al. [29] used this index to Egyptian Suffolk rams,
and the values obtained indicate the following scores: less
than 22.2 ¼ absence of heat stress; 22.2 to
<23.3 ¼ moderate heat stress; 23.3 to <25.6 ¼ severe heat
stress; and 25.6 and more ¼ extreme severe heat stress.
Climatic factors were recorded from 31 December 2010 to 9
May 2011, and the photoperiod was expressed as light hours
per day. Temperature and humidity at 15.00 hours were
obtained from climatologic records.

As a measure of the photoperiod and heat load received
by the epidydimes and testes during spermatogenesis, cli-
matic factors were expressed as a 52-day mean before each
weekly extraction PT. Climatic factors per period (1–5)
were calculated, averaging climatic factors per week (eg, for
P1, weeks 1 and 2 were averaged). Additionally, from 52
THI/15.00 values corresponding to spermatogenesis of
weekly extractions, the number of days (d) for each of the
four THI heat stress scores was recorded [29].

2.5. Sperm head ellipticity

The study was performed using 81 ejaculates PT: P1, 11;
P2, 22; P3, 9; P4, 18; and P5, 21. Ejaculates were collected at
9.00 hours weekly; the first semen collections after treat-
ment were 23 February (C) and 28 February (T) bymeans of
an electroejaculator for sheep and goats (Bailey, Western
Instrumental Company, Denver, CO, USA). One ejaculate
was collected each time per ram.

From eosin-nigrosin–stained smears, at least 100 sper-
matozoa (n¼ 9224, average 115 heads) were photographed
by a camera that was mounted on an inverted microscope
Nikon Eclipse Ti-S. The sperm head length (L) along the
main axis and the width (W) along the smaller axis were
measured using ImageJ 1.46r [30]. The shape parameter
ellipticity was calculated as L/W with high values corre-
sponding tomore elliptical sperm heads. As a reference to a
sperm head population, three ejaculates were obtained in
July 2013 from rams of normal reproductive performance
present in the laboratory. The mean sperm head ellipticity
of the reference rams (in the late breeding season without
the effect of heat stress) was 1.69, and sperm head sub-
population frequencies were S1 ¼ 0.00%; S2 ¼ 23.80
� 9.35%; S3 ¼ 72.17 � 7.66%; and S4 ¼ 4.03 � 1.89%.
Comparison of the ellipticity values for these ejaculates
with those obtained in the experiment identified ellipticity
ranges that characterized sperm head subpopulations. Ac-
cording to this, four subpopulations (S) were recognized:
S1 ¼ heads with ellipticity � 2.00; S2 ¼ sperm head with
range of ellipticity between 1.80 and 1.99; S3¼ sperm head
with range of ellipticity from 1.60 to 1.79; and S4 ¼ sperm
head with range of ellipticity from 1.30 to 1.59 (figure with
representative sperm heads of subpopulations 1 to 4 was
included as Supplementary Material). The variable sperm
head ellipticity for each ejaculate was expressed as the
means and frequencies of each subpopulation.
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2.6. Statistical analyses

An initial descriptive analysis was realized which included
combinations of factors control/treated and unshorn/shorn
(CUs, CS, TUs, and TS), named rams’ conditions, in five periods
studied, averages of response variables studied (mean ellip-
ticity, subpopulation frequencies of sperm heads) and averages
of predicting variables (photoperiod and THI/15.00). A biplot
was applied to obtain a plot which aims to represent both the
observations (rams’ conditions) and variables of a matrix of
multivariate data on the same plot.

The effects of treatment/wool/period of mean ellipticity
were analyzed on 81 ejaculates. At first, a mixed model was
applied to analyze the random structure of rams. Structure
of variance–covariance was adjusted for each ram. A likeli-
hood ratio testwas applied to compare thefit of linearmixed
and random models using Akaike and Bayesian information
criterion. As no significant differences were found between
the models, we decided to apply a more reduced and
parsimonious linear analysis with factorial structure of
treatment (ANOVA). A Tukey test was used when the effects
were significant. In all cases the level of significance used
was 5%. To analyze the relationships between response
variables (mean ellipticity and subpopulation frequencies)
and predicting variables (climatic factors), Pearson correla-
tion for 81 ejaculates was calculated.

