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In this paper we study Spectral Decomposition Theorem (Lasota and Mackey, 1985) and
translate it to quantum language by means of the Wigner transform. We obtain a Quantum
Version of Spectral Decomposition Theorem (QSDT) which enables us to achieve three
distinct goals: First, to rank Quantum Ergodic Hierarchy levels (Castagnino and Lombardi,
2009, Gomez and Castagnino, 2014). Second, to analyze the classical limit in quantum
ergodic systems and quantum mixing systems. And third, and maybe most important
feature, to find a relevant and simple connection between the first three levels of Quantum
Ergodic Hierarchy (ergodic, exact and mixing) and quantum spectrum. Finally, we illustrate
the physical relevance of QSDT applying it to two examples: Microwave billiards
(Stockmann, 1999, Stoffregen et al. 1995) and a phenomenological Gamow model type
(Laura and Castagnino, 1998, Omnès, 1994).
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1. Introduction

Dynamical systems are one of most extensively studied
subjects in physics. Mathematically, a dynamical system
can be defined as a quadruplet ðX;R;l; sÞ where X is a
set (typically, the phase space in classical mechanics), R
is a sigma-algebra on X; l is a finite measure on R and
map s : X ! X is a measure-preserving transformation
(see Section 2.1). Physical interpretation of this abstract
definition is that a dynamical system gives a fixed rule
which describes time dependence of a point (state of sys-
tem) in a geometrical space (the phase space). This rule
is deterministic in the sense that for a given time interval
only one future state follows from the current state.

From its origins in Newtonian mechanics to its subse-
quent measure theoretical definition numerous tools have
been developed both theoretical and practical in dynamical
systems theory. Some of these are discrete maps, bifurca-
tion theory, topological knots, etc. These give different
descriptions1 of dynamical systems. However, in many
cases most important is the asymptotic behavior of dynam-
ical system2 (mathematically, t !1). This is the case of
approach to equilibrium and we can use tools of chaos the-
ory to study the evolution to equilibrium. Related to this,
classical chaos presents several approaches which are
related to each other: algorithmic complexity [8], Lyapunov
exponents [9,10] and Ergodic Hierarchy [1,11]. For instance,
Brudno theorem [8] relates complexity with Kolmogorov–
Sinai entropy [8] while Pesin theorem [8] relates Ergodic
flow, we
0,12].
to model
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Hierarchy with Lyapunov exponents. The relationships
between these chaos indicators is illustrated in the ‘‘chaos
pyramid’’ of Fig. 1. According to this structure, Ergodic Hier-
archy is one of features of classical chaos.

Ergodic Hierarchy ranks the chaotic level of a dynamical
system according to the way in which correlations
between two arbitrary distributions cancel for large times
(t !1). For example, in classical mechanics a typical cor-
relation CðA;BÞ, between two sets A and B of the phase
space M, is CðA; BÞ ¼ lðA \ BÞ � lðAÞlðBÞ where l is a
measure defined over subsets of M. If lðMÞ ¼ 1 then
lðAÞ can be interpreted as probability of A. In such case,
CðA;BÞ can be interpreted as the difference between prob-
ability of A and B simultaneously and product of probabil-
ities of A and B. In this sense CðA;BÞ is a correlation that
‘‘measures’’ how independent are events A and B. More-
over, Ergodic Hierarchy ranks chaotic level of a dynamical
system through correlations CðA;BÞ. For the quantum case,
Quantum Ergodic Hierarchy (QEH) [2,3] also expresses how
correlations are canceled for large times, but in this case
quantum correlations are defined between states and
observables as quantum mean values ðqðtÞjOÞ.

On the other hand, we have an important tool called
Spectral Decomposition Theorem (SDT) [1] which describes
asymptotic behavior of dynamical systems. Roughly speak-
ing and assuming certain hypotheses about the evolution
of system, it says that any density of a dynamical system
tends asymptotically (t !1) to a sum of localized densi-
ties (more precisely, normalized characteristic functions).
As we mentioned above, Ergodic Hierarchy ranks asymp-
totically chaos between two distributions or densities. So
we can expect some kind of connection between Ergodic
Hierarchy and Spectral Decomposition Theorem. In fact, a
connection is established in Theorem 8 (see Section 3)
which gives necessary and sufficient conditions for ergodic,
mixing and exact levels of Ergodic Hierarchy according to
SDT decomposition.

