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a Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, USA
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Highlights

• We present finite element procedures to model the response of aligned fractures in fluid-saturated poroelastic materials.
• We derive a priori error estimates for the finite element procedures.
• We analyze fracture induced velocity and attenuation in heterogeneous fractured poroelastic materials.

Abstract

Fractures in a fluid-saturated poroelastic – Biot – medium can be modeled as very thin highly permeable and compliant layers
within a porous background. A Biot medium containing a dense set of aligned fractures behaves as an effective transversely
isotropic and viscoelastic (TIV) medium at the macroscale when the predominant wavelength is much larger than the average
distance between fractures. One important mechanism in Biot media at seismic frequencies is wave-induced fluid flow generated
by fast compressional waves at mesoscopic-scale heterogeneities, generating slow diffusion-type Biot waves. In this work, we
present and analyze a collection of time-harmonic finite element experiments that take into account the effects of the presence
of aligned fractures and interlayer fluid flow occurring at the mesoscale, allowing us to determine the complex and frequency
dependent stiffnesses of the effective TIV medium at the macroscale.

These numerical upscaling experiments are defined as boundary value problems on representative samples of the fractured
material, with boundary conditions associated with compressibility and shear tests, which are solved using the finite element (FE)
method. The FE space chosen to discretize each component of the solid displacement vector is that of globally continuous piecewise
bilinear functions, while for the fluid phase the vector part of the Raviart–Thomas–Nedelec space of zero order is employed. We
present results on the uniqueness of the solution of the continuous and discrete problems, and derive optimal a priori energy error
estimates. First, the numerical results are validated with those of a theory valid for fluid flow perpendicular to the fracture layering
and independent of the loading direction, so that the attenuation mechanism can be represented by a single relaxation function.
Then, the methodology is applied to cases for which no analytical solutions are available, such as a fractured Biot medium saturated
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with brine and patches of CO2 and a brine saturated sample of uniform background and fractures with fractal variations in their
petrophysical properties.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Fractured hydrocarbon reservoirs have been the subject of interest in exploration and production geophysics, since
generally, natural fractures control the permeability of the reservoir [1]. In geophysical prospecting and reservoir
development, knowledge of fracture orientation, densities and sizes is essential since these factors control hydrocarbon
production [2]. This is also important in CO2 storage in geological formations to monitor the injected plumes as faults
and fractures are generated, where CO2 can leak to the surface [3]. One of the important mechanisms of seismic
attenuation in fluid-saturated porous media is wave-induced fluid flow, by which the fast compressional wave is
converted to slow (diffusive) Biot waves at mesoscopic-scale heterogeneities, which are larger than the pore size
but much smaller than the predominant wavelengths of the fast compressional and shear waves [5,15].

White et al. [4] were the first to introduce the mesoscopic-loss mechanism in the framework of Biot theory con-
sidering alternating thin poroelastic layers along the direction perpendicular to the layering plane [5]. Gelinsky and
Shapiro [6] obtained the relaxed and unrelaxed stiffnesses of the equivalent poro-viscoelastic medium to a finely lay-
ered horizontally homogeneous material. Krzikalla and Müller [7] combined the two previous models to obtain the five
complex and frequency-dependent stiffnesses of the equivalent TIV medium. Their approach assumes a 1D character
of the fluid pressure equilibration process which generates diffusive modes from the fast compressional wave, i.e., the
fluid-flow direction is perpendicular to the fracture layering. As a consequence, compressional waves travelling hor-
izontally or vertically or shear waves will generate fluid pressure in such a way as to maintain its distribution. Thus,
the model considers only one relaxation function, corresponding to the symmetry-axis compressional wave stiffness.
These assumptions fail for heterogeneous layers, where the propagation of waves may depend on direction.

A planar fracture embedded in a fluid-saturated poroelastic background is a particular case of the thin layer prob-
lem, when one of the layers is very thin, highly permeable and compliant. A dense set of horizontal fractures in a
fluid-saturated poroelastic medium behaves as a TIV medium when the average fracture distance is much smaller
than the predominant wavelength of the travelling waves. This leads to frequency and angular variations of velocity
and attenuation of seismic waves. An analysis of wave anelasticity and anisotropy in fractured poroelastic rocks is
presented in [8].

FE harmonic compressibility and shear tests are first presented in [9] to obtain a viscoelastic medium long-
wavelength equivalent to a highly heterogeneous isotropic sample. Then, in [10] and [11] the procedure is extended
to determine long-wave equivalent media to finely layered viscoelastic materials. Among other works employing
numerical simulations to analyze dispersion, attenuation and anisotropy in Biot media we mention the works by
Saenger et al. [12] and Wenzlau et al. [13].

This work presents and analyzes a collection of time-harmonic finite element experiments defined on fluid-
saturated isotropic poroelastic samples having a dense set of horizontal fractures modeled as very thin layers. The
experiments take into account both the effects fractures and interlayer fluid flow occurring at the mesoscale. Each
experiment is defined at the continuous level as a boundary value problem defined in the space-frequency domain, with
boundary conditions representing compressibility and shear tests that are solved using the FE method. To discretize
each component of the solid displacement vector we employ the space of globally continuous piecewise bilinear
functions over a quasi-regular partition of the computational domain. For the fluid phase, the vector part of the
Raviart–Thomas–Nedelec space of zero order is used [14]. First, we demonstrate the uniqueness of the solution of the
continuous and discrete boundary value problems associated with each experiment and derive a priori error estimates
in the energy norm for the FE solutions. These estimates are optimal for the assumed regularity of the solution.

First, we present the validation of the FE procedure by comparison with the analytical solutions provided in [7]
for a brine saturated homogeneous sample having a dense set of horizontal fractures. Then, the methodology is
applied in two cases for which no analytical solutions are available, namely patchy brine–CO2 saturated samples and
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brine-saturated samples with fractures having fractal variations in the petrophysical properties. We analyze the effect
of these fluid and frame heterogeneities on the attenuation and dispersion of the quasi-compressional wave (qP wave),
vertically polarized quasi-shear wave (qSV wave) and horizontally polarized shear wave (SH wave).

2. The Biot model and the equivalent TIV medium

Let us consider isotropic fluid-saturated poroelastic layers and let us(x) = (us,1, us,2, us,3) and u f (x) = (u f,1,

u f,2, u f,3) indicate the time Fourier transform of the displacement vector of the solid and fluid relative to the solid
frame, respectively. Here, if U f denotes the fluid displacement vector, u f = φ(U f − us), where φ is the porosity.

