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h i g h l i g h t s

• PT-symmetric oscillators exhibit real eigenvalues.
• Not all space–time symmetries lead to real eigenvalues.
• Some Hamiltonians are invariant under unitary transformations.
• Point-group symmetry greatly simplifies the calculation of eigenvalues and eigenfunctions.
• Group theory and perturbation theory enable one to predict the occurrence of real eigenvalues.

a r t i c l e i n f o

Article history:
Received 2 September 2014
Accepted 30 November 2014
Available online 8 December 2014

Keywords:
PT-symmetry
Space–time symmetry
Non-Hermitian Hamiltonian
Multidimensional systems
Point-group symmetry

a b s t r a c t

We analyse some PT-symmetric oscillators with Td symmetry that
depend on a potential parameter g . We calculate the eigenvalues
and eigenfunctions for each irreducible representation and for a
range of values of g . Pairs of eigenvalues coalesce at exceptional
points gc ; their magnitude roughly decreasing with the magnitude
of the eigenvalues. It is difficult to estimate whether there is a
phase transition at a nonzero value of g as conjectured in earlier pa-
pers. Group theory and perturbation theory enable one to predict
whether a given space–time symmetry leads to real eigenvalues for
sufficiently small nonzero values of g .
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1. Introduction

In the last years there has been great interest in non-Hermitian multidimensional oscillators with
antiunitary symmetry A = UK , where U is a unitary operator and K is the complex conjugation
operation. These Hamiltonians are of the formH = H0+igH ′, whereH0 is Hermitian,UH0UĎ

= H0 and
UH ′UĎ

= −H ′ [1–10]. The interest in these oscillators stems from the fact that they appear to exhibit
real eigenvalues for sufficiently small values of |g|. As g increases from g = 0 two eigenvalues Em and
En approach each other, coalesce at an exceptional point gc [11–14] and become a pair of complex
conjugate numbers for g > gc . At the exceptional point the corresponding eigenvectors ψm and ψn
are no longer linearly independent [11–14]. It is commonly said that the system exhibits a PT-phase
transition at g = gPT > 0, where gPT is the exceptional point closest to the origin [9]. The eigenvalues
Em of H are real for all 0 ≤ g < gPT , where the antiunitary symmetry remains unbroken. Based on the
multidimensional non-Hermitian oscillators studied so far, Bender and Weir [9] conjectured that the
PT phase transition is a high-energy phenomenon.

Point-group symmetry (PGS) [15,16] proved useful for the study of a class of multidimensional
anharmonic oscillators [17,18]. Klaiman and Cederbaum [6] applied PGS to non-Hermitian
Hamiltonians chosen so that the point group G for H is a subgroup of the point group G0 for
H0. They restricted their study to Abelian groups, which exhibit only one-dimensional irreducible
representations (irreps), and Hermitian operators H0 with no degenerate states. All such examples
exhibit real eigenvalues for sufficiently small values of |g|. One of their goals was to predict the
symmetry of the eigenfunctions associated to the eigenvalues that coalesce at the exceptional points
and coined the term space–time (ST) symmetry that refers to a class of antiunitary symmetries that
contain the PT symmetry as a particular case. Strictly speaking we refer to PT symmetry when U = P ,
P : (x, p) → (−x,−p), where x and p are the collections of coordinate and momenta operators,
respectively.

The main interest in the studies of PT-symmetric multidimensional oscillators just mentioned has
been to enlarge the class of non-Hermitian Hamiltonians that exhibit real spectra, at least for some
values of the potential parameter g . On the other hand, by means of PGS Fernández and Garcia [19,
20] found some examples of ST-symmetric multidimensional models that exhibit complex eigenval-
ues for g > 0 so that the phase transition takes place at the trivial Hermitian limit gPT = 0. Their
results suggest that the more general ST symmetry is not as robust as the PT one and contradict some
of the conjectures put forward by Klaiman and Cederbaum [6] based on PGS. By means of PGS and
perturbation theory we have considerably improved the results, arguments and conclusions of those
earlier papers and also found a greater class of ST-symmetric multidimensional models with broken
ST symmetry for all values of g ≠ 0 [21]. Those results show in a more clear way that the conjecture
of Klaiman and Cederbaum does not apply to the general case where the Hermitian Hamiltonian H0
may exhibit degenerate states.