For quantum systems, quantum chaos is a discipline in
constant evolution which began in 70’s with pioneering
experiments of microwave billiards [4,12,15,16] and it is
well known as the study of quantum mechanical aspects
of quantum systems which have a chaotic classical
description. Typical approaches that emerged from this
evolution were scars [4,12], WKB approximation [4,17],
and Random Matrix Theory [4,15]. A reasonable definition
that takes into account the main characteristics of quan-
tum chaos was given by Berry [18]: ‘‘a quantum system is
chaotic if its classical limit is chaotic’’. This was taken later
on to be a possible definition of quantum chaos.
Fig. 1. ‘‘Chaos pyramid’’ is a diagram for relationships between Ergodic
Hierarchy, Lyapunov exponents and complexity through Pesin and
Brudno theorems.
As we mention in introduction of part one [2], that
there are many ways to define quantum chaos by complex-
ity (see [19,20]), exponential divergence trajectories (see
[21,22]), treatment of chaos based on the introduction of
non-linear terms in the Schrodinger equation [23] and
non-unitary evolution of a quantum system as an indicator
of quantum chaos [24]. However, as mentioned in [2], the
study of chaos based on QEH takes into account that clas-
sical limit may not exhibit chaotic behavior which would
be a threat to Correspondence Principle (CP). In paper
[25] we discuss and give an alternative way to study chaos
in quantum systems based on fundamental graininess and
the classical statistical limit which is compatible with CP.

As in previous works [2,3,25], in this paper we study
quantum chaos from Berry’s definition and Quantum Ergo-
dic Hierarchy [2].

The main goal of this paper is a Quantum Version of
Spectral Decomposition Theorem (QSDT) which gives a
direct connection with QEH and classical limit. In addition
we consider the degree of generality of QSDT which make
it useful as a framework for quantum chaos. All these
aspects are in accordance with conceptual foundations in
context of Belot–Earman program [8]. Other relevant con-
sequences of QSDT are: A characterization of first two lev-
els of QEH (see Theorem 10 of Section 4.2) plus a simple
connection between these levels and quantum spectrum
in the classical limit (see Section 5). In Section 2 we begin
introducing a brief review of minimal notions of density
theory for the development of following sections.
2. Theory of densities and Markov operators

Historically, the concept of density has only recently
appeared in order to unify descriptions of phenomena of
statistical nature. Clear examples of this are Maxwell
velocity distribution and quantum mechanics, considered
as attempts to unify theory of gases and as justification
for the derivation of Planck distribution of black body radi-
ation respectively.

Moreover, development of modern physics demon-
strated the usefulness of densities to give a description of
systems with a large number of freedom degree which
have an uncertainty by ignorance. In this section we
introduce a brief review of theory of densities and Markov
operators based on dynamical systems formalism [1].
2.1. Density functions and dynamical systems

We begin recalling mathematical elements of dynami-
cal systems theory. As we mentioned in introduction, these
elements and definitions can be given within the frame-
work of measurement theory3 [1,11]. Given a set X; R is a
r-algebra of subsets of X if it satisfies:

(I) X 2 R.
(II) A; B 2 R) A n B 2 R.

(III) ðBiÞ 2 R) [iBi 2 R.4
3 In this paper this will be our mathematical framework.
4 Index i must run out a countable set.
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A function l on R is a probability measure if it satisfies:

(I) l : R! ½0;1� and lðXÞ ¼ 1.
(II) For all countable family of pairwise disjoint subsets
ðBiÞ 2 R) lð[iBiÞ ¼

P
ilðBiÞ.

A measure space is any shortlist of the form ðX;R;lÞ.
Given a measure space ðX;R;lÞ, a measure preserving trans-
formation or automorphism T is a function T : X ! X which
satisfies:

8A 2 R : lðT�1AÞ ¼ lðAÞ ð1Þ

Then we say that family of transformations s :¼
fTt : X ! Xgt2R satisfying Eq. (1) and (see Definition 7.2.1.
of [1])

(a) T0ðxÞ ¼ x for all x 2 X.
(b) Tt1 ðTt2 ðxÞÞ ¼ Tt1þt2 ðxÞ for all x 2 X and t1; t2 2 R.
(c) The mapping ðt; xÞ ! TtðxÞ from R� X into X is

continuous.
is a group5 of measure preserving automorphisms and we
call it a dynamical law s. With these definitions, we say that
quaternary ðX;R;l; sÞ is a dynamical system.

In dynamical system theory the central notion is
the definition of density: Given a dynamical system
ðX;R;l; sÞ and DðX;R;lÞ ¼ ff 2 L1ðX;R;lÞ : f P 0; kfk ¼
1g any function f 2 DðX;R;l; sÞ is called a density.

In classical mechanics it is usual to take X ¼M as phase
space, R ¼ PðMÞ as power set of phase space, l as
Lebesgue measure and Tt as time evolution transformation
governed by Hamilton equations. This context will be
clarified in the next sections. In addition to dynamical
system definition other fundamental concept is the notion
of Markov operator. This important class of operators is
presented below.