Set u = (us, u f ) and let σ (u) and p f (u) denote the time Fourier transform of the total stress and the fluid pressure,
respectively, and let e(us) be the strain tensor of the solid phase. On each plane layer n in a sequence of N layers, the
frequency-domain stress–strain relations are [15]

σkl(u) = 2µ ekl(us) + δkl

λG ∇ · us + αM∇ · u f


, (1)

p f (u) = −αM∇ · us − M∇ · u f . (2)

The coefficient µ is the shear modulus of the bulk material, considered to be equal to the shear modulus of the dry
matrix. The other coefficients in (1)–(2) can be obtained from the relations [15]

λG = KG −
2
3
µ, KG = Km + α2 M, (3)

α = 1 −
Km

Ks
, M =


α − φ

Ks
+

φ

K f

−1

,

where Ks, Km and K f denote the bulk moduli of the solid grains, dry matrix and saturant fluid, respectively.
Let us define the differential operator L(u) and the matrix B ∈ R4 as follows:

L(u) =

∇ · σ (u), ∇ p f (u)


, B =


0I2 0I2

0I2
η

κ
I2


, (4)

where I2 is the 2×2 identity matrix, η is the fluid viscosity and κ is the frame permeability. Denoting by ω = 2π f the
angular frequency, Biot’s equations in the diffusive range, stated in the space-frequency domain are (in the absence of
external sources)

iωBu − L(u) = 0, (5)

where i =
√

−1. Let us consider x1 and x3 as the horizontal and vertical coordinates, respectively. As shown
by Gelinsky and Shapiro [6], the medium behaves as a TI medium with a vertical symmetry axis (the x3-axis) at
long wavelengths. They obtain the relaxed and unrelaxed limits, i.e., the low- and high-frequency limit real-valued
stiffnesses, respectively. Assuming a 1D character of the fluid pressure equilibration process, Krzikalla and Müller [7]
present a model to obtain the five complex and frequency-dependent stiffnesses pI J , I, J = 1, . . . , 6, of the equivalent
TIV medium that is included in Appendix A.

Denote by τi j (us) and ϵi j (us) the stress and strain tensor components of the equivalent TIV medium, where us
denotes the solid displacement vector at the macroscale. The corresponding stress–strain relations, stated in the space-
frequency domain, are [16,15]

τ11(us) = p11 ϵ11(us) + p12 ϵ22(us) + p13 ϵ33(us), (6)

τ22(us) = p12 ϵ11(us) + p11 ϵ22(us) + p13 ϵ33(us), (7)

τ33(us) = p13 ϵ11(us) + p13 ϵ22(us) + p33 ϵ33(us), (8)

τ23(us) = 2 p55 ϵ23(us), (9)

τ13(us) = 2 p55 ϵ13(us), (10)

τ12(us) = 2 p66 ϵ12(us). (11)
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In (6)–(11) we have assumed a closed system. This can be done for the undrained composite medium, for which the
variation of fluid content ζ = −∇ · u f is equal to zero. This approach provides the complex velocities of the fast qP,
qSV and SH modes. The pI J are the complex and frequency-dependent Voigt stiffnesses to be determined with the
harmonic experiments. In the next sections we present and analyze a FE procedure to determine the coefficients in
(6)–(11) and the corresponding phase velocities and quality factors. These properties, which depend on frequency and
propagation direction, are given in Appendix B.

3. Determination of the stiffnesses

Here we show how that stiffnesses pI J can be determined by applying a collection of compressibility and shear
tests on a 2D representative sample Ω = (0, L)2 of boundary Γ = ∂Ω of the fractured poroelastic material in the
(x1, x3)-plane.

Set Γ = Γ L
∪ Γ B

∪ Γ R
∪ Γ T , where

Γ L
= {(x1, x3) ∈ Γ : x1 = 0}, Γ R

= {(x1, x3) ∈ Γ : x1 = L},

Γ B
= {(x1, x3) ∈ Γ : x3 = 0}, Γ T

= {(x1, x3) ∈ Γ : x3 = L}.

Denote by ν the unit outer normal on Γ and let χ be a unit tangent on Γ so that {ν,χ} is an orthonormal system
on Γ .

(i) To determine the complex coefficient p33 let us consider the solution of (5) in Ω together with the following
boundary conditions

σ (u)ν · ν = −∆P, (x1, x3) ∈ Γ T , (12)

σ (u)ν · χ = 0, (x1, x3) ∈ Γ , (13)

us · ν = 0, (x1, x3) ∈ Γ L
∪ Γ R

∪ Γ B, (14)

u f · ν = 0, (x1, x3) ∈ Γ . (15)

Denoting by V the original volume of the sample, its (complex) oscillatory volume change, ∆V (ω), allows us to
define p33 by using the relation

∆V (ω)

V
= −

∆P

p33(ω)
, (16)

valid for a viscoelastic homogeneous medium in the quasistatic case.
After solving (5) with the boundary conditions (12)–(15), the vertical displacements us,3(x1, L , ω) on Γ T allow

us to obtain an average vertical displacement uT
s,3(ω) suffered by the boundary Γ T . Then, for each frequency ω, the

volume change produced by the compressibility test can be approximated by ∆V (ω) ≈ LuT
s,3(ω), which enable us to

compute p33(ω) by using the relation (16).
(ii) To determine p11, we solve (5) in Ω together with the boundary conditions

σ (u)ν · ν = −∆P, (x1, x3) ∈ Γ R, (17)

σ (u)ν · χ = 0, (x1, x3) ∈ Γ , (18)

us · ν = 0, (x1, x3) ∈ Γ L
∪ Γ B

∪ Γ T , (19)

u f · ν = 0, (x1, x3) ∈ Γ . (20)

In this experiment ϵ33(us) = ϵ22(us) = ∇ · u f = 0 and from (6) we see that this experiment determines p11 as
indicated for p33 measuring the oscillatory volume change.

(iii) To determine p55 let us consider the solution of (5) in Ω with the following boundary conditions

−σ (u)ν = g, (x1, x3) ∈ Γ T
∪ Γ L

∪ Γ R, (21)

us = 0, (x1, x3) ∈ Γ B, (22)

u f · ν = 0, (x1, x3) ∈ Γ , (23)
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where

g =


(0,∆G), (x1, x3) ∈ Γ L ,

(0, −∆G), (x1, x3) ∈ Γ R,

(−∆G, 0), (x1, x3) ∈ Γ T .

The change in shape of the rock sample allows to obtain p55(ω) by using the relation

tg(β(ω)) =
∆G

p55(ω)
, (24)

where β(ω) is the departure angle between the original positions of the lateral boundaries and those after applying the
shear stresses (see, for example, [17]). Eq. (24) holds for this experiment in a viscoelastic homogeneous media in the
quasistatic approximation.

The horizontal displacements us,1(x1, L , ω) at the top boundary Γ T allow us to obtain, for each frequency, an
average horizontal displacement uT

s,1(ω) suffered by the boundary Γ T . This average value allows us to approximate

the change in shape suffered by the sample, given by tg(β(ω)) ≈ uT
s,1(ω)/L , which from (24) let us estimate p55(ω).

