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bstract

In the last decades, the significant benefits of integrating control aspects in the early stages of process design have been shown. However,
olymer engineering is just now incorporating this important methodology. Besides, the particularly difficult control problem of a grade transition
n a polymerization reactor should be able to cope with process perturbations and uncertainty in the operating conditions and model parameters. In this
ork, a simultaneous process and control system design under uncertainty is performed for optimal grade transition operation. The process design

ncludes reactor unit and initiator type selections. The control system design involves finding the best combination of controlled and manipulated

ariables, and the optimal controllers’ tuning parameters. Discrete design decisions are incorporated by means of discrete optimization variables.
he resulting optimal design minimizes off-specification product during grade transition and guarantees feasible operation in the full range of the
onsidered uncertain parameters and process perturbations.

2007 Elsevier B.V. All rights reserved.
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. Introduction

The traditional approach for dealing with operational aspects
optimal operation and control) of polymerization and other
hemical processes consists in treating them sequentially with
he process design. That is, first the process is designed so as to
chieve an optimal performance using a fully specified nominal
ase, and only when the process or equipment has been designed,
perational issues are taken into account. These may include the
ontrol system design as well as safety, reliability and flexibility
f the process design. However, the sequential approach to these
wo fundamental topics does not consider that process operabil-
ty is an inherent property of its design, which greatly affects
ong-term economy as well. This has recently motivated a strong
nterest in both academia and industry towards the integration
f process design and control, supported to a great extent by
he development of efficient algorithms for the solution of the
athematical problems involved [1,2]. However, few of these
fforts have been applied to polymerization processes. Some
f these are the works by Chatzidoukas et al. [3] and Astea-
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uain et al. [4,5]. These authors have shown that, due to the
arge amount of design, operative and control variables affect-
ng the performance of polymerization reactors, and the strong
nteraction between them, it is possible to obtain an important
enefit by applying integrated design and control strategies to
olymerization processes.

An operation of major importance in polymer production is
rade transition. Large-scale continuous polymer plants typ-
cally produce several varieties of the same polymer, called
rades, in the same equipment. Each of these grades has different
ow and solid-state properties, as required by different applica-

ions. In order to satisfy changing and extremely demanding
arket requirements, the changeover between the productions

f different grades must be performed frequently. This operation
s carried out by switching between operating points, generating
ff-specification product in the meantime. Therefore, optimal
rade transition policies that minimize the material out of spec-
fication and the transition time are essential for the profitability
f polymer plants. As a consequence, a considerable number
f publications have focused on determining optimal transition

olicies for different polymerization processes. Most of them
nvolved open loop optimization to find the best profiles of the

anipulated variables [6–9]. Nevertheless, optimal transition
peration can only be achieved with a suitable control system

mailto:abrandolin@plapiqui.edu.ar
dx.doi.org/10.1016/j.cej.2006.12.029
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hat guarantees that the optimal transition policies are actually
ollowed in spite of the presence of process perturbations and
ncertainties. As pointed out by McAuley and McGregor [6] in
heir open loop analysis, the lack of process feedback can cause
he actual trajectories to deviate from the optimal ones due to
rocess perturbations and other changing conditions.

Polymerization processes often present highly exothermic
eactions and significant viscosity variations along the reaction
ath, leading to complex heat-transfer and fluid dynamics [10].
ontrol of processes with these characteristics is a challenging

ask, and has motivated abundant research into the development
f efficient control schemes [11]. However, most of the publi-
ations dealing with control of polymerization processes during
rade transition have assumed that the target transition policy
ad been designed in advance, or used a sequential approach to
eal with the process design and control.

A very important issue that has seldom been considered in
revious optimization and control studies of polymerization sys-
ems is the effect of uncertainties. It is well-known that a large
umber of parameters affecting polymerization processes are
ikely to suffer from uncertainty in their values, such us the oper-
ting conditions (i.e. feed flow rates and concentrations, catalyst
ctivity, fouling, etc.), model parameters (i.e. heat-transfer coef-
cients, kinetic constants, etc.), the costs of raw materials or the
rices and demand of the products. It is possible that an optimal
esign under nominal operating conditions would show a poor
erformance or even be inoperable due to the variation of any
f those parameters. This is why it is very important to develop
he optimal process synthesis ensuring feasible operation for the
ntire range of uncertainties. Optimization under uncertainty has
een discussed widely in the literature [12]. It has been shown
hat the complexity of these problems notoriously increases if the
ptimization includes discrete variables [13]. One of the well-
nown approaches for this kind of problem is called the “worst
ase” algorithm [12], which was later improved by Raspanti et
l. [14,15] by the use of an overestimation function.