The purpose of this paper is the study of some tri-dimensional non-Hermitian oscillators bymeans
of PGS. In Section 2 we discuss the diagonalization of the matrix representation of the Hamiltonian
operator in symmetry-adapted basis sets. By means of PGS and perturbation theory we develop a
straightforward strategy that appears to be suitable for determining whether the Hamiltonian will
have real eigenvalues for sufficiently small nonzero values of the parameter g . In Section 3 we choose
a non-Hermitian oscillator discussed earlier by Bender and Weir [9] as an illustrative example and
exploit the fact that it exhibits Td symmetry. In Section 4 we discuss a non-Hermitian oscillator where
H0 and H ′ exhibit symmetry Oh and Td, respectively. Finally, in Section 5 we draw conclusions.

2. Diagonalization

Several approaches have been applied to the calculation of the spectra of the ST-symmetric
multidimensional oscillators: the diagonalization method [1–4,7,9], perturbation theory [1,3,4,7],
classical and semiclassical approaches [1,2], among others [7,10]. The diagonalizationmethod consists
of expanding the eigenfunctions ψ of H as linear combinations of a suitable basis set B = {f1, f2, . . .}

ψ =


j

cjfj (1)
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and then diagonalizing an N ×N matrix representation of the Hamiltonian Hwith elements ⟨fi|H
fj,

where ⟨f |g ⟩ stands for the c-product [22]. Such matrices are complex and symmetric ⟨fi|H
fj =

fj
H |fi⟩ but obviously not Hermitian.
In this paper we take into account that the non-Hermitian multidimensional oscillators exhibit

PGS and choose basis sets adapted to the irreps of the point group G of H . In this way we can split
thematrix representationH into representationsHS for each symmetry S. The eigenfunctions ofH are
bases for the irreps of G and can be written as linear combinations

ψ S
=


j

cSj f
S
j (2)

of the elements of the symmetry-adapted basis sets BS
= {f S1 , f

S
2 , . . .}. The matrix elements of HS

are given by

f Si

H f Sj 
and the separate treatment of each symmetry is justified by the fact that

f Si
H f S′

j


= 0 if S ≠ S ′ [15,16]. That is to say: functions of different symmetry do not mix.

The construction of symmetry-adapted basis sets is straightforward and is described in most
textbooks on group theory [15,16]. One applies a projection operator PS to a basis function fj and
obtains a symmetry-adapted function uS

j . If the irrep S is one-dimensional it is only necessary to
normalize the resulting function uS

j ; otherwise it may be necessary to combine two or more functions
uS
j to obtain a set of orthonormal functions [15,16].
In what follows we apply this approach to two non-Hermitian three-dimensional oscillators of the

form

H = H0 + igH ′ (3)

where H0 is Hermitian and g is real. In particular, we consider the case that both H0 and H exhibit
eigenspaces of dimension greater than one.

In the examples discussed in this paper the symmetry of H0 is given by the point group G0 =

{U1,U2, . . . ,Um}: UiH0U−1
i = H0. If H ′ is invariant under the operations of a subgroup G =

{W1,W2, . . . ,Wk} of G0 (WiH ′W−1
i = H ′) then H is invariant under the operations of the point group

G. Suppose that there exists a unitary operator Ua ∈ G0\Gwith the following properties: (i) it forms a
class by itself (that is to say: UiUaU−1

i = Ua, i = 1, 2, . . . ,m) so that U−1
a = Ua, (ii) it changes the sign

ofH ′UaH ′U−1
a = −H ′. Under these conditionsH exhibits the antiunitary symmetry given by A = UaK ,

AHA−1
= H , where K is the complex conjugation operation introduced earlier.