(v) To determine p13 we solve (5) in Ω with the boundary conditions

σ (u)ν · ν = −∆P, (x1, x3) ∈ Γ R
∪ Γ T , (25)

σ (u)ν · χ = 0, (x1, x3) ∈ Γ , (26)

us · ν = 0, (x1, x3) ∈ Γ L
∪ Γ B, (27)

u f · ν = 0, (x1, x3) ∈ Γ . (28)

Thus, in this experiment ϵ22(us) = ∇ · u f = 0, and from (6) and (8) we get

τ11 = c11ϵ11 + c13ϵ33 (29)

τ33 = c13ϵ11 + c33ϵ33,

where ϵ11 and ϵ33 are the (macroscale) strain components at the right lateral side and top side of the sample,
respectively. Then from (29) and the fact that τ11 = τ33 = −∆P (c.f. (25)) we obtain p13(ω) as

p13(ω) =
c11ϵ11 − c33ϵ33

ϵ11 − ϵ33
. (30)

(iv) To determine p66, since this stiffness is associated with shear waves travelling in the (x1, x2)-plane, we consider
a homogeneous horizontal slab in the x2-direction and a homogeneous sample Ω2 = (0, L)2 in the (x1, x2)-plane, with
boundary Γ2 = Γ L

2 ∪ Γ B
2 ∪ Γ R

2 ∪ Γ T
2 , where

Γ L
2 = {(x1, x2) ∈ Γ : x1 = 0}, Γ R

2 = {(x1, x2) ∈ Γ : x1 = L},

Γ B
2 = {(x1, x2) ∈ Γ : x2 = 0}, Γ T

= {(x1, x2) ∈ Γ : x2 = L}.

Then let us consider the solution of (5) in Ω2 with the following boundary conditions

−σ (u)ν = g2, (x1, x2) ∈ Γ T
2 ∪ Γ L

2 ∪ Γ R
2 , (31)

us = 0, (x1, x2) ∈ Γ B
2 , (32)

u f · ν = 0, (x1, x2) ∈ Γ , (33)

where

g2 =


(0,∆G), (x1, x2) ∈ Γ L

2 ,

(0, −∆G), (x1, x2) ∈ Γ R
2 ,

(−∆G, 0), (x1, x2) ∈ Γ T
2 .

Then, we proceed as indicated for p55(ω).
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Fig. 1. Oscillatory tests performed to obtain p33 (a), p11 (b), p55 (c), p13 (d) and p66 (e). The orientation of the layers and the directions of the
applied stresses are indicated. The thick black lines at the edges indicate rigid boundary conditions (zero displacements).

The stiffnesses coefficients pI J allow us to calculate the wave velocities and quality factors of the effective TIV
medium as explained in Appendix B.

Fig. 1(a)–(e) illustrate the five experiments needed to compute the stiffnesses components. In Fig. 1(a) and (b)
we show how to compute p33 and p11 using the boundary conditions (12)–(15) and (17)–(20), respectively. On the
other hand, using the boundary conditions (21)–(23), we obtain the stiffness p55 by performing the experiment shown
in 1(c) and the stiffness p66 with the experiment shown in 1(e) (boundary conditions (31)–(33)). Finally, Fig. 1(d)
displays the experiment to determine p13 using the boundary conditions (25)–(28).

4. A variational formulation

In order to state a variational formulation we need to introduce some notation. For X ⊂ Rd with boundary ∂ X , let
(·, ·)X and ⟨·, ·⟩∂ X denote the complex L2(X) and L2(∂ X) inner products for scalar, vector, or matrix valued functions.
Also, for s ∈ R, ∥ · ∥s,X and | · |s,X will denote the usual norm and seminorm for the Sobolev space H s(X), [18]. In
addition, if X = Ω or ∂ X = Γ , the subscripts X and Γ may be omitted such that (·, ·) = (·, ·)Ω or ⟨·, · ⟩ = ⟨·, · ⟩Γ .

Let us introduce the following closed subspaces of [H1(Ω)]2 and [H1(Ω2)]
2:

W11(Ω) = {v ∈ [H1(Ω)]2
: v · ν = 0 on Γ B

∪ Γ T
∪ Γ L

},

W33(Ω) = {v ∈ [H1(Ω)]2
: v · ν = 0 on Γ L

∪ Γ R
∪ Γ B

},
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W13(Ω) = {v ∈ [H1(Ω)]2
: v · ν = 0 on Γ L

∪ Γ B
},

W55(Ω) = {v ∈ [H1(Ω)]2
: v = 0 on Γ B

},

W66(Ω2) = {v ∈ [H1(Ω2)]
2

: v = 0 on Γ B
2 }.

Also, let

H0(div;Ω) = {v ∈ H(div;Ω) : v · ν = 0 on Γ },

H0(div;Ω2) = {v ∈ H(div;Ω2) : v · ν = 0 on Γ2},

H1(div;Ω) = {v ∈ [H1(Ω)]2
: ∇ · v ∈ H1(Ω)},

and for (I, J ) = (1, 1), (3, 3), (1, 3), (5, 5) let

Z I J (Ω) = W I J (Ω) × H0(div;Ω).

Also, let

Z66(Ω2) = W66(Ω2) × H0(div;Ω2).

To obtain our variational formulation associated with p33, multiply (5) by v =

vs, v f


∈ Z33(Ω), use integration

by parts and apply the boundary conditions (12)–(15) to get the weak form: find u(33)
= (u(33)

s , u(33)
f ) ∈ Z33(Ω) such

that

Λ(u(33), v) ≡ iω
η

κ
u(33)

f , v f


+


s,t


σst (u(33)), est (vs)


−


p f (u(33)), ∇ · v f )


= − ⟨∆P, vs · ν⟩Γ T , ∀ v =


vs, v f


∈ Z33(Ω). (34)

Note that in (34), we can write

2
l=1


s,t


σst (u(33)), est (vs)


−


p f (u(33)), ∇ · v f )


R(l)

=


Ee(u(33)),e(v)


. (35)

In (35), the matrix E and the column vectore(u(33)) are defined by

E =


λG + 2µ λG αM 0

λG λG + 2µ αM 0
αM αM M 0

0 0 0 4µ

 , e(u(33)) =


e11(u(33)

s )

e33(u(33)
s )

∇ · u(33)
f

e13(u(33)
s )

 . (36)

Note that E is positive definite since it is associated with the strain energy density.
Thus we can state (34) in the equivalent form: find u(33)

= (u(33)
s , u(33)

f ) ∈ Z33(Ω) such that

Λ(u(33), v) = iω
η

κ
u(33)

f , v f


+


Ee(u(33)),e(v)


. (37)

Similarly, we obtain the variational formulations for the other pI J ’s:

• p(11):
Find u(11)

= (u(11)
s , u(11)

f ) ∈ Z11(Ω) such that

Λ(u(11), v) = −⟨∆P, vs · ν⟩Γ R , ∀v =

vs, v f


∈ Z11(Ω). (38)

• p(13):
Find u(13)

= (u(13)
s , u(13)

f ) ∈ Z13(Ω) such that

Λ(u(13), v) = −⟨∆P, vs · ν⟩Γ R∪Γ T , ∀v =

vs, v f


∈ Z13(Ω). (39)
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• p(55):
Find u(55)

= (u(55)
s , u(55)

f ) ∈ Z55(Ω) such that

Λ(u(55), v) = −⟨g, vs⟩Γ R∪Γ T , ∀v =

vs, v f


∈ Z55(Ω). (40)

• p(66):
Find u(66)

= (u(66)
s , u(66)

f ) ∈ Z66(Ω2) such that

Λ(u(66), v) = −⟨g2, vs⟩Γ R∪Γ T , ∀v =

vs, v f


∈ Z66(Ω2). (41)

4.1. Uniqueness of the solution of the variational problems

The five boundary-value problems formulated above are associated with second-order operators having boundary
data in L2(Ω). Existence will be assumed for the solution of these problems. Also, following [19] we will assume that
u(I J )

s ∈ [H3/2
]
2. On the other hand, it will be assumed that u(I J )

f ∈ H1(div;Ω). These assumptions will be used in
the proof of the theorem stated below.