This work presents the simultaneous process and control
ystem design of a styrene polymerization reactor for optimal
rade transition operation. A previous work [5] is extended so
s to incorporate process perturbations and uncertainties in the
esign stage. The design problem involves finding simultane-
usly (a) the best process design, which includes both discrete
nd continuous decisions, and (b) the best control scheme,
aking into account structural and continuous decisions while
nsuring feasible operation in the presence of process perturba-
ions and for any possible realization of uncertain parameters.
nlike most previous grade transition studies, the steady-state
perating points are not known in advance, but are part of the pro-
ess design. For the particular example we study in this work,
he “process design” is limited to the selection of the reactor
ize and the type of initiator to be used from a finite set of
iven options, together with the steady-state operating points
or producing two given polymer grades. The “control system

esign” requires choosing the best pairings between controlled
nd manipulated variables using a multivariable PI controller
nd a ratio controller, and the parameters for those controllers
set points, gains and reset rates). The worst case algorithm

w
m
s
a

Fig. 1. Polymerization reactor.

12,14,15] is used to solve the optimization under uncertainty
roblem.

. Problem statement

Solution polymerization of styrene in continuous processes is
ften carried out using a combination of different reactor types.
n a typical plant, the reaction mixture goes through several
olymerization units connected in series, each of them equipped
ith an agitator and appropriate heat-exchange systems. The
utput is then pumped to a devolatilizer unit to separate the
nreacted monomer and the solvent from the polymer. The hot
iscous polymer is then pelletized and finally packaged [16].
sually, CSTRs are appropriate in the first stages, operating

t low conversions to ensure moderate viscosities. Then, the
olymerization is continued in other reactors, such as linear flow
eactors, so as to reach higher conversions [16]. As a first step,
ue to the complexity of the mathematical problem involved
n this study, only a first stage CSTR will be considered in the
resent process design and control analysis.

A schematic representation of the reactor is shown in Fig. 1.
tyrene monomer, initiator (AIBN or TBPB) and solvent (ben-
ene) streams compose the reactor feed stream. Reactor output
onsists of polystyrene, unconverted monomer, initiator and sol-
ent. Cooling water is used to remove the heat released by
he polymerization. The control system of the process is com-
osed by a multivariable PI controller plus a ratio controller,
nd takes as possible controlled variables the reactor tempera-
ure, the polymerization rate and the number average molecular

eight. The alternatives for the manipulated variables are the
onomer, initiator, solvent and jacket flow rates. The optimal

election and matching of controlled and manipulated vari-
bles are part of the design problem. Process model equations
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Table 1
Process model equations

dI

dt
= 1

V
(QiIf − QI) − kdII (1)

dM

dt
= 1

V
(QmMf − QM) − kpMλ0 − 3kdMM3 (2)

dT

dt
= Q

V
(Tf − T ) + (−�Hr)

ρCp

kpMλ0 − UA

ρCpV
(T − Tj) (3)

dTj

dt
= Qj

Vj
(Tj,f − Tj) + UA

ρjCpjVj
(T − Tj) (4)

dM0

dt
= 1

2
ktcλ

2
0 − Q

V
M0 (5)

dM1

dt
= ktcλ

2
0 + kpMλ0 − Q

V
M1 (6)

dM2

dt
= 2ktcλ

2
0 + 5kpMλ0 + 3

k2
p

ktc
M2 − Q

V
M2 (7)

λ0 =
√

2effickdII + 2kdMM3

ktc
(8)

Pr = kpMλ0 (9)

x = M1

M1 + M
(10)

Mn = MwM
M1

M0
(11)

Mw = MwM
M2

M1
(12)

Pd = Mw

Mn
(13)
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Table 3
Model parameters

effic 0.6 [20] If = If,0 0.5888 mol L−1 [20]
Ad,AIBN 5.95 × 1013 s−1 [20] Mf = Mf,0 8.6981 mol L−1 [20]
Ed,AIBN 123,853.658 J mol−1 [20] Tf,0 330 K
Ad,TBPB 8.439 × 1013 s−1 [21] Q0 0.2625 L s−1

Ed,TBPB 133,888 J mol−1 [21] MwM 104.15 g mol−1

Ap 1.06 × 107 L mol−1 s−1 [20] MwAIBN 164.2 g mol−1

Ep 29,572.898 J mol−1 [20] MwTBPB 194.2 g mol−1

Atc 1.25 × 109 L mol−1 s−1 [20] Qj,min 0
Etc 7008.702 J mol−1 [20] Qj,max 41 L
V0 3000 L Qi,min 0
−�Hr 69,919.56 J mol−1 [20] Qi,max 0.066 L
UA0 293.076 J s−1 K−1 [20] Qm,min 0
ρ

ρ
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(UA) = UA0
A

A0
(14)

re shown in Table 1. The differential equations include two
ass balances, two energy balances and three moment balances.
he algebraic equations define several auxiliary variables, the
verage molecular weights, the polydispersity and the rate of
olymerization. The kinetic mechanism considered to set up the
ass balances includes the reactions of initiator decomposition,

hermal initiation of the monomer, chain initiation, propaga-
ion and termination by combination. Transfer reactions are not
ncluded, because they are not significant for the system under
tudy [17,18]. Gel effect is neglected, as process operating condi-
ions and process design specifications involve a relatively high
olvent volume fraction, of around 50%, and low monomer con-
ersion, for which the gel effect is not significant [19]. In order

o improve the efficiency of the numerical methods, the model
quations are converted to a dimensionless form obtained by
eans of the dimensionless variables defined in Table 2. The