If ψ (0)
m is an eigenfunction of H0 with eigenvalue E(0)m then Uaψ

(0)
m = σmψ

(0)
m , where σm = ±1, as

follows from [H,Ua] = 0 and U2
a = 1. Therefore,

ψ (0)
m

H ′
ψ (0)

n


= 0, (4)

if σmσn = 1.
It was shown in our earlier papers that complex eigenvalues appear for sufficiently small values

of |g| when H0 exhibits degenerate eigenfunctions and at least one of the perturbation corrections of
first order produced by H ′ is nonzero [19–21]. The degenerate eigenfunctions of H0

H0ψ
(0)
m,k = E(0)m ψ

(0)
m,k, k = 1, 2, . . . , νm, (5)

exhibit the same behaviour with respect to Ua: Uaψ
(0)
m,k = σmψ

(0)
m,k, so that

ψ
(0)
m,k

H ′

ψ (0)
n,l


= 0 k, l = 1, 2, . . . , νm, (6)

and all the perturbation corrections of first order vanish (see Ref. [21] for more details).
The main conclusion drawn from the discussion above is that the space–time symmetry given by

A may not be broken when the space transformation given by Ua ∈ G0 forms a class by itself. This
conjecture is confirmed by all the examples discussed in our earlier paper [21] where we concluded
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Table 1
Character table for Td point group.

Td E 8C3 3C2 6S4 6σd

A1 1 1 1 1 1 x2 + y2 + z2
A2 1 1 1 −1 −1
E 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)
T1 3 0 −1 1 −1 (Rx, Ry, Rz)

T2 3 0 −1 −1 1 (x, y, z) (xz, yz, xy)

Fig. 1. Real parts of the eigenvalues of symmetry A1 of the Hamiltonian operator H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz.

that the inversion operation ı̂ : (x, y, z) → (−x,−y,−z) is a suitable choice for Ua. Note that in all
the point groups ı̂ forms a class by itself [15,16].

In closing this section we outline some features of PGS used throughout this paper. To begin with
we mention that a projection operator PS on the irrep S is given by

PS
=

lS
h

h
j=1

χ S
j Wj, (7)

where lS is the dimension of the irrep, h the order (total number of elements or operations) of the group
and χ S

j is the character (trace of the matrix representation) ofWj in a basis for the irrep. Tables 1 and
2 show examples of the items enumerated above. For example, the first row exhibits the group name
and lists group operations grouped in classes; their symbols having the following meaning:

• E: identity operation
• Cn: rotation by an angle of 2π/n
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Fig. 2. Real parts of the eigenvalues of symmetry A2 the Hamiltonian operator H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz.

Table 2
Character table for Oh point group.

Oh E 8C3 6C2 6C4 3C2(= C2
4 ) ı̂ 6S4 8S6 3σh 6σd

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2
A2g 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2, x2 − y2)
T1g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx, Ry, Rz)

T2g 3 0 1 −1 −1 3 −1 0 −1 1 (xz, yz, xy)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 −1 1 −1 1 −1 −1 1
Eu 2 −1 0 0 2 −2 0 1 −2 0
T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)
T2u 3 0 1 −1 −1 −3 1 0 1 −1

• ı̂: inversion operation (already discussed above)

• Sn: rotation Cn followed by a reflexion with respect to a plane perpendicular to the rotation axis

• σd, σh reflexion planes
The first column exhibits the irreps; those labelled A or B are one-dimensional (lS = 1), the ones

labelled E are two-dimensional (lS = 2) and those labelled T are three-dimensional (lS = 3). The
integers are the characters χ S

j that appear in Eq. (7). The remaining columns show the bases for
the different irreps.
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Fig. 3. Real parts of the eigenvalues of symmetry E the Hamiltonian operator H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz.

Fig. 4. Real parts of the eigenvalues of symmetry T1 the Hamiltonian operator H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz.

Fig. 5. Real parts of the eigenvalues of symmetry T2 the Hamiltonian operator H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz.
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Fig. 6. Imaginary parts of the eigenvalues of the Hamiltonian Operator H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz.