Theorem 1. Assume that u(I J )
s ∈ [H3/2(Ω)]2, u(I J )

f ∈ H1(div;Ω) for (I, J ) = (1, 1), (3, 3), (1, 3), (5, 5) and that

u(66)
s ∈ [H3/2(Ω2)]

2, u(66)
f ∈ H1(div;Ω2). Also assume that the matrix E in (36) is positive definite. Then the solution

of problems (37)–(41) is unique.

Proof. To analyze the uniqueness of the solution of (37), set ∆P = 0 and choose v = u(33) in (37) to obtain the
equation

iω
η

κ
u(33)

f , u(33)
f


+


Ee(u(33)),e(u(33))


= 0. (42)

Choose the imaginary part in (42) to conclude that

∥u(33)
f ∥0 = 0. (43)

Using (43) in (42) we obtainEe(u(33)
s ),e(u(33)

s )


= 0, (44)

where

E =

λG + 2µ λG 0
λG λG + 2µ 0
0 0 4µ

 , e(u(33)
s ) =

e11(u(33)
s )

e33(u(33)
s )

e13(u(33)
s )

 . (45)

Next, since the matrix E is positive, so it is the matrixE, which from (44) allow us to conclude that

∥e11(u(33)
s )∥0 = ∥e33(u(33)

s )∥0 = ∥e13(u(33)
s )∥0 = 0. (46)

Now use the Sobolev embedding [18]

H3/2(Ω) → C0(Ω) (47)

and (46) to see that for some constants A, B, C

u(33)
s,1 (x1, x3) = Cx3 + B, u(33)

s,3 (x1, x3) = −Cx1 + B, ∀(x1, x3) ∈ Ω . (48)

Next using the boundary condition (14) we see that A = B = C = 0, so that

u(33)
s = 0, ∈ Ω . (49)

Combining (43) and (48) we conclude that uniqueness holds for the solution of (37). Uniqueness for the solution of
(38) and (39) follows with the same argument.
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Let us analyze uniqueness for the solution of (40). Set ∆P = 0 and choose v = u(55) in (40). Repeating the
argument given to show uniqueness for v = u(33) we obtain

∥u(55)
f ∥0 = 0, (50)

∥e11(u(55)
s )∥0 = ∥e33(u(55)

s )∥0 = ∥e13(u(55)
s )∥0 = 0.

Next, note that since elements in Z55(Ω) vanish on Γ B ,

∥v∥ =


k,l


Ω

|εkl(v)|2dΩ

1/2

(51)

defines a norm on Z55(Ω) equivalent to the H1-norm in Ω , [20]. Thus from (50) we see that

∥u(55)
s ∥1 = 0. (52)

From (50) and (52) we see that uniqueness holds for the solution of (40). Uniqueness for the solution of (41) follows
with identical argument. This completes the proof.

5. The finite element method

Let T h(Ω) be a non-overlapping partition of Ω into rectangles Ω j of diameter bounded by h such that Ω = ∪
J
J Ω j .

Denote by Γ jk = ∂Ω j ∩ ∂Ωk the common side of two adjacent rectangles Ω j and Ωk . Also, let Γ j = ∂Ω j ∩ Γ .
We employ the space of globally continuous piecewise bilinear polynomials, denoted below by W h

33(Ω) to
approximate each component of the solid displacement us , while the vector part of the Raviart–Thomas–Nedelec
space V h

33(Ω) of zero order is used to approximate the fluid displacement vector u f [14]. More specifically, let

W h
11(Ω) = {vs : vs |Ω j ∈ [P1,1(Ω j )]

2, vs · ν = 0 on Γ B
∪ Γ T Γ L

} ∩ [C0(Ω)]2,

W h
33(Ω) = {vs : vs |Ω j ∈ [P1,1(Ω j )]

2, vs · ν = 0 on Γ L
∪ Γ RΓ B

} ∩ [C0(Ω)]2,

W h
13(Ω) = {vs : vs |Ω j ∈ [P1,1(Ω j )]

2, vs · ν = 0 on Γ L
∪ Γ B

} ∩ [C0(Ω)]2,

W h
55(Ω) = {vs : vs |Ω j ∈ [P1,1(Ω j )]

2, vs · ν = 0 on Γ B
} ∩ [C0(Ω)]2

W h
66(Ω2) = {vs : vs |Ω2, j ∈ [P1,1(Ω2, j )]

2, vs · ν = 0 on Γ B
2 } ∩ [C0(Ω)2]

2

be the FE spaces to approximate the solid displacement, and let

V h(Ω) = {v f ∈ H(div;Ω) : v f |Ω j ∈ P1,0(Ω j ) × P0,1(Ω j ), v f · ν = 0 on Γ }

V h(Ω2) = {v f ∈ H(div;Ω2) : v f |Ω2, j ∈ P1,0(Ω2, j ) × P0,1(Ω2, j ), v f · ν = 0 on Γ }

be the space to approximate the fluid displacement vector. Here Ps,t denotes the polynomials of degree not greater
than s in x1 and not greater than t in x3.

Then, for (I, J ) = (1, 1), (3, 3), (1, 3), (5, 5) let

Z h
I J (Ω) = W h

I J (Ω) × V h(Ω).

Also, let

Z h
66(Ω2) = W h

I J (Ω2) × V h(Ω2).

Next, for (I, J ) = (1, 1), (3, 3), (1, 3), (5, 5) let

Π h
I J : [H3/2(Ω)]2

→ W h
I J (Ω)

be the interpolant operators associated with the spaces W h
I J . More specifically, the degrees of freedom associated

with Π h
I J v are the vertices of the rectangles Ω j and if b is a common node of the adjacent rectangles Ω j and Ωk then

Π h
I Jϕ


j (b) =


Π h

I Jϕ


k (b), where

Π h

I Jϕ


j denotes the restriction of the interpolant Π h
I Jϕ of ϕ to Ω j .
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Also, let

Qh
: H1

0 (div;Ω) → V h(Ω)

be the projection defined by
(Qhψ − ψ) · ν, 1


B

= 0, B = Γ jk or B = Γ j .

The approximating properties of Π h
I J and Qh are [14,20,22]

∥ϕ − Π h
I Jϕ∥0 + h∥ϕ − Π h

I J ϕ∥1 ≤ Ch3/2
∥ϕ∥3/2, (53)

∥ψ − Qhψ∥0 ≤ Ch∥ψ∥1, (54)

∥∇ · (ψ − Qhψ)∥0 ≤ Ch (∥ψ∥1 + ∥∇ · ψ∥1) . (55)

The projection operators

Π h
66 : [H3/2(Ω2)]

2
→ W h

66(Ω2), Qh
: H1

0 (div;Ω2) → V h(Ω2)

are defined similarly and satisfy the approximating properties (53)–(55).
Now, we formulate the FE procedures to determine the stiffnesses pI J ’s as follows:

• p33(ω): find u(h,33)
∈ Z h

33(Ω) such that

Λ(u(h,33), v) = −⟨∆P, v · ν⟩Γ T , ∀v ∈ Z h
33(Ω). (56)

• p11(ω): find u(h,11)
∈ Z h

11(Ω) such that

Λ(u(h,11), v) = −⟨∆P, v · ν⟩Γ R , ∀v ∈ Z h
11(Ω). (57)

• p13(ω): find u(h,13)
∈ Z h

13(Ω) such that

Λ(u(h,13), v) = −⟨∆P, v · ν⟩Γ R∪Γ T , ∀v ∈ Z h
13(Ω). (58)

• p55(ω): find u(h,55)
∈ Z h

55(Ω) such that

Λ(u(h,55), v) = −⟨g, vs⟩Γ\Γ B , ∀v ∈ Z h
55(Ω). (59)

• p66(ω): find u(h,66)
∈ Z h

66(Ω2) such that

Λ(u(h,66), v) = −⟨g2, vs⟩Γ2\Γ
B
2

, ∀v ∈ Z h
66(Ω2). (60)

Uniqueness for the FE procedures (56)–(60) can be shown with the same argument used for the continuous case.
Existence follows from finite dimensionality.