umerical values of the different model parameters are listed

able 2
imensionless variables

= I

If,0
M = M

Mf,0
If = If

If,0
Mf = Mf

Mf,0
T = T − Tf,0

Tf,0

j = Tj − Tf,0

Tf,0
Tf = Tf − Tf,0

Tf,0
Tj,f = Tj,f − Tf,0

Tf,0
M0 = M0

Mf,0
M1 = M1

Mf,0

i = Qi

Q0
Qm = Qm

Q0
Qs = Qs

Q0
Q = Q

Q0
t = Q0t

V0

o
t
e
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e

l
a
p

F

Cp 1507.248 J L−1 K−1 [20] Qm,max 1.31 L

jCpj 4045.7048 J L−1 K−1 [20]

n Table 3. More details about model assumptions and mass
alances formulation can be found elsewhere [5].

The analysis in this work is constrained to a transition
etween two polystyrene grades as a way to show the poten-
ial benefits of this methodology with an optimization problem
f limited size. This approach can be effortlessly extended to
eal with more complex transition sequences, at the expense of
onger computational times. Then, the design problem focuses
n a CSTR polymerization reactor, which is meant to pro-
uce, at steady-state, two polystyrene grades which are defined
y the following specifications: grade A, Mn = 40,000 g/mol
nd Mw = 60,000 g/mol); grade B, Mn = 75,000 g/mol and
w = 112,500 g/mol. A discussion about possible results in case

f transitions between two grades in both directions (A to B and
to A) or involving more than two polymer grades will be

rovided.
The simultaneous process and control system design problem

ims to obtain optimal grade transition operation when changing
rom grade A to grade B taking into account known perturbations
nd uncertainties in operating conditions and model parameters.
etails are described next.

.1. Objective function for the transition from grade A to
rade B

Usually, objective functions for grade transitions are defined
ased on economic goals. There are two typical alternative sce-
arios [6,7]: (a) high market demand and maximum capacity
peration. In these conditions, it is usually convenient to meet
he new product specifications as soon as possible, even at the
xpense of producing more off-specification product; (b) low
emand and operation at reduced capacity, in which it would be
referable to minimize the amount of off-specification product,
ven though this may extend the transition time.

The selected objective function for the design problem ana-
yzed in this work prioritizes a fast transition. It consists of
n integral quadratic function, commonly used in this type of

roblems [6], as shown in Eq. (15).

O =
∫ tf

0
(MnB − Mn(t))2 dt (15)
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In this equation, MnB is equal to 75,000 g/mol (grade B num-
er average molecular weight (Mn)), and Mn(0) takes the value
f 40,000 g/mol (grade A Mn). This objective function will min-
mize off-specification Mn as well as the transition time, because
he upper limit of the integral in Eq. (15) (tf) is treated as an addi-
ional optimization variable [3]. A fast transition is emphasized
ith this objective function. However, final suitable conversion

evels and other steady-state variables’ values are ensured by
he optimization constraints shown in Table 4. Flow rates dur-
ng transition where not specifically included in the objective
unction, because minimizing off-specification polymer is by
ar more important during this operation [22].

.2. Optimization variables and process constraints

Optimization variables include both process and control sys-
em design variables, which are determined simultaneously in
he same optimization problem. Process design includes the
eactor unit, selection of initiator, and the steady-state operating
oints. The corresponding optimization variables are:

Reactor volume (V): three discrete allowed values: 2000, 3000
and 3500 L.
Initiator type (yAIBN, yTBPB): azobis(isobutyronitrile) (AIBN)
or tert-butyl peroxybenzoate (TBPB).
Feed temperature (Tf,0): equal for the two grade operating
points.
Nominal operating temperature for grade A production (TA).
Nominal operating temperature for grade B production (TB).

All these variables are treated as time invariant. For the
articular mathematical problem considered here, these vari-
bles completely define the steady-state points. It is assumed
hat from previous process analysis and equipment availabil-
ty, the selection of the reactor capacity has to be made from
he three alternatives mentioned above. Reactor unit specifica-
ion is completed with: if V = 2000 L, Vj = 2208 L, A/A0 = 0.763;
f V = 3000 L, Vj = 3312 L, A/A0 = 1; if V = 3500 L, Vj = 3864 L,
/A0 = 1.108. The optimization software is capable of dealing
ith discrete optimization variables such as the reactor vol-
me V. Initiator type selection is modeled by means of binary
ariables (yAIBN and yTBPB). These variables are employed to
elect the pre-exponential factor and the activation energy of the
nitiator decomposition constant corresponding to the chosen
nitiator:

d = Ad,AIBNyAIBN + Ad,TBPByTBPB (16)

d = Ed,AIBNyAIBN + Ed,TBPByTBPB (17)

TBPB + yAIBN = 1 (18)

The integer constraint represented by Eq. (18) was included
o specify that, for this particular design, it is desired to use only

ne initiator.