3. Example 1

As a first example we choose the non-Hermitian oscillator

H = p2x + p2y + p2z + x2 + y2 + z2 + igxyz (8)

studied by Bender and Weir [9]. When g = 0 the resulting isotropic harmonic oscillator H0 may be
described by the 3D rotation group (the group of all rotations about the origin of the three-dimensional
Euclidean space R3 under the operation of composition). Its eigenfunctions in Cartesian coordinates
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are

ϕm,n,k(x, y, z) = φm(x)φn(y)φk(z), m, n, k = 0, 1, . . . , (9)

where φj(q) is an eigenfunction of HHO = p2q + q2, and the corresponding eigenvalues

E(0)mnk = 2ν + 3, ν = m + n + k, (10)

are (ν + 1)(ν + 2)/2-fold degenerate. When g ≠ 0 the symmetry of the model is determined by
H ′

= xyz and the suitable point group is Td. The corresponding character table is shown in Table 1. It
is not difficult to verify that the 24 symmetry operations in this point group leave the potential-energy
function (and, therefore, the whole Hamiltonian operator) invariant.

In this case the obvious choice is Ua = ı̂ ∈ G0 that satisfies all the conditions outlined in Section 2.
Note that UaV (x, y, z)Ua = V (−x,−y,−z) and KV (x, y, z)K = V (x, y, z)∗ so that AV (x, y, z)A =

V (−x,−y,−z)∗ = V (x, y, z) and theHamiltonian operator is invariantwith respect to the antiunitary
transformation A = UaK .

The application of the projection procedure outlined in Section 2 to the eigenfunctions of H0 yields
the following symmetry-adapted basis set for G = Td

A1 :



ϕ2m,2m,2m
1

√
3


ϕ2m,2m,2n + ϕ2m,2n,2m + ϕ2n,2m,2m


1

√
6


ϕ2m,2n,2k + ϕ2k,2m,2n + ϕ2n,2k,2m + ϕ2k,2n,2m + ϕ2m,2k,2n + ϕ2n,2m,2k


ϕ2m+1,2m+1,2m+1
1

√
3


ϕ2m+1,2m+1,2n+1 + ϕ2m+1,2n+1,2m+1 + ϕ2n+1,2m+1,2m+1


1

√
6


ϕ2m+1,2n+1,2k+1 + ϕ2k+1,2m+1,2n+1 + ϕ2n+1,2k+1,2m+1 + ϕ2k+1,2n+1,2m+1

+ ϕ2m+1,2k+1,2n+1 + ϕ2n+1,2m+1,2k+1


A2 :


1

√
6


ϕ2m,2n,2k + ϕ2k,2m,2n + ϕ2n,2k,2m − ϕ2k,2n,2m − ϕ2m,2k,2n − ϕ2n,2m,2k


1

√
6


ϕ2m+1,2n+1,2k+1 + ϕ2k+1,2m+1,2n+1 + ϕ2n+1,2k+1,2m+1 − ϕ2k+1,2n+1,2m+1

−ϕ2m+1,2k+1,2n+1 − ϕ2n+1,2m+1,2k+1


(11)

E :




1

√
6


2ϕ2n,2m,2m − ϕ2m,2n,2m − ϕ2m,2m,2n


,

1
√
2


ϕ2m,2n,2m − ϕ2m,2m,2n


1

√
6


2ϕ2m,2n,2k − ϕ2k,2m,2n − ϕ2n,2k,2m


,

1
√
2


ϕ2k,2m,2n − ϕ2n,2k,2m


1

√
6


2ϕ2n,2m,2k − ϕ2k,2n,2m − ϕ2m,2k,2n


,

1
√
2


ϕ2k,2n,2m − ϕ2m,2k,2n




1
√
6


2ϕ2n+1,2m+1,2m+1 − ϕ2m+1,2n+1,2m+1 − ϕ2m+1,2m+1,2n+1


,

1
√
2


ϕ2m+1,2n+1,2m+1 − ϕ2m+1,2m+1,2n+1




1
√
6


2ϕ2m+1,2n+1,2k+1 − ϕ2k+1,2m+1,2n+1 − ϕ2n+1,2k+1,2m+1


,

1
√
2


ϕ2k+1,2m+1,2n+1 − ϕ2n+1,2k+1,2m+1




1
√
6


2ϕ2n+1,2m+1,2k+1 − ϕ2k+1,2n+1,2m+1 − ϕ2m+1,2k+1,2n+1


,

1
√
2


ϕ2k+1,2n+1,2m+1 − ϕ2m+1,2k+1,2n+1




(12)
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T1 :