6. A priori error estimates

In this section we derive the error estimates associated with the FE procedures (56)–(60).

Theorem 2. Assume that u(I J )
s ∈ [H3/2(Ω)]2, u(I J )

f ∈ H1(div;Ω) for (I, J ) = (1, 1), (3, 3), (1, 3). Also assume
that the matrix E in (36) is positive definite. Then the following a priori error estimate holds:

∥u(I J )
s − u(h,I J )

s ∥1 + ∥u(I J )
f − u(h,I J )

f ∥0 + ∥∇ · (u(I J )
f − u(h,I J )

f )∥0

≤ C(ω)

h1/2

∥u(I J )
s ∥3/2 + h


∥u(I J )

f ∥1 + ∥∇ · u(I J )
f ∥1


. (61)
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Proof. First we analyze the error for the procedure (56) associated with determination of p33.
Recall Korn’s second inequality [21]:

l,m=1,3

∥ϵlm(v)∥2
+ ∥v∥

2
0 ≥ C1∥v∥

2
1, ∀v ∈ [H1(Ω)]2. (62)

Let L∗ denote the minimum eigenvalue of the matrix E. Then use (62) to see that the following Garding-type inequality
holds:

Re (Λ(v, v)) = Re ((Ee(v),e(v)))

≥ C2


∥vs∥

2
1 + ∥∇ · v f ∥

2
0


− C3∥vs∥

2
0, (63)

where

C2 = min (L∗C1, 1) , C3 = L∗.

Also, note that

|Λ(u, v)| ≤ C4(ω)(∥us∥1∥vs∥1 + ∥∇ · u f ∥0∥vs∥1 + ∥us∥1∥∇ · v f ∥0

+∥∇ · u f ∥0∥∇ · v f ∥0 + ∥u f ∥0∥v f ∥0)

∀u = (us, u f ) ∈ Z h
33, v = (vs, v f ) ∈ Z h

33. (64)

Set

e = u(33)
− u(h,33)

≡ (es, e f ). (65)

Subtract (56) from (37) to obtain the error equation

Λ(e, v) = 0, ∀v ∈ Z h
33. (66)

Set

Θh(u(33)) =


Π h

33u(33)
s , Qhu(33)

f


(67)

and take v = e + Θh(u(33)) − u(33) in (66) to obtain the equation

Λ(e, e) = Λ(e, u(33)
− Θh(u(33)). (68)

Take imaginary part in (68) and use the approximating properties (53)–(55) to see that

ω
η

κ
e f , e f


= Im(Λ(e, u(33)

− Θh(u(33)))

≤ |Λ(e, u(33)
− Θh(u(33))|

≤ C4(ω)[∥es∥1∥u(33)
s − Π h

33u(33)
s ∥1 + ∥∇ · e f ∥0∥u(33)

s − Π h
33us∥1

+ ∥es∥1∥∇ · (u(33)
f − Qhu(33)

f ))∥0 + ∥∇ · e f ∥0∥∇ · (u(33)
f − Qhu(33)

f )∥0

+ ∥e f ∥0∥u(33)
f − Qhu(33)

f )∥0]

≤ C5(ω)[h1/2
∥u(33)

s ∥3/2(∥es∥1 + ∥∇ · e f ∥0)

+ h∥∇ · u(33)
f ∥1


∥es∥1 + ∥∇ · e f ∥0


+ h∥e f ∥0∥u(33)

f ∥1]

≤ δ1(∥es∥
2
1 + ∥∇ · e f ∥

2
0) + δ2∥e f ∥

2
0

+ C6(ω)(h∥u(33)
s ∥

2
3/2 + h2(∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1)). (69)

Then, choose δ2 small enough in (69) to obtain the estimate

∥e f ∥
2
0 ≤ δ3


∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ C7(ω)


h∥u(33)

s ∥
2
3/2 + h2


∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1


. (70)
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Next, take real part in (68) and use (63) and the argument given above to derive the inequality (69) to obtain

C2


∥es∥1 + ∥∇ · e f ∥

2
0


≤ Re


Λ((e, u − Θh)


+ C3∥es∥

2
0

≤ |Λ((e, u − Θh)| + C3∥es∥
2
0

≤ C8(ω)

h1/2

∥u(33)
s ∥3/2


∥es∥1 + ∥∇ · e f ∥0


+ h∥∇ · u(33)

f ∥1

∥es∥1 + ∥∇ · e f ∥0


+ h∥e f ∥0∥u(33)

f ∥1


+ C3∥es∥

2
0

≤ ϵ

∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ C9(ϵ, ω)


h∥u(33)

s ∥3/2 + h2

∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1


+ C6(ϵ, ω)


∥es∥

2
0 + ∥e f ∥

2
0


. (71)

Then, choose ϵ small enough in (71) to conclude that

∥es∥
2
1 + ∥∇ · e f ∥

2
0 ≤ C10(ϵ, ω)


h∥u(33)

s ∥3/2 + h2

∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1


+ C11(ϵ, ω)


∥es∥

2
0 + ∥e f ∥

2
0


. (72)

Next, we will employ a duality argument to estimate the ∥e∥0-term in the right hand side of (72).
Let us solve the adjoint problem

−iωBψ − L∗(ψ) = e, (73)

σ (ψ)ν · ν = 0, (x1, x3) ∈ Γ T ,

σ (ψ)ν · χ = 0, (x1, x3) ∈ Γ ,

us · ψ = 0, (x1, x3) ∈ Γ L
∪ Γ R

∪ Γ B,

u f · ψ = 0, (x1, x3) ∈ Γ .