In order to find the best control system that would drive the
rocess from one steady-state to the other, a control scheme
omposed by a multivariable PI controller plus a ratio controller

t
t
t
w

Fig. 2. Control superstructure.

s analyzed. The ratio controller is not part of the optimization
roblem. It is used to maintain a constant solvent volume fraction
f 50%, which is appropriate for this process [23]. Therefore, the
atio controller is represented by Eq. (19), relating the solvent
ow rate to the monomer and initiator flow rates.

s = Qi + Qm (19)

The PI controller superstructure is shown in Fig. 2, where
ach line represents a potential PI loop between the manipulated
ariable i and the controlled variable j. Possible manipulated
ariables are the jacket (Qj), initiator (Qi) and monomer (Qm)
ow rates. Possible controlled variables are the reactor temper-
ture (T), the polymer number average molecular weight (Mn)
nd the polymerization rate (Pr). Mn was selected as controlled
ariable, although Mw might have been chosen as well. As the
olydispersity index presents small variations in styrene solution
olymerization, control objectives can be formulated in terms of
ither Mn or Mw [24]. Online size exclusion chromatography
SEC) devices are available that provide online measurements of
he average molecular weights. However, these measurements
nvolve a delay that ranges between 10 and 40 min [25]. To
vercome this problem, Kalman filters have been employed to
rovide online estimates of the molecular weights between SEC
easurements. Successful molecular weight control schemes

ave been implemented in this way [21,25,26]. Kalman filters
r empirical correlations have also been used in combination
ith online sensors of reaction mixture properties other than
olecular weights, to obtain online estimates of the molecular
eights for control purposes [24,27]. Therefore, in this article
e consider that accurate online estimates of the polymer Mn are

vailable for the controllers by means of a suitable soft sensor,
s well as reactor and jacket temperatures and polymerization
ate measurements.

The equation representing the control superstructure is

∗
i = U∗

i,nom +
3∑

j=1

Ki,j

[
(Yj,set − Yj) + 1

τi,j

∫ t

0
(Yj,set−Yj) dt′

]
(20)

here U∗
i is the overall control action on the ith manipulated

ariable (U∗
1 = Q∗

j , U
∗
2 = Q∗

i , U
∗
3 = Q∗

m), U∗
i,nom the nominal

alue of U∗
i , Yj the jth controlled variable (Y1 = T, Y2 = Tj,

3 = Mn); Yj,set the set point of the Yj variable, and Ki,j and 1/τi,j
re the gain and reset rate, respectively, of the PI controller for

he ith manipulated variable and the jth controlled variable. The
erms in the sum represent the action of all possible PI con-
rollers over the ith manipulated variable. Which of these loops
ill actually compose the final control system is part of the
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Table 4
Process constraints

TA ≤ 110 ◦C (25) 0.18 ≤ ConversionA ≤ 0.5 (26)
TB ≤ 110 ◦C (27) 0.18 ≤ ConversionB ≤ 0.5 (28)
Tf ≤ 67 ◦C (29) T (t) ≤ 110 ◦C (30)
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esign problem. The selection of the PI loops is modeled by the
ollowing constraints affecting the controllers’ gains:

LB
i,j yi,j ≤ Ki,j ≤ KUB

i,j yi,j (21)

here yi,j is the binary optimization variable representing the
xistence of the PI loop between variables i and j. Eq. (21) forces
hat Ki,j = 0 if yi,j = 0. We imposed that each manipulated variable
ould be used to control only one variable, that is

3

j=1

yi,j ≤ 1, i = 1, . . . , 3 (22)

The set points of the controlled variables are considered
iecewise constant optimization variables, and the other con-
roller parameters are treated as time invariant ones.

Constraints on the manipulated variables were considered by
eans of the following saturation function

i =

⎧⎪⎨
⎪⎩

Ui,max, if Ui,max < U∗
i

U∗
i , if Ui,min ≤ U∗

i ≤ Ui,max

Ui,min, if U∗
i < Ui,min

(23)

hich was smoothed as shown by Eq. (24) [5], to enhance the
erformance of the optimization algorithm.

i = 0.25[(U∗
i −Ui,min) tanh(106(U∗

i −Ui,min)) + U∗
i + Ui,min]

× [tanh(106(Ui,max − U∗
i )) + 1] + 0.5Ui,max

× [tanh(106(Ui,max − U∗
i )) + 1] (24)

ower and upper bounds for the manipulated variables are shown
n Table 3.

Then, optimization variables in this simultaneous process and
ontrol system design under uncertainty problem involve a set
f 24 time invariant continuous variables (z): process variables
f,0, TA and TB, and control system variables U∗

i,nom (i = 1, . . .,
), Ki,j (i = 1, . . ., 3, j = 1, . . ., 3) and 1/τi,j (i = 1, . . ., 3, j = 1, . . .,
); a set of 3 piecewise constant variables (u(t)): control system
ariables Yj,set (j = 1, . . ., 3); a discrete optimization variable:
rocess variable V; a set of 11 binary variables (y): process vari-
bles yAIBN, yTBPB, and control system variables yi,j (i = 1, . . ., 3,
= 1, . . ., 3). Notice that as all the elements of the control system
re designed at the same time, interactions between the differ-
nt loops are taken into account. Besides, integration with the
rocess design results in a better performance of the system as
whole. It should be noted that no simplification of the process
odel is carried out in order to design the control system.
Process feasibility is defined by the constraints shown in

able 4, and product requirements involve attaining the aver-
ge molecular weights of the two polymer grades used in our
roblem.
.3. Process uncertainties and perturbations