The statistical analysis was performed with Infostat and
statistical language R version 3.0.2 [31].

3. Results

In Figure 1, the relationship between the ellipticity
expression of the rams’ conditions and climatic factors per
Fig. 1. Biplot demonstrates relations between rams’ conditions according to the ave
photoperiod, and temperature–humidity index (THI) at 15.00 hours during the exper
isolated which had high mean ellipticity value ¼ 2.06 and a high S1 frequency ¼ 76.
with the TUs from P1, which had high mean ellipticity and S1 frequencies values and e
values. CS, control shorn; CUs, control unshorn; P, period; TS, treated shorn; TUs, tre
periodareobserved.An initial analysisdemonstrated that the
TS rams in P3 were isolated and had a high mean ellipticity
value (2.06) and a high S1 frequency (76.35%). This resultwas
consistent with the ANOVA where the TS rams in P3 had a
significant difference for mean ellipticity values (P < 0.05).

In Figure 1, the remaining rams’ conditions are arranged
in a chronologic order from left to right beginning with the
TUs in P1 and ending with the CUs in P5. These rams’ con-
ditions had amean ellipticity of 1.83 and1.64; frequencies of
S1, 16.01% and 0.51%; and S3 of 23.45% and 77.93%, respec-
tively. According to the photoperiod, the order was from
13.20 hours of light to 10.12 hours of light. Temperature and
humidity conditions registered at 15.00 hours through THI
went from highest (25.09) to lowest (19.53).

Figure 2 illustrates the mean ellipticity of the different
rams’ conditions within each period. It is noteworthy that
the mean ellipticity in P1 and P2 were not significantly
different. In P3, there was a significant difference in TS; in
P4, the CUs were different from treated ones; and in P5, the
TS were different from the control ones.

From the Tukey test applied as a comparative analysis
between periods, we noted two groups of rams’ conditions
that were well separated: group 1 consisting of all the P1,
P2, and P3 rams and the treated P4 and P5 not including P5
TUs (highest mean ellipticity values); and group 2 con-
sisting of the control rams in P4 and P5 (lowest mean
ellipticity values). Here, it is necessary to emphasize that
the P5 TUs were included in the latter group.

Table 3 demonstrates Pearson correlation coefficients
between the ellipticity expressions and climatic factors. It is
important to note that the correlations betweenmean sperm
head ellipticity with photoperiod, THI/15.00, and number of
days with severe and extreme severe heat stress are positive,
rages of mean sperm head ellipticity, subpopulation frequencies (%S1 to %S4),
iment (period 1–5). It is important to emphasize that the TS rams from P3 are
35%; the remaining rams’ conditions are arranged from left to right beginning
nding with the CUs from P5which had lowmean ellipticity and S1 frequencies
ated unshorn, frequencies of sperm head subpopulations (%S) 1 to 4.



Fig. 2. The bar graph illustrates the mean ellipticity of the different rams’ conditions within each period. Period 1: 1 to 14 days posttreatment (PT); period 2: 22 to
42 days PT; period 3: 43 to 49 days PT; period 4: 57 to 70 days PT; and period 5: 71 to 84 days PT. Different letters indicate statistical differences (P � 0.05)
according to the Tukey test.
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whereasmean sperm head ellipticity with number of days of
absence of heat stress andmoderate heat stress are negative.
4. Discussion

Heat stress was evident during P3 (Days 43–49 after
treatment) in TS ejaculates that demonstrated more
elliptical sperm heads with a mean ellipticity (2.06) in S1
and S2 at high frequencies (76.35% and 21.17%, respec-
tively) and a low frequency of less elliptical heads S3
(2.48%; Fig. 1). These data illustrate that heat chamber
conditions (40 hours, 8 hours in 5 days under extreme
severe heat stress; THI > 25.6; Table 2) affected sperma-
tocytogenesis at seminiferous tubules and head shape
changes occurred as a response (more elliptical heads
appeared), as well as frequency of sperm head sub-
populations (increased S1 and decreased S3 frequencies).
These results are in accordance with the spermatogenesis
rhythm in rams, which takes approximately 7 weeks
[32,33]. Changes occur at the level of the seminiferous
tubules; therefore, they are primary sperm abnormalities
according to the classification by their site of origin. These
abnormalities are extremely important because the sperm
head contains a nucleus (which bears genetic material)
and acrosomal enzymes for fertilization [34].
Table 3
Correlations among the ellipticity of 81 ejaculates and climatic factors
52 days before extraction.