1

√
2


ϕ2m+1,2n,2k+1 − ϕ2k+1,2n,2m+1


,

1
√
2


ϕ2k+1,2m+1,2n − ϕ2m+1,2k+1,2n


,

1
√
2


ϕ2n,2k+1,2m+1 − ϕ2n,2m+1,2k+1




1
√
2


ϕ2m,2n+1,2k − ϕ2k,2n+1,2m


,

1
√
2


ϕ2k,2m,2n+1 − ϕ2m,2k,2n+1


,

1
√
2


ϕ2n+1,2k,2m − ϕ2n+1,2m,2k




(13)

T2 :




ϕ2m+1,2n,2n, ϕ2n,2m+1,2n, ϕ2n,2n,2m+1


ϕ2m,2n+1,2n+1, ϕ2n+1,2m,2n+1, ϕ2n+1,2n+1,2m


1

√
2


ϕ2m+1,2n,2k+1 + ϕ2k+1,2n,2m+1


,

1
√
2


ϕ2k+1,2m+1,2n + ϕ2m+1,2k+1,2n


,

1
√
2


ϕ2n,2k+1,2m+1 + ϕ2n,2m+1,2k+1




1
√
2


ϕ2m,2n+1,2k + ϕ2k,2n+1,2m


,

1
√
2


ϕ2k,2m,2n+1 + ϕ2m,2k,2n+1


,

1
√
2


ϕ2n+1,2k,2m + ϕ2n+1,2m,2k




(14)

By means of projection operators one can also prove that the perturbation H ′
= xyz splits the

degenerate states of the three-dimensional harmonic oscillator H0 in the following way:

{2n, 2n, 2n} → A1

{2n + 1, 2m, 2m}P → T2
{2n + 1, 2n + 1, 2m}P → T2
{2n, 2m, 2m}P → A1, E
{2n + 1, 2n + 1, 2n + 1} → A1

{2n, 2m, 2k + 1}P → T1, T2
{2n, 2m + 1, 2k + 1}P → T1, T2
{2n, 2m, 2k}P → A1, A2, E, E
{2n + 1, 2m + 1, 2m + 1}P → A1, E
{2n + 1, 2m + 1, 2k + 1}P → A1, A2, E, E, (15)

where {i, j, k}P denotes all the distinct permutations of the labels i, j and k.
Bender andWeir [9] diagonalized truncatedmatrix representationsH of the Hamiltonian operator

of dimension 203
×203, 253

×253 and 303
×303 in order to estimate the accuracy of their results. They

resorted to well known efficient diagonalization routines for sparse matrices. Here, we diagonalize
matrix representations HS for S = A1, A2, E, T1, T2. This splitting reduces the dimension of the
matrices required for a given accuracy and also enables a clearer interpretation and discussion of the
results. In this paper we carried out all the calculations with matrices of dimension 5000 × 5000 for
each irrep. Comparison of such results for g = 1with those coming froma calculationwithmatrices of
dimension 10 000×10 000 did not show any relevant difference for present purposes and discussion.

Figs. 1–5 show ℜE(g) for the five irreps. For clarity we split every case into two or three
energy intervals where we can appreciate the occurrence of crossings, coalescence of eigenvalues at
exceptional points and even what appear to be avoided crossings. Because of the scale used and the
separation into irreps our figures reveal a rich pattern of intertwined energy curves that one cannot
easily discern when plotting all the symmetries together [9].

Bender and Weir [9] estimated a phase transition near to g ≈ 0.25 for their Hamiltonian HBW
=

Hpresent
0 /2 + igxyz. The relation between present exceptional points and those of Bender and Weir
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Fig. 7. Real parts of the eigenvalues of symmetry A1 of the Hamiltonian operator H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz.

Fig. 8. Real parts of the eigenvalues of symmetry A2 of the Hamiltonian operator H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz.

is therefore gpresent
c = 2gBW

c . Fig. 6 shows the imaginary parts of the eigenvalues for each irrep. We
appreciate that complex eigenvalues appear for values of the parameter that are considerably smaller
than g = 0.5; therefore, we cannot be sure that there is a phase transition for this Hamiltonian. As
the energy increases more exceptional points seem to emerge closer to the origin.