As examples of typical process uncertainties and perturba-
ions, for our design problem the following uncertainties in the

(
i
p
f

Qj,A ≥ 0.026 L s (31) Tj(t) ≤ 95 C (32)
Qj,B ≥ 0.026 L s−1 (33)

eat-transfer coefficient and in the feed temperature are consid-
red:

a) U = (1 + θ1)U0, − 0.2 ≤ θ1 ≤ 0.2 (34)

b) Tf = Tf,0 + θ24 ◦C, − 1 ≤ θ2 ≤ 1 (35)

U0 and Tf,0 are the nominal value of the heat-transfer coef-
cient and the nominal feed temperature, respectively; U0 is a
nown parameter, but Tf,0 is a time invariant optimization vari-
ble. θ = [θ1, θ2] is the vector of uncertain parameters of the
esign problem. Besides, a perturbation with known time pro-
le (v(t)) is considered, consisting of a sinusoidal variation of
◦C amplitude and 24 h period for the coolant inlet temperature,
s shown in Eq. (36).

j,f = Tj,f,nom + 5 sin

(
2π

24
t

)
(36)

.4. Worst case algorithm

The conceptual mathematical formulation for the simulta-
eous process and control system design under uncertainty
roblem is shown in Eq. (37).

FO = min
z,u(t),y,d,tf

E
θ ∈ Γ

{FO(v(tf), θ, z, u(tf), y, d, x(tf), a(tf), tf)}
s.t.

f (v(t), θ, z, u(t), y, d, ẋ(t), x(t), a(t), t) = 0

h(v(t), θ, z, u(t), y, d, x(t), a(t), t) = 0

g(v(t), θ, z, u(t), y, d, ẋ(t), x(t), a(t), t) ≤ 0

uLB ≤ u(t) ≤ uUB

zLB ≤ z ≤ zUB

y ∈ {0, 1}11

d ∈ D

0 ≤ t ≤ tf
(37)

here v(t) are the perturbations with known time profile; θ the
ncertain time invariant parameters; z the continuous time invari-
nt optimization variables; u(t) the time variant control variables;
the discrete optimization variables, which were described

reviously; x and a are the state and algebraic variables, respec-
ively, of the process and control system model. Functions f(·)
nd h(·) constitute the model algebraic–differential system (Eqs.

1)–(14), (16)–(20), (24), (34)–(36)); g(·) the set of inequal-
ty constraints (Eqs. (21), (22), (25)–(33), Mn and Mw of the
olymer grades), and D is the set of the three allowed values
or the reactor volume V. It is assumed that well-defined lower
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nd upper bounds are available for each uncertain parameter,
hat is Γ = {θ:θLB ≤ θ ≤ θUB}. Notice that Eq. (37) represents a

ixed-integer dynamic optimization (MIDO) under uncertainty
roblem. The expectation term in Eq. (37) (Eθ ∈ Γ {·}) accounts
or the contribution to the objective function FO (Eq. (15)) of
ll possible realizations of the uncertain parameters θ.

The optimization problem represented by Eq. (37) is solved
sing a well-known technique, an iterative, decomposition algo-
ithm called the “worst case” algorithm [12], which is composed
f the following steps:

tep 1: Choose an initial set of discrete values for each uncer-
tain parameter. All possible combinations between them
lead to an initial set of scenarios θi = [θi

1, θ
i
2, . . . , θ

i
n],

i = 1, . . ., ns.
tep 2: For the current set of scenarios, determine the optimal

set of optimization variables. This is achieved by solving
the multiperiod optimization problem

FO= min
z,u(t),y,d,tf

{
ns∑

i=1

wiFO(v(tf), θ
i, z, u(tf), y, d, xi(tf), a

i(tf), tf)

}

s.t.

f (v(t), θi, z, u(t), y, d, ẋi(t), xi(t), ai(t), t) = 0, i = 1, . . . , ns

h(v(t), θi, z, u(t), y, d, xi(t), ai(t), t) = 0, i = 1, . . . , ns

g(v(t), θi, z, u(t), y, d, ẋi(t), xi(t), ai(t), t) ≤ 0, i = 1, . . . , ns

uLB ≤ u(t) ≤ uUB

zLB ≤ z ≤ zUB

y ∈ {0, 1}11

d ∈ D

0 ≤ t ≤ tf
(38)

Notice that Eq. (38) implies that the process model
and constraints are replicated for each of the scenarios.
The expectation term of Eq. (37) is approximated by the
weighted sum of the individual values of the objective
function FO for each scenario. The weight factors wi

are discrete probabilities for the selected scenarios, such
that

∑ns
i=1w

i = 1.
tep 3: Test the optimal point resulting from Step 2 for feasi-

bility over the whole range of the uncertain parameters,
over the entire time horizon of interest. This means
checking if, for the current optimal point, all constraints
will be satisfied for any possible realization of the
uncertain parameters. This is carried out by solving the
dynamic feasibility test problem