Climatic variables Mean
ellipticity

%S1 %S2 %S3 %S4

Photoperiod 0.40* 0.23* 0.42* �0.45* �0.26*

THI/15.00 0.41* 0.28* 0.39* �0.45* �0.23*

N absence of heat stress �0.37* �0.24* �0.36* 0.41* 0.22*

N moderate heat
stress

�0.25* �0.08 �0.37* 0.32* 0.23*

N severe heat stress 0.25* 0.11 0.28* �0.26* �0.23*

N extreme severe
heat stress

0.39* 0.25* 0.39* �0.44* �0.23*

Frequencies of sperm head subpopulations (%S) 1 to 4, photoperiod (light
hours), temperature–humidity index (THI) at 15.00 hours, and number
(N) of days THI heat stress scores.

* P < 0.05 significance.
Histologic studies reveal that in vitro and in vivo expo-
sure of testis to high thermal stress impairs spermatogen-
esis by spermatogonial germ cell elimination in the
seminiferous tubules and Sertoli and Leydig cell degener-
ation [35] in addition to reducing sperm fertility [36].
Elevated ambient temperatures for 90 days significantly
reduced the number of young spermatids in the yearling
boar seminiferous tubules without any effect on the num-
ber of type A spermatogonia or spermatocytes [37]. A
possible explanation for the histologic changes mentioned
previously may be that heat sufficient to cause spermato-
genic damage results in hypoxia in the testis but does not
consistently alter the blood flow or the glucose supply [6].

There were no significant differences in mean sperm
head ellipticity between the rams’ conditions within and
between P1 and P2 (Days 1–42 after treatment, Fig. 2). This
result indicates that in the epididymides, changes of sperm
head shape in response to heat stress do not occur. This is in
agreement with Chemineau [33], who stated that long-
term heat stress is needed for the emergence of alter-
ations in the ejaculated semen, explaining that its effect is
limited to sex cell production and the relative insensitivity
of sperm cells within the epidydimes. Howarth [38], Braden
and Mattner [39], and Williamson [40] concluded that
spermatozoa undergoing epididymal passage were not
affected by short-term temperature elevation.

Within P4 and P5 (Days 50–84 after treatment), sig-
nificant differences in mean ellipticity among the rams’
conditions were observed; it was also observed that CUs
in P4 were different from treated and TS in P5 was
different from the control (Fig. 2). The results demon-
strated evidence that recovery is differential according to
the rams’ conditions. Recovery of the control rams began
on P4 and continued in P5 to reach a mean ellipticity
value of 1.63. In those that were treated, the recovery was
delayed, with an exception of the TUs, which recovered
more quickly than the others and reached the mean
ellipticity value of 1.71 in P5; according to the Tukey test,
this rams’ condition was included in group 2 with control
rams in P4 and P5. To summarize, the rams’ conditions
ranked according to its capacity of recovery would be CUs,
CS, TUs, and TS (Fig. 1).
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During P4 and P5, control ram semen would apparently
recover earlier from the intense heat of January and
February, than treated ram semen. These findings are
consistent with those from other authors. Ortavant and Loir
[41] argued that the duration and intensity of exposure to
thermal stress determined the return to normal semen
quality that takes 40 to 60 days. Shelton [42] claimed that
six weeks are required for ram recovery after environ-
mental conditions return to normal.

The relationship between sperm head ellipticity,
photoperiod, and THI/15.00 averages was analyzed
(Table 3), interestingly, most elliptical head subpopulations
(S1 and S2) were present in ejaculates that were subjected
to more hours of light, high THI/15.00 values, and more
days with an extreme THI score in extreme and severe heat
stress, coincident with summer heat and treatment. Less
elliptical heads (S3 and S4) demonstrated higher fre-
quencies in those ejaculates that were subjected to fewer
hours of light, low THI/15.00 values, and absent or mod-
erate heat stress, coinciding with the autumn months and
time of semen recovery.