2.2. Markov operators

Given a classical system S with an initial state given by a
density f 0 we know that its temporal evolution will be
determined by Liouville equation. Except in simple cases
we know that this equation has no exact solution and thus
we are forced to use another strategy to study the evolu-
tion of system. In this sense Markov operators are very
useful because their properties allow us to know the
asymptotic behavior of densities. General behavior of
densities can be well developed in both dynamical and sto-
chastic systems. Markov operators contain global informa-
tion concerning densities in the asymptotic limit t !1.
Under certain hypotheses on Markov operators we have
conditions for existence of an equilibrium density f � which
physically corresponds to equilibrium approach. The
approach to equilibrium in the limit t !1 by means of
Markov operators will be the link between classical limit
5 In the general case s is required to be a semigroup, i.e. in semidynam-
ical systems (see Definition 7.2.3 of [1]). In dynamical systems s is a group
while in semidynamical systems s is required to be a semigroup. Therefore,
the dynamical systems are invertible while the semidynamical systems
may not be invertible.
and Quantum Spectral Decomposition Theorem. This will be
considered in Section 4. We present a brief review of
minimal concepts for the development of this paper begin-
ning with the following definition (see [1], p. 32).

Definition 2.1 (Markov Operator). Given a measure space
ðX;R;lÞ a linear operator P : L1 ! L1 is called a Markov
operator if it satisfies:

(a) Pf P 0.
(b) kPfk ¼ kfk for all f 2 L1; f P 0.

From condition (b) it follows that P is monotonic, that is
if f ; g 2 L1 with f P g then Pf P Pg. Markov operators
satisfy important properties that will be crucial in the der-
ivation of a Quantum Version of Spectral Decomposition
Theorem (see [1, p. 33]).

Theorem 1. Let ðX;R;lÞ be a r-algebra and let f 2 L1. If P is
a Markov operator then:

(I) kPfk 6 kfk (contractive property).
(II) jPf ðxÞjP Pjf ðxÞj.

The notion of fixed point of a Markov operator is funda-
mental to establishing the approach to equilibrium of a
density (see [1], p. 35).

Definition 2.2 (Fixed Point). Let P be a Markov operator. If
f 2 L1with Pf ¼ f then f is called a fixed point of P. In a more
general way, any f 2 DðX;R;lÞ that satisfies Pf ¼ f is called
a stationary density of P.

A family of automorphisms fTtgt2R representing the
evolution of any dynamical system is a special class of
Markov operators called Frobenius–Perron operators. They
are defined as follows (see [1], p. 36).

Definition 2.3 (Frobenius–Perron Operator). Given a
measure space ðX;R;lÞ and T : X ! X a non singular
automorphism (i.e. lðT�1ðAÞÞ ¼ 0 for all A 2 R such that
lðAÞ ¼ 0) the unique operator P : L1 ! L1 defined for all
A 2 R by the equationZ

A
Pf ðxÞlðdxÞ ¼

Z
T�1ðAÞ

f ðxÞlðdxÞ ð2Þ

is called the Frobenius–Perron operator corresponding to T.

From Eq. (2) we have that Frobenius–Perron operator is
linear and has the following properties (see [1], p. 37).

Theorem 2. Let T be an automorphism. If P and Pn are the
Frobenius–Perron operators corresponding to T and Tn

respectively. Then we have that

(I)
R

X Pf ðxÞlðdxÞ ¼
R

X f ðxÞlðdxÞ.
(II) Pn ¼ Pn.

The adjoint of a Frobenius–Perron operator is defined as
follows (see [1], p. 42).
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Definition 2.4. (Koopman Operator). Given a measure
space ðX;R;lÞ and T : X ! X a non singular automorphism,
the unique operator U : L1 ! L1 defined for all f 2 L1 by

Uf ðxÞ ¼ f ðTðxÞÞ ð3Þ

is called the Koopman operator corresponding to T.

From Eq. (3) we have that Koopman operator is linear
and has the following properties (see [1], p. 43):

Theorem 3. Let T be an automorphism. If U and Un are the
Koopman operators corresponding to T and Tn respectively.
Then

(I) kUfkL1 6 kfkL1 .
(II) Un ¼ Un.

(III) hPnf ; gi ¼ hf ;Ungi for every f 2 L1; g 2 L1; n 2 N0.
where hf ; gi ¼
R

X f ðxÞgðxÞlðdxÞ for all f 2 L1; g 2 L1.

Now we recall the Ergodic Hierarchy of dynamical sys-
tems (see [1], p. 66).

Theorem 4. (Ergodic, Mixing and Exact). Let ðX;R;lÞ be a
normalized measure space, T : X ! X an automorphism
and P; U the Frobenius–Perron and Koopman operators
corresponding to T. Then:
(a) T is ergodic () limn!1
1
n

Pn
k¼0hP

kf ; gi ¼ limn!1
1
n

Pn
k¼0hf ;Ukgi ¼ hf ;1ih1; gi for all f 2 L1; g 2 L1.