The following regularity will be assumed for the solution of (73) [19]:

∥ψ s∥3/2 + ∥ψ f ∥1 + ∥∇ · ψ∥1 ≤ C(ω)∥e∥0. (74)

Thus, using integration by parts, for any v ∈ Z h
33

∥e∥2
0 =


e, −iωBψ − L∗(ψ)


= Λ(e,ψ) = Λ(e,ψ − v). (75)

Choose v =

Π h

33ψ s, Qhψ f )


in (75), use the approximating properties (53)–(55) and apply (74) to see that

∥e∥2
0 ≤ C12(ω)


h1/2

∥ψ s∥3/2

∥es∥1 + ∥∇ · e f ∥0


+ h∥∇ · ψ f ∥1


∥es∥1 + ∥∇ · e f ∥0


+ h∥e f ∥0∥ψ f ∥1


(76)

≤ C12(ω)


h1/2 
∥es∥1 + ∥∇ · e f ∥0


+ h∥e f ∥0∥e∥0


. (77)

Hence,

∥e∥0 ≤ C12(ω)


h1/2 
∥es∥1 + ∥∇ · e f ∥0


+ h∥e f ∥0


. (78)

Next, use (70) in (78) to obtain

∥e∥2
0 ≤ C13(ω)


h

∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ h2δ3


∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ C14(ϵ, ω)


h∥u(33)

s ∥
2
3/2 + h2


∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1


. (79)

Employing the estimate (79) in (72) we conclude that

∥es∥
2
1 + ∥∇ · e f ∥

2
0 ≤ C15(ω)


h∥u(33)

s ∥
2
3/2 + h2


∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1


+ C11(ω)


h

∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ h2δ3


∥es∥

2
1 + ∥∇ · e f ∥

2
0


. (80)
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Then, choose δ3 sufficiently small in (80) to get

∥es∥
2
1 + ∥∇ · e f ∥

2
0 ≤ C16(ω)


h∥u(33)

s ∥
2
3/2 + h2


∥u(33)

f ∥
2
1 + ∥∇ · u(33)

f ∥
2
1


+ C11(ω)


h

∥es∥

2
1 + ∥∇ · e f ∥

2
0


. (81)

Thus, for h sufficiently small, from (81) we get the inequality

∥es∥1 + ∥∇ · e f ∥0 ≤ C17(ω)


h1/2
∥u(33)

s ∥3/2 + h

∥u(33)

f ∥1 + ∥∇ · u(33)
f ∥1


. (82)

Finally, using (82) in (70) we conclude the validity of the error estimate (61) for the solution of (56). The error analysis
for the solution of (57) and (58) follows with the same argument. This completes the proof.

The error analysis for the FE procedure (59) and (60) requires another argument because the solution vanishes on
a set of positive measure of Γ . The following theorem states the estimates.

Theorem 3. Assume that u(55)
s ∈ [H3/2(Ω)]2, u(55)

f ∈ H1(div;Ω) and that u(66)
s ∈ [H3/2(Ω2)]

2, u(66)
f ∈ H1(div;

Ω2). Also, assume that the matrix E in (36) is positive definite. Then for (I, J ) = (5, 5), (6, 6) the following a priori
error estimate holds.

∥u(I J )
s − u(h,I J )

s ∥1 + ∥u(I J )
f − u(h,I J )

f ∥0 + ∥∇ · (u(I J )
f − u(h,I J )

f )∥0

≤ C(ω)

h1/2

∥u(I J )
s ∥3/2 + h


∥u(I J )

f ∥1 + ∥∇ · u(I J )
f ∥1


. (83)

Proof. Set

e = u(55)
− u(h,55)

= (es, e f ). (84)

Subtract (59) from (40) to obtain the error equation

Λ(e, v) = 0, ∀v ∈ Z h
55. (85)

Set

Θh(u(55)) =


Π h

55u(55)
s , Qhu(55)

f


(86)

and take v = e + Θh(u(55)) − u(55) in (85) to obtain

Λ(e, e) = Λ(e, u(55)
− Θh(u(55)). (87)

Next, recall that

∥v∥ =

 
l,m=1,3

∥ϵlm(v)∥2

1/2

(88)

defines a norm on {W h
55 equivalent to the H1-norm [20], i.e., there exist positive constants C11, C12 such that

C18∥v∥1 ≤ ∥v∥ ≤ C19∥v∥1, ∀ v ∈ W h
55. (89)

Hence,

Re (Λ(e, e)) = Re ((Ee(e),e(e)))
≥ L∗


∥es∥

2
+ ∥∇ · e f ∥

2
0


≥ L∗


C18∥es∥

2
1 + ∥∇ · e f ∥

2
0


. (90)
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Then, take real part in (87) and use the approximating properties (53)–(55) to obtain

L∗


C18∥es∥

2
1 + ∥∇ · e f ∥

2
0


≤ Re


Λ(e, u(55)

− Θh(u(55))


≤ |Λ(e, u(55)
− Θh(u(55))|

≤ C20(ω)

h1/2

∥u(55)
s ∥3/2


∥es∥1 + ∥∇ · e f ∥0


+ h∥∇ · u(55)

f ∥1

∥es∥1 + ∥∇ · e f ∥0


+ h∥e f ∥0∥u(55)

f ∥1


.

≤ ϵ

∥es∥

2
1 + ∥e f ∥

2
0 + ∥∇ · e f ∥

2
0


+ C21(ω)


h∥u(55)

s ∥
2
3/2 + h2


∥u(55)

f ∥
2
1 + ∥∇ · u(55)

f ∥
2
1


. (91)

Next, taking imaginary part in (87) and repeating the argument leading to (70) we see that the ∥e f ∥0-term in the
right-hand side of (91) satisfies the estimate

∥e f ∥
2
0 ≤ δ3


∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ C7(ω)


h∥u(55)

s ∥
2
3/2 + h2


∥u(55)

f ∥
2
1 + ∥∇ · u(55)

f ∥
2
1


. (92)

Next using (92) in (91), we obtain

L∗


C18∥es∥

2
1 + ∥∇ · e f ∥

2
0


≤ ϵ


∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ C21(ω)


h∥u(55)

s ∥
2
3/2 + h2


∥u(55)

f ∥
2
1 + ∥∇ · u(55)

f ∥
2
1


+ ϵ


δ3


∥es∥

2
1 + ∥∇ · e f ∥

2
0


+ C7(ω)


h∥u(55)

s ∥
2
3/2 + h2


∥u(55)

f ∥
2
1 + ∥∇ · u(55)

f ∥
2
1


. (93)

Thus, take ϵ and δ3 small enough in (93) to derive the inequality

∥es∥
2
1 + ∥∇ · e f ∥

2
0 ≤ C22(ω)


h∥u(55)

s ∥
2
3/2 + h2


∥u(55)

f ∥
2
1 + ∥∇ · u(55)

f ∥
2
1


. (94)

Finally using (94) in (92) we conclude the validity of the error estimate (83) for (I, J ) = (5, 5). The proof for
(I, J ) = (6, 6) is identical. This completes the proof.

7. Numerical experiments

The FE procedures described above are implemented to determine the five complex stiffnesses pI J (ω) as a function
of frequency and the corresponding phase velocities and dissipation coefficients as indicated in Appendix B. In all
the experiments the numerical samples were discretized using a 160 × 160 uniform mesh representing 10 periods
of 15 cm background sandstone and 1 cm fracture thickness. Both background and fractures have grain density
ρs = 2650 kg/m3, bulk modulus Ks = 37 GPa and shear modulus µs = 44 GPa.