The location of TS3 on the top and left in the biplot
(Fig. 1) had similar ellipticity expressions (high value of
mean ellipticity, S1, S2 and low S3) as TS1, and the delayed
recovery of the treated rams during P4 and P5 with respect
to the control is evidence of the effect of rising temperature
and photoperiod. High temperatures suppressed the
beneficial effect of decreased daylight hours on reproduc-
tion. This result is consistent with Dehghan et al. [43], who
stated that a high ambient temperature during summer
months increased the effect of photoperiod-mediated
suppression of testicular function in rams.

To comparatively analyze unshorn and shorn condi-
tions, the control rams were right to shorn ones in the
biplot (Fig. 1). The unshorn and shorn rams had very
marked differences (high mean ellipticity, high S1 fre-
quency and low S3 in shorn rams) in P3 that would indicate
better adaptability as assessed through ellipticity in the
unshorn rams. For these reasons, the shorn rams suffer
more heat stress that those that are unshorn.

Our findings are consistent with data from other au-
thors, which stated that wool protects sheep from extreme
heat and extreme cold. A thick fleece is mostly protective
against temperature changes because of its insulating
properties. According to this research, sheep with a 1-in
fleece are more comfortable than sheep with less wool as
wool fibers dissipate heat more rapidly. Sheep with long
wool were reportedly less sensitive to solar heating than
newly shorn animals [44,45]. Piccione et al. [24] confirmed
that shearing induces adaptive responses in the organism.
Both shorn and unshorn ewes were subjected to heat
stress, but different sensitivity to heat stress in shorn ewes
compared with unshorn ewes is evident.

Woolly and hairy animals should be sheared before the
onset of hot weather. Spring shearing allows sheep to have
adequate wool growth to keep them cool in the summer
(and avoid sunburn) and a full wool coat in the winter to
keep them warm [46,47].

In conclusion, heat stress between Days 43 to 49 after
treatment is evident in treated shorn rams, which hadmore
elliptical sperm heads in their ejaculates. These changes
occur at the level of the seminiferous tubules and therefore
are primary sperm abnormalities. Recovery of semen
quality is evidenced by a decrease in most elliptical sperm
head subpopulations (S1) and increased less elliptical
subpopulations (S3) starting approximately 60 days post-
treatment. Recovery is influenced by the severity of heat
stress that was observed for each ram condition: unshorn
are in better condition than shorn. The sperm head ellip-
ticity must be considered an excellent indicator of thermal
stress in Australian Merino rams. This indicator is also a
useful tool for sheep farmers to suggest the beginning of
mating season, which will vary depending on the summer
environmental conditions.
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Supplementary Fig. 1. Representative sperm heads of subpopulations 1 to 4: (A) subpopulation 1 (L/W ¼ 2.00); (B) subpopulation 2 (L/W ¼ 1.84); (C) sub-
¼ 5 mm.
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population 3 (L/W ¼ 1.65); and (D) subpopulation 4 (L/W ¼ 1.53). Scale bar



Appendix

Period Rams’
conditions

Number of
ejaculates

Volume (mL) Mass
motility

Sperm
concentration
(�106 spz/mL)

Total number of
spermatozoa (�106

spz/mL)

Sperm cell
motility (%)

Vigor Cell viability
(%)

Acrosome
integrity (%)

HOST (%)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

PT CUs 6 0.46 0.14 3.42 1.07 1533.33 1365.89 707.50 724.35 77.50 29.11 3.00 0.55 84.17 3.19 99.17 0.98 52.00 28.93
CS 3 0.60 0.20 2.83 0.58 2008.33 1139.17 1171.67 742.57 78.33 17.56 3.33 1.04 84.33 6.66 98.67 0.58 39.33 39.51
TUs 7 0.49 0.23 3.36 0.48 2564.29 1171.44 1421.43 1244.84 87.14 6.36 3.36 0.63 83.57 8.04 95.29 7.23 61.14 15.43
TS 6 0.57 0.23 3.00 0.71 1656.67 888.99 1075.00 920.25 83.33 8.76 3.42 0.38 79.67 12.42 87.83 17.03 55.20 29.42