χ(
∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf) = max

θ
gl(v(tf), θ,

∗
z,

∗
u(t),

∗
y,

∗
d, ẋ(tf), x(tf), a(tf),

∗
tf)

s.t.

f (v(t), θ,
∗
z,

∗
u(t),

∗
y,

∗
d, ẋ(t), x(t), a(t), t) = 0

h(v(t), θ,
∗
z,

∗
u(t),

∗
y,

∗
d, x(t), a(t), t) = 0

(39)
where l ∈ L and
∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf is the optimal point

found in Step 2. It has been assumed that all
path constraints have been converted into end-

p
o
r
s
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point constraints. χ(
∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf) represents the

highest possible value that any of the functions

gl(v(tf), θ,
∗
z,

∗
u(t),

∗
y,

∗
d, ẋ(tf), x(tf), a(tf),

∗
tf) can take for

any value of θ. Therefore, if χ(
∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf) ≤ 0 the

optimal design is feasible because it implies that all con-

straints g(v(tf), θ,
∗
z,

∗
u(t),

∗
y,

∗
d, ẋ(tf), x(tf), a(tf),

∗
tf) ≤ 0

are satisfied for any value of θ, and the algorithm ter-
minates. Otherwise, the solution of Eq. (39) defines a
critical uncertainty realization, θc, which is added to the
current set of scenarios, before returning to Step 2. Eq.
(39) can be solved in the following manner:

(a) For each constraint l∈L, solve the dynamic optimization problem

χl

(∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf

)
= max

θ
gl(·), ∀l ∈ L

s.t.

f (·) = 0

h(·) = 0

(b) Set χ
(∗

z,
∗
u(t),

∗
y,

∗
d,

∗
tf

)
= max

l ∈ L

{
χl

(∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf

)}
(40)

Step (a) of the dynamic feasibility test involves solv-
ing L optimization problems. This can be replaced by
a single optimization if an over estimator of the whole
set of constraints gl is used [14,15]. For instance, the
function KS(θ) defined as

KS(θ) = 1

ρ
ln

(
L∑

l=1

exp(ρgl(θ))

)
(41)

verifies that KS(θ) ≥ gl(θ), ∀l ∈ L. Parameter ρ verifies
that the higher its value, the smaller the gap between
the over estimator and the original functions. Therefore,
Steps (a) and (b) of the feasibility test can be replaced
by

χ(
∗
z,

∗
u(t),

∗
y,

∗
d,

∗
tf)=max

θ
KS(v(tf), θ,

∗
z,

∗
u(t),

∗
y,

∗
d, ẋ(tf), x(tf), a(tf),

∗
tf)

s.t.

f (·) = 0

h(·) = 0
(42)

The software gPROMS/gOPT (Process Systems Enterprise
td.) was used to solve both the MIDO problem (Eq. (38)) and

he dynamic optimizations involved in the feasibility test (Eq.
40) or (42)).

. Results and discussion

Before solving the design problem under uncertainty, a design

roblem under nominal conditions, that is, without uncertainty
r perturbations (θ1 = θ2 = 0, Tj,f = Tj,f,nom) was solved. Some
esults are shown in Table 5, Figs. 3–5, and Eq. (43). The latter
hows the controller’s gains (Ki,j) and reset rates (1/τi,j) for the
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Table 5
Optimal process design

V 2000 L (lower bound)
Initiator AIBN
TA 76.4 ◦C
TB 89.3 ◦C
Tf,0 67 ◦C (upper bound)

Fig. 3. Optimal control structure for nominal conditions.

Fig. 4. Number average molecular weight (Mn) vs. time.

Fig. 5. Reactor temperature vs. time.

i

a
t
i
1
s
t
k
p
i
t

T
w
t

(
(
(
(

w

o
o
t
t
e
a
s
s
o
c

i
s

ring Journal 131 (2007) 135–144 141

–j PI loop.

K =

⎡
⎢⎣

0 0 −47.38 L g−1

0 −54, 443.8 L mol s−1 g−1 0

0 262, 500 L mol s−1 g−1 0

⎤
⎥⎦ ,

1

τ
=

⎡
⎢⎣

0 0 3.251 × 10−6 s−1

0 1.978 × 10−6 s−1 0

0 8.75 × 10−5 s−1 0

⎤
⎥⎦ (43)

Polymer Mn and reactor temperature during grade transition
re plotted in Figs. 4 and 5, respectively. It can be observed that
he optimal control system performs the grade transition, which
nvolves an 88% increase in Mn, in a period of approximately
h, with negligible overshoot. This is accomplished by an initial

teep reduction in reactor temperature. Afterwards, the reactor
emperature is slowly driven to its new set point value, while
eeping tight control of Mn. These profiles are consistent with
revious results obtained by the authors for the same polymer-
zation system [5]. All other process variables remained within
heir bounds.

Then, the design problem under uncertainty was analyzed.
wo initial values corresponding to their lower and upper bounds
ere considered for each uncertain parameter, which lead to

hese four process scenarios

1) θ1 = [θ1,max, θ2,max];
2) θ2 = [θ1,min, θ2,max];
3) θ3 = [θ1,max, θ2,min];
4) θ4 = [θ1,min, θ2,min].