The dry bulk and shear moduli of the samples are determined by using the Krief model [23],

Km

Ks
=

µ

µs
= (1 − φ)3/(1−φ). (95)

Porosity is φ = 0.25 in the background and φ = 0.5 in the fractures. Using (95) we obtain Km = 1.17 GPa and
µ = 1.4 GPa for the background and Km = 0.58 GPa and µ = 0.68 GPa for the fractures. Permeability is obtained
as [24]

κ =
r2

g φ3

45(1 − φ)2 (96)

where rg = 20 µm is the average radius of the grains, giving κ = 0.247 D in the background and κ = 4.44 D in the
fractures.
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Fig. 2. P-wave velocity as a function of frequency in the direction parallel (squares and solid lines) and normal (circles and solid lines) to the
fracture plane. The solid lines indicate the theoretical values.

Fig. 3. P-wave dissipation factors as a function of frequency in the direction parallel (squares and solid lines) and normal (circles and solid lines)
to the fracture plane. The solid lines indicate the theoretical values.

The first numerical experiments show the validation of the FE procedure by comparison with the analytical solution
given in [7] which is included in Appendix A. In this example, we consider a brine saturated sample, with brine having
a density of 1040 kg/m3, a viscosity of 0.0018 Pa s and a bulk modulus of 2.25 GPa.

Figs. 2 and 3 show the compressional wave phase velocity and dissipation factor, respectively, as a function of
frequency, in the direction parallel (squares and solid lines) and normal (circles and solid lines) to the fractures. The
solid lines indicate the theoretical values, while symbols indicate the FE solution. It can be observed a perfect fit of
the FE solution to the analytical values in the whole frequency range displayed.

The phase velocities of the qP, qSV and SH waves and dissipation factors of the qP and qSV waves as a function
of the propagation angle are represented in Figs. 4 and 5, respectively, where the frequency is 300 Hz. Symbols and
solid lines indicate the FE and theoretical values, respectively. Again an excellent match between the numerical and
analytical curves is obtained for all angles. Here and in the following figures, the propagation angle is understood to
be given with respect to the symmetry axis, so that 0◦ and 90◦ correspond to waves arriving normal and parallel to
the fracture layering, respectively. Figs. 4 and 5 show that anisotropy induced by fractures is noticeable for the phase
velocities of all waves. On the other hand, the qP curves show strong attenuation for waves arriving normal to the
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Fig. 4. Phase velocities for qP (circles), qSV (squares) and SH (triangles up) waves as function of the propagation angle. Frequency is 300 Hz. The
solid lines indicate the theoretical values.

Fig. 5. Dissipation factors for qP (circles) and qSV (squares) waves as function of the propagation angle. Frequency is 300 Hz. The solid lines
indicate the theoretical values.

fracture layering. The qSV wave has no loss along the directions parallel and perpendicular to the layering plane,
showing maximum attenuation at about 45◦.

Next, we present two experiments for which no analytical solutions are available. The first experiment considers
the case of a patchy brine–CO2 saturated fractured sample, with CO2 having density 500 kg/m3, viscosity 2 · 10−5

Pa s and bulk modulus 22.5 MPa. To generate a patchy CO2–brine saturation we use the von Karman self-similar
correlation function for which the spectral density is given by [25]

Sd(rx , rz) = N0(1 + R2a2)−(H+E/2). (97)

Here, R =


r2

x + r2
z is the radial wavenumber, a the correlation length, H is a self-similarity coefficient (0 < H < 1),

N0 is a normalization constant and E is the euclidean dimension. The von Karman correlation (97) describes a
self-affine, fractal processes of fractal dimension D = E + 1 − H at a scale smaller than a. We choose E = 2,
D = 2.2 and a to be 2.5% of the domain size. Once a continuous fractal distribution of brine is obtained over the
160 × 160 mesh, by properly chosen threshold values S∗

b , for each cell with brine saturation below and above S∗

b we
assign to that cell either full CO2 or full brine saturation, respectively. In this way we generated two different patchy
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Fig. 6. Patchy CO2–brine saturation. White zones correspond to full CO2 saturation, and black ones to full brine saturation. The overall CO2
saturation is 10%.

Fig. 7. qP phase velocities for brine, 10% and 30% patchy CO2–brine saturation as function of the propagation angle. Frequency is 300 Hz.

CO2-brine distributions of overall 10% and 30% CO2 saturation. Fig. 6 displays the obtained patchy CO2–brine
saturation at 10% CO2 saturation.

Figs. 7 and 8 show the phase velocities of the qP and qSV waves at 300 Hz for full brine saturation, 10% and
30% patchy CO2-brine saturation as function of the propagation angle, while Figs. 9 and 10 show the corresponding
dissipation factors.

It can be seen that for qP waves, patchy saturation enhances the strong velocity anisotropy caused by fractures
observed in the brine saturated case, with values depending on the overall CO2 saturation. Maximum differences with
respect to the full brine saturation case are at 10% patchy saturation and angles normal to the fracture layering.

On the other hand, the qSV phase velocity anisotropy is less affected by patchy saturation. For both the qP and
qSV waves we observe lower velocities when patches are present, with decreasing values for increasing CO2 overall
saturation. SH waves phase velocities are not affected by the presence of CO2 patches, so the corresponding curve is
identical to that for the full brine saturation in Fig. 4 and it is omitted.

Concerning the dissipation factors, the patchy saturation enhances attenuation anisotropy of the qP waves for all the
angles and it is strong at 10% patchy saturation for waves arriving normal to the fracture layering plane and up to 30◦.
Above 60◦, for the two cases of patchy saturation qP waves show an almost constant dissipation factor independently
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Fig. 8. qSV phase velocities for brine, 10% and 30% percent patchy CO2-brine saturation as function of the propagation angle. Frequency is
300 Hz.

Fig. 9. Dissipation factors for brine, 10% and 30% patchy CO2–brine saturation as function of the propagation angle. Frequency is 300 Hz.

of the value of CO2 saturation. This is opposite to the case of full brine saturation, for which dissipation vanishes for
angles above 60◦.

For qSV waves, attenuation anisotropy is null for waves arriving normal or parallel to the fracture layering plane
and strong for angles between 30 and 60◦. Also, when compared with full brine saturation, dissipation factors are
almost unaffected for 10% patchy saturation but noticeably reduced for the 30% CO2 case.

Figs. 11 and 12 show the fluid pressure distribution for compressions normal to the fracture layering (p33
experiment) at frequency 300 Hz and for 10% and 30% patchy CO2 saturation, respectively. The figure for 10%
CO2 saturation has larger regions of high pressure gradients than the 30% one, which explains the lower values of
the dissipation factors for qP and qSV waves for 30% CO2 saturation (squares) as compared with the corresponding
curves for 10% CO2 saturation (circles) in Figs. 9 and 10.

The second experiment considers the case of the brine saturated sample with uniform background as in the first set
of experiments but with fractures having binary fractal variations in their petrophysical properties, which is another
case not described by the theory in [7]. To generate such sample, first we generated a continuous fractal distribution
of porosity over the mesh by using the spectral density in (97) with average φ equal to 0.5, fractal dimension D = 2.3
and correlation length a = 0.3 in a scale of 10. In this way, we obtain minimum and maximum values of porosity
of 0.32 and 0.646, respectively. Permeability is then computed using (96), giving values between 0.7 Darcy and 19
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Fig. 10. Dissipation factors of qSV waves for brine, 10% and 30% patchy CO2-brine saturation as function of the propagation angle. Frequency is
300 Hz.
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Fig. 11. Fluid pressure for normal compression to the fracture plane at 10% patchy CO2–brine saturation. Frequency is 300 Hz.