P1 CUs 4 0.60 0.12 3.00 0.82 1166.67 702.38 690.00 307.90 85.00 13.23 3.67 0.29 60.25 30.12 88.00 18.71 28.00 1.41
CS 2 0.45 0.31 2.58 1.20 1304.76 754.40 800.72 768.96 64.56 35.26 2.49 1.55 69.34 30.49 74.68 37.64 17.35 11.74
TUs 4 0.48 0.13 2.75 0.50 4100.00 500.00 1930.00 773.24 61.25 39.66 3.00 1.35 79.25 10.18 97.00 6.00 34.25 33.90
TS 5 0.68 0.17 4.00 0.00 1575.00 1056.33 1147.50 856.44 93.75 2.50 3.75 0.50 80.75 8.10 100.00 0.00 21.75 26.44

P2 CUs 8 0.70 0.26 2.06 0.32 1100.00 d d d 57.50 38.70 3.25 0.76 72.20 31.19 58.57 25.48 7.50 4.95
CS 8 0.86 0.31 2.88 0.35 1275.00 955.09 1108.25 1016.30 72.86 28.70 3.07 0.98 45.86 32.26 73.00 20.06 8.29 4.03
TUs 7 0.65 0.29 3.71 0.76 3635.71 2346.05 2398.33 1403.20 63.57 22.86 3.00 0.71 46.14 24.19 64.29 32.22 16.14 26.49
TS 10 0.91 0.48 3.35 0.63 1583.00 623.16 1300.00 713.43 74.44 24.93 3.67 0.56 38.22 31.08 60.00 26.29 12.89 19.79

P3 CUs 3 0.90 0.14 2.00 0.00 d d d d 70.00 28.28 2.25 0.35 19.50 3.54 42.00 2.83 6.00 2.83
CS 2 0.85 0.07 3.50 0.71 1750.00 919.24 1455.00 657.61 90.00 0.00 3.00 0.00 31.50 2.12 77.50 23.33 18.00 15.56
TUs 3 0.98 0.45 2.83 1.04 2353.33 2476.94 2008.00 1656.44 81.67 7.64 3.50 0.50 54.00 16.09 82.67 8.50 2.67 2.08
TS 2 0.75 0.49 3.50 0.71 2775.00 1873.83 1617.50 31.82 80.00 14.14 4.00 0.71 53.00 9.90 93.00 1.41 5.50 0.71

P4 CUs 6 0.92 0.52 2.42 0.38 800.00 494.22 730.33 531.16 55.83 32.00 2.67 0.82 45.83 15.17 74.60 23.38 10.00 5.48
CS 5 0.77 0.49 3.00 0.35 1587.00 1002.11 1342.00 1422.61 66.25 27.50 3.50 0.41 43.80 19.88 57.80 35.49 46.00 49.50
TUs 4 0.90 0.22 3.00 0.82 2866.67 1750.24 2810.00 1555.22 62.50 9.57 3.13 0.75 56.00 18.24 65.50 42.30 3.00 2.45
TS 3 0.55 0.13 3.33 0.76 1150.00 672.68 658.33 499.51 76.67 15.28 3.50 0.00 38.67 9.45 49.00 49.50 8.00 d

P5 CUs 3 0.73 0.29 2.33 0.58 1208.33 545.63 440.00 d 43.33 30.55 3.00 1.00 52.00 9.00 60.33 13.05 9.00 1.41
CS 6 0.75 0.34 3.17 0.93 2120.00 1266.20 1395.00 727.99 71.67 26.20 3.58 0.66 55.00 24.73 71.50 30.78 20.50 21.53
TUs 5 0.73 0.26 3.30 0.97 2725.00 1887.46 1233.33 758.84 67.00 17.18 3.50 0.71 45.80 25.69 86.60 15.95 13.80 16.04
TS 5 1.12 0.56 3.20 0.45 1800.00 1181.10 2236.00 1978.71 74.00 20.74 3.10 0.74 50.20 18.25 76.00 20.37 16.20 15.55

Sperm parameter values of 107 ejaculates (concentration > 500 � 106 cell/mL and volume > 0.3 mL).
Abbreviations: CS, control shorn; CUs, control unshorn; HOST, hypo-osmotic swelling test; P, period; SD, standard deviation; TS, treated shorn; TUs, treated unshorn.
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