Each scenario was assigned the same probability, that is
i = 0.25 i = 1, . . ., 4.
The optimization algorithm stopped after the first evaluation

f Step 3, as no critical scenario was found that violated any
f the constraints for the current optimal design. The feasibility
est was performed using Steps 3(a) and 3(b), and also using
he KS over estimator. Equivalent results were obtained. How-
ver, the KS over estimator allowed obtaining a faster solution,
s a single optimization problem needed to be solved. Repre-
entative results of the optimal design for these current set of
cenarios are shown in Figs. 4 and 5, Table 6 and Eq. (44). The
ptimal controller structure was the same as under the nominal
onditions.

K =

⎡
⎢⎣

0 0 −96.87 L g−1

0 −26, 1960.3 L mol s−1 g−1 0

0 24, 8342.3 L mol s−1 g−1 0

⎤
⎥⎦ ,

1

τ
=

⎡
⎢⎣

0 0 4.15 × 10−6 s−1

0 0.971 × 10−8 s−1 0

0 0.917 × 10−6 s−1 0

⎤
⎥⎦ (44)
The final control scheme involves two manipulated variables,
nitiator and monomer flow rates, for Mn control. This is con-
istent with the objective function of the design problem, which
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Table 6
Process design variables under uncertainties

V 3000 L
Initiator AIBN
TA 70 ◦C
TB 82 ◦C
T
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s
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f
a steady-state optimization aimed at maximizing an economic
f,0 63 ◦C

ims at driving the polymer Mn to the new grade specification
s fast as possible and keeping it at this value thereafter. The
oolant flow rate is employed for controlling the polymeriza-
ion rate. Although the final proposed control scheme does not
nclude a control loop for the reactor temperature, this variable
s kept within safety bounds by means of the polymerization rate
oop. Polymerization rate is very sensitive to the reactor tempera-
ure, so that changes in the latter are immediately reflected in the
olymerization rate. Therefore, any hint of temperature runaway
s soon detected and corrected by the polymerization rate loop,
y taking the polymerization rate back to its set point value. It
hould be kept in mind that the optimization problem from which
he optimal control system was obtained, included constraints
n the reactor temperature during transition. Therefore, the final
ontrol system, including polymerization rate set point and tun-
ng parameters of the polymerization rate control loop, ensures
afe temperature bounds for the considered perturbations and
ncertainties. In addition to this, serious operational problems
ot included in the design, such as failures of the coolant feed
nd increases of up to 10 ◦C in the reactor feed temperature,
t different points during the grade transition, were simulated.
or these challenging scenarios, the performance of the optimal
ontrol system was very satisfactory, as safe temperature bounds
ere always maintained and the polymer Mn trajectory during

he grade transition remained close to its desired trajectory.
It can be seen in Table 6 that the optimal reactor size is now

000 L, instead of 2000 L when the uncertain parameters were
t their nominal values. In order to analyze why a larger reac-
or, with consequent slower dynamics, was chosen for optimal
rade transition, a search space reduction was performed for the
ptimization variable V, minimizing and maximizing this vari-
ble subject to all steady-state process constraints. Assuming
hat V was a continuous variable, it was found that for this set
f scenarios the minimum possible reactor volume was 2340 L.
n other words, this is the smallest reactor volume that allows
nding a feasible steady-state operating point for the whole set
f scenarios of the uncertain parameters. Therefore, the reac-
or selected under nominal conditions would have resulted in
nfeasible steady-state operation for some values of the uncer-
ain parameters. It can also be observed that the nominal value of
he reactor feed temperature is lower than in the previous case.
his is necessary so that the upper bound of this variable is not
iolated in scenarios 1 and 2 (with θ2 = 1, corresponding to the
pper bound feed temperature of 67 ◦C). Reactor temperatures
t both grade operating points are also lower than for the nominal

onditions.

Mn and reactor temperature during grade transition under
ncertainties are depicted in Figs. 4 and 5, respectively. Opti-

o
s
s

ring Journal 131 (2007) 135–144

al transition for Mn is slower than for the optimal design
nder nominal conditions, and more oscillatory due to the sinu-
oidal perturbation in the jacket inlet temperature. Scenarios 1
nd 2, the ones with the high feed temperature, allow faster
ransition than the other two, which are at the low feed temper-
ture. The heat-transfer coefficient shows almost no influence
n Mn transition, as the scenarios with the same feed temper-
ture but different heat-transfer coefficient (1 and 2: high and
ow heat-transfer coefficient, respectively, with the same high
eed temperature; 3 and 4: high and low heat-transfer coeffi-
ient, respectively, with the same low feed temperature), show
ery little difference between them. However, uncertainty in
he heat-transfer coefficient does influence the reactor tempera-
ure profiles. For instance, consider the temperature profiles for
cenarios 1 and 2. For the latter, the upper bound of the reac-
or temperature (Eq. (30)) becomes an active constraint, while
or the other scenario the maximum temperature is far from its
ound. The important effect of the feed temperature uncertainty
an be appreciated from the notorious differences between the
emperature profiles of scenarios 1 and 3 on one hand, and 2
nd 4 on the other. The effect of the oscillatory perturbation in
he jacket inlet temperature is clearly appreciated in the reac-
or temperature profiles. It should be remarked that the current
esign ensures feasible operation for any possible realization of
he uncertain parameters.