Darcy, with an average of 4.9 Darcy. The binary fractals associated with porosity and permeability are then computed
as follows. For each cell in the computational mesh, if the value of porosity is smaller (respectively, bigger) than the
average φ, we assign to that cell the minimum (respectively, maximum) porosity value. The procedure is repeated to
obtain a binary fractal permeability distribution. Binary fractal distributions of bulk modulus Km and shear modulus
µ are determined by using (95) and the computed binary fractal porosity field.

Taking 1D restrictions of these four binary fractal distributions for porosity φ, permeability κ , and bulk and shear
moduli Km and µ, we obtain the binary fractal petrophysical properties defining the brine saturated fractures.

Figs. 13–15 display the phase velocities of the qP, qSV and SH waves at 300 Hz as a function of the propagation
angle for a brine saturated sample with uniform and binary fractal variations in the petrophysical properties of the
fractures. Figs. 16–18 show the corresponding dissipation factors. It can be noticed a strong increase in velocity
anisotropy for the three waves with respect to the case of uniform fractures. In particular, the qSV wave suffers a
velocity reduction for almost all angles except near 40◦and the phase velocity of the SH wave decreases by about 75%.
Also, qP waves have a velocity increase for waves arriving at angles close to the normal to the fracture layering, and
velocity decreases for all other angles. Regarding the dissipation factors, the qP waves show an increase in attenuation
for angles up to 50◦, while the qSV waves also show increasing attenuation for angles above 45◦. The most significant
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Fig. 12. Fluid pressure for normal compression to the fracture plane at 30% patchy CO2–brine saturation. Frequency is 300 Hz.

Fig. 13. Phase velocities of qP waves for a brine saturated sample with uniform and binary fractal fractures.

changes are observed in the SH dissipation factors, which change from vanishing dissipation to a continuous increase
in dissipation for increasing angles.

8. Conclusions

We have presented a set of finite element harmonic experiments to determine the five complex and frequency-
dependent stiffnesses of the TIV medium equivalent to a fractured fluid-saturated porous material, where the fractures
are modeled as very thin, highly permeable and compliant porous layers. The procedure allows us to compute the
wave velocities and quality factors at the macroscale as a function of frequency and propagation angle. The proposed
methodology is based on the solution of the diffusive Biot equations in the space-frequency domain to simulate
harmonic compressibility and shear tests. The methodology is validated against a theory valid at long wavelengths for
homogeneous layers and fluid flow normal to the fracture layering.

Then, the experiments are applied for the cases of patchy brine–CO2 saturation and a brine saturated sample of
uniform background and fractures with fractal variations in their petrophysical properties. For the case of a patchy
brine–CO2 saturated sample, the experiments show that both for qP and qSV waves the presence of patches enhances
the strong seismic velocity and attenuation anisotropy induced by the fractures. Also, SH waves show moderate
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Fig. 14. Phase velocities of qSV waves for a brine saturated sample with uniform and binary fractal fractures.

Fig. 15. Phase velocities of SH waves for a brine saturated sample with uniform and binary fractal fractures.

Fig. 16. Dissipation factors of qP waves for a brine saturated sample with uniform and binary fractal fractures.
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Fig. 17. Dissipation factors of qSV waves for a brine saturated sample with uniform and binary fractal fractures.

Fig. 18. Dissipation factors of SH waves for a brine saturated sample with uniform and binary fractal fractures.

velocity anisotropy, whose values are not affected by the presence of the patches of CO2. In the last experiment,
considering a brine saturated sample of uniform background and fractures of having fractal variations in petrophysical
properties, it is observed a noticeable increase in velocity and Q anisotropy for all the waves, with higher dissipation
factors as compared with the case of fractures of uniform properties. In particular, the SH dissipation factor shows
positive and increasing values with increasing angles, as opposite to the uniform fractures case, which exhibits
vanishing attenuation at all angles.
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Appendix A. Mesoscopic-flow attenuation theory for anisotropic poroelastic media

White’s mesoscopic attenuation theory of interlayer flow [4,5] describes the equivalent viscoelastic medium of
a stack of two thin alternating porous layers of thickness d1 and d2, such that the period of the stratification is
d = d1 + d2. The theory gives the complex and frequency dependent stiffness p33. White model has been generalized
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in [7] by Krzikalla and Müller to anisotropic media, i.e., they have obtained the five stiffnesses of the equivalent
transversely isotropic medium, denoted by pI J . The stress–strain relations is given by (6)–(11) and

pI J (ω) = cI J +


cI J − cr

I J

c33 − cr
33


[p33(ω) − c33], (A.1)

where cr
I J and cI J are the relaxed and unrelaxed stiffnesses.

According to Gelinsky and Shapiro [6] [their equation (14)], the quasistatic or relaxed effective constants of a stack
of poroelastic layers are
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(A.2)

where

λm = Km −
2
3
µ and Em = Km +

4
3
µ (A.3)

and we have also reported the notation of that paper for clarity. In the case of no interlayer flow, i.e., the unrelaxed
regime, the stiffnesses are

c66 = cr
66,

c11 − 2c66 = c12 = 2

(EG − 2µ)µ

EG


+


EG − 2µ

EG

2  1
EG

−1

,

c13 =


EG − 2µ

EG

 
1

EG

−1

,

c33 =


1

EG

−1

,

c55 = cr
55

(A.4)

[Gelinsky and Shapiro [6], Eq. (15)], where

EG = Em + α2 M, (A.5)

and M is given in (3).
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Finally, the P-wave modulus p33 is [4], also see in [15]

p33 =


1

c33
+

2(r2 − r1)
2

iω(d1 + d2)(I1 + I2)

−1

, (A.6)

where

r =
αM

EG
(A.7)

and

I =
η

κa
coth


ad

2


, a =


iωηEG

κ M Em
, (A.8)

for each single layer.
The main assumption in [7] is that the fluid-flow direction is perpendicular to the fracture layering and that the

relaxation behavior is described by a single relaxation function or stiffness, i.e., p33(ω). Thus the theory is valid for
plane layers and cannot be used when 2D or 3D heterogeneities are present.

Appendix B. Wave velocities and quality factors

We consider homogeneous viscoelastic waves [15]. The complex velocities are the key quantity to obtain the wave
velocities and quality factor of the equivalent anisotropic medium. They are given by

vqP = (2ρ̄)−1/2


p11l2
1 + p33l2

3 + p55 + A,

vqSV = (2ρ̄)−1/2


p11l2
1 + p33l2

3 + p55 − A,

vSH = ρ̄−1/2


p66l2
1 + p55l2

3 ,

A =


[(p11 − p55)l2

1 + (p55 − p33)l2
3 ]2 + 4[(p13 + p55)l1l3]2,

(B.1)

where ρ̄ is the average density, l1 = sin θ and l3 = cos θ are the directions cosines, θ is the propagation angle
between the wavenumber vector and the symmetry axis, and the three velocities correspond to the qP, qS and SH
waves, respectively. The phase velocity is given by

vp =


Re


1
v

−1

, (B.2)

while the quality factor is given by

Q =
Re(v2)

Im(v2)
, (B.3)

where v represents either vqP, vqSV or vSH.
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