All the figures in this paper have been produced by means of the Tikz package [23].
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Fig. 9. Real parts of the eigenvalues of symmetry E of the Hamiltonian operator H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz.

4. Example 2

The non-Hermitian anharmonic oscillator

H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz, (16)

is interesting because H0 is invariant under the unitary operations of the point group Oh and H is
invariant under those of Td.

If {i, j, k}P denotes all distinct permutations of the subscripts in the eigenfunctions χi j k(x, y, z) =

ρi(x)ρj(y)ρk(z), i, j, k = 0, 1, . . ., of H0, then their symmetry is given by (see Ref. [24,25] for a
discussion of an exactly solvable quantum-mechanical problem with the same PGS):

{2n, 2n, 2n} A1g
{2n + 1, 2n + 1, 2n + 1} A2u
{2n + 1, 2n + 1, 2m}P T2g
{2n, 2n, 2m + 1}P T1u
{2n, 2n, 2m}P A1g , Eg
{2n + 1, 2n + 1, 2m + 1}P A2u, Eu
{2n, 2m, 2k}P A1g , A2g , Eg , Eg
{2n + 1, 2m + 1, 2k + 1}P A1u, A2u, Eu, Eu
{2n, 2m, 2k + 1}P T1u, T2u
{2n + 1, 2m + 1, 2k}P T1g , T2g .

(17)

The character table for the point group Oh is shown in Table 2. The dynamical symmetries that
are responsible for the degeneracy of eigenfunctions belonging to different irreps (which cannot be
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Fig. 10. Real parts of the eigenvalues of symmetry T1 of the Hamiltonian operator H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz.

Fig. 11. Real parts of the eigenvalues of symmetry T2 of the Hamiltonian operator H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz.

explained by PGS) are given by the Hermitian operators

O1 = 2p2x + 2x4 − p2y − y4 − p2z − z4

O2 = 2p2y + 2y4 − p2x − x4 − p2z − z4. (18)
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Fig. 12. Imaginary parts of the eigenvalues of the Hamiltonian operator H = p2x + p2y + p2z + x4 + y4 + z4 + igxyz.

They belong to the irrep Eg and commute with H0. We easily obtain them by straightforward
application of the projection operator PEg to the twopairs of functions (x2, y2) and (x4, y4) as discussed
elsewhere [24].

By means of projection operators we can prove that the eigenfunctions of H0 transform into those
of H according to the following symmetry scheme:

A1g , A2u → A1

A2g , A1u → A2

Eg , Eu → E
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T1g , T2u → T1
T2g , T1u → T2. (19)

Clearly, A = ı̂K leaves H invariant. Since ı̂ forms a class by itself as shown by the character Table 2
then this antiunitary symmetry is expected to be unbroken for sufficiently small values of g according
to the discussion in Section 2. This conclusion is confirmed by Figs. 7–12 where we see that there are
real eigenvalues for sufficiently small values of g for the five irreps. However, the values of gc approach
the origin as the eigenvalues increase in such a way that it is difficult to estimate whether there is a
high-energy phase transition. It is also worth noting that the pattern of ℑE vs g is not the same for all
the irreps. The most striking difference occurs between the irreps A1 and A2.

5. Conclusions

In this paper we have studied a few examples of non-Hermitian Hamiltonian operators of the form
(3) with a space–time symmetry given by an antiunitary operator A = UaK . The space transformation
Ua satisfies UaH0U−1

a = H0 and UaH ′U−1
a = −H ′. Under such conditions our conjecture is that one

expects real eigenvalues for sufficiently small values of |g| when Ua forms a class by itself in the
point group G0 that describes the symmetry of H0. This conclusion is suggested by the fact that the
perturbation corrections of first order for all the energy levels vanish. All the known examples with
real spectrum already satisfy this condition [1–10]. On the other hand, the recently found space–time
symmetric Hamiltonians with complex eigenvalues for |g| > 0 [19–21] clearly violate it. Although
present proof based on PGS and perturbation theory is not as conclusive as one may desire, at least
the examples studied so far support it.

In addition to what was said above, there remains the question whether there is a phase transition
in those cases where the eigenvalues are real for 0 < g < gc . As E increases the critical values of g
approach the origin and it is quite difficult to estimate if there is a nonzero limit.
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