The results presented in this work are valid for a transition
rom grade A to grade B. If the transition in the opposite direc-
ion had been considered, that is from grade B to grade A,
he optimal process and control system design might be dif-
erent. For instance, the best steady-state temperature for grade

production when performing a transition from grade A to B,
ould be different to the one if the transition from B to A were
onsidered. The optimal control structure and controller tuning
arameters could be different too. This has been shown in our
revious work [5], in which cyclic transitions between two poly-
er grades was addressed in a simultaneous process and control

ystem design without uncertainty. The same holds for transi-
ions between more than two polymer grades. Therefore, a single
ptimization problem that takes into account simultaneously all
he transitions to be performed should be solved instead. Never-
heless, the study carried out in this work is a good example of
he potential benefits of this methodology. The approach can be
asily extended to deal with more complex transition sequences,
hough at the expense of a longer computational time.

The integrated process and control system design obtained
o far was compared with the one that would have resulted if the
raditional, sequential approach had been used (i.e. first, process
esign based on steady-state considerations, and then design
f the control scheme). The process design for the sequential
pproach is shown in Table 7. The selected reactor volume is the
mallest one that is operable at steady-state, as discussed before,
inimizing reactor cost. The initiator type and operating points

or grade A and grade B production were obtained by means of
bjective [5]. Notice that now both grades are produced at the
ame temperature, which is the highest one allowed for steady-
tate operation.
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Table 7
Process design variables for the sequential approach

V 3000 L
Initiator AIBN
TA 100 ◦C
T
T
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B 100 ◦C

f,0 57 ◦C

Then, the control scheme for the grade transition between the
reviously determined operating points was analyzed. Following
he traditional approach for dealing with this task [3], the control
tructure in terms of loop pairings was tackled first. The relative
ain array (RGA) analysis [28], a well-known method that has
een used before for grade transition problems [3], was applied
o a linearized form of the reactor model in order to determine the

ultiple-input, multiple-output control configuration. The same
et of possible controlled and manipulated variables used in the
imultaneous approach was considered for this analysis. The
esulting loop pairings were Qj–T, Qi–Mn and Qm–Pr. Finally,
he controllers’ tuning parameters and set points for the grade
ransition were optimally determined by solving a dynamic
ptimization under uncertainty problem. In order to tune the
ontrollers’ settings with the same criteria as in the simultane-
us approach, the same objective function, piecewise constant
escription of the set points’ profiles, process constraints, per-
urbations and uncertainties of the optimization problem solved
ith the simultaneous approach were considered. The result-

ng design was then compared with the simultaneous approach
esign. As expected, the design obtained with the simultaneous
pproach exhibits a better performance. Fig. 6 shows the Mn pro-
le during grade transition for both cases, for one of the scenarios
f the uncertain parameters. It can be seen that the grade transi-

ion is much slower for the design obtained using the sequential
pproach. In this case, it takes about 14 h to reach the Mn value
f grade B, with a significant overshoot, and about 40 h to finally
ettle around the new grade specification. With the simultane-

ig. 6. Mn profile during grade transition for the simultaneous and the sequential
esigns for scenario 2.
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ig. 7. Reactor temperature profile during grade transition for the simultaneous
nd the sequential designs for scenario 2.

us approach, these times were only 1.5 and 6 h, respectively.
imilar results were obtained for the other scenarios.

Fig. 7 compares the reactor temperature profiles during the
rade transition for both designs for the same scenario. The
nitial steep reduction in the reactor temperature that results in
he increase of the polymer Mn up to the final grade value can
e observed in both cases. For the sequential design for which
he operating point was determined without considering oper-
bility during grade transition, the steady-state temperatures are
igher. Therefore, more time is required to carry out the neces-
ary decrease in the reactor temperature, resulting in a longer
ransition time. Notice that the time needed to reach the tem-
erature minimums is approximately equal to the time needed
o reach the Mn value of the new polymer grade. These results
llustrate the benefits of dealing with process design and control
n an integrated manner, as opposed to the traditional sequential
pproach.

. Conclusions

A simultaneous process and control system design under
ncertainty was carried out for optimal grade transition oper-
tion in a styrene polymerization reactor. With polymer grades’
roperties as the only specifications, reactor size and initiator
ype were optimally selected (involving discrete decisions in
oth cases), as well as the steady-state operating points. Simul-
aneously, the structure and tuning parameters of a multivariable
I controller were determined, taking into account the strong

nteraction of process design and control.
A “worst case” algorithm was used to incorporate uncertainty

n the optimization process. In this way, a design that achieves a
ast transition with minimal overshoot in spite of process pertur-
ations and uncertainties was obtained. Moreover, the optimal

esign is guaranteed to have feasible operation for the whole
ange of the considered uncertain parameters.

It was also shown that if uncertainties and perturbations are
ot considered in the design, the process might suffer from infea-
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