(b) T is mixing () limn!1hPnf ; gi ¼ limn!1hf ;Ungi ¼
hf ;1ih1; gi for all f 2 L1; g 2 L1.

(c) T is exact () limn!1kPnf � hf ;1ik ¼ 0 for all f 2 L1.

From these definitions (see [1] p. 73) it follows that6

EXACT ) MIXING) ERGODIC ð4Þ

It should be noted that levels are substantially different
from each other.7 To end this section we introduce the
notion of constrictive operator which allow us to ensure
the existence of an equilibrium density (see [1], p. 87).

Definition 2.5. (Constrictive operator). A Markov operator
P will be called constrictive if there exist a precompact set

F # L1 such that for all f 2 DðX;R;lÞ:

limn!1dðPnf ;FÞ ¼ limn!1inf g2FkPnf � gk ¼ 0 ð5Þ
A relevant result is that every Markov constrictive oper-

ator has an equilibrium density (see [1], p. 87).
6 Ergodic, mixing and exact correspond to Cèsaro limit, weak limit and
strong limit respectively. The terms ‘‘Cèsaro’’, ‘‘weak’’ and ‘‘strong’’ indicate
the type of convergence of sequence fPnf g to 1 (see Theorem 4.4.1 of [1]).

7 A full distinction between ergodic, mixing and exact is illustrated by
first six successive iterates of a random distribution of 1000 points in
X ¼ ½0;1� � ½0;1� w i t h t h e c o r r e s p o n d i n g t r a n s f o r m a t i o n s

Sergodicðx; yÞ ¼ ð
ffiffiffi
2
p
þ x;

ffiffiffi
3
p
þ yÞ (mod 1), Smixingðx; yÞ ¼ ðxþ y; xþ 2yÞ (mod

1) and Sexactðx; yÞ ¼ ð3xþ y; xþ 3yÞ (mod 1). In each case the effect of
transformation is to move around the space, spread throughout space and
quickly spread throughout the space corresponding to the ergodic, mixing
and exact levels respectively (see Figs. 4.3.3–4.3.5 of [1]).
Theorem 5. Let ðX;R;lÞ be a normalized measure space, and
P : L1 ! L1 a constrictive Markov operator. Then P has a
stationary density, i.e. there is a f � 2 L1 such that Pf� ¼ f �.

The existence of equilibrium densities can be consid-
ered relevant to obtain a theoretical framework for
quantum chaos. For instance, in quantum billiards the
statement of quantum ergodicity is equivalent to the
statement of uniform equidistribution of probability den-
sity for eigenstates. Moreover, this fact can be translated
to quantum language through Wigner transform such that
equilibrium state of any closed quantum system with con-
tinuous spectrum is represented by the weak limit q̂� (see
[26, p. 889, Eq. (3.28)]).

3. The Spectral Decomposition Theorem of Dynamical
Systems

With all the mathematical background of previous
section we are able to present one of the main results
of dynamical systems theory called the Spectral
Decomposition Theorem (SDT) (see [1, p. 88]).

Theorem 6. (The Spectral Decomposition Theorem
(version I)). Let P be a Markov constrictive operator. Then
there is an integer r, two sequences of nonnegative functions
gi 2 DðX;R;lÞ, ki 2 L1; i ¼ 1; . . . ; r, and an operator

Q : L1 ! L1 such that for all f 2 L1; Pf may be written as

Pf ðxÞ ¼
Xr

i¼1

kiðf ÞgiðxÞ þ Qf ðxÞ ð6Þ

where

kiðf Þ ¼
Z

X
f ðxÞkiðxÞlðdxÞ ¼ hf ðxÞ; kiðxÞi ð7Þ

The functions gi and the operator Q have the following
properties:

(I) giðxÞgjðxÞ ¼ 0 for all i – j, so that functions gi have
disjoint supports.

(II) For each integer i there exists a unique integer aðiÞ such
that Pgi ¼ gaðiÞ. Further aðiÞ – aðjÞ for i – j thus the
operator P just permutes the functions gi.

(III) kPnQfk ! 0 as n!1 for every f 2 L1.

Assuming that time evolution has a constrictive Perron–
Frobenius operator then Eq. (6) describes the evolution of
any density having an initial term which oscillates
between densities gi. We note that Qf is associated with a
relaxation process which we will analyze in Section 5. By
property (II) of Theorem (6) we have

Pnf ðxÞ ¼
Xr

i¼1

kiðf ÞganðiÞðxÞ þ Pn�1Qf ðxÞ

¼
Xr

i¼1

ka�nðiÞðf ÞgiðxÞ þ Q nf ðxÞ ð8Þ

where Qnf ðxÞ ¼ Pn�1Qf ðxÞ and fa�nðiÞg is the inverse
permutation of fanðiÞg. When the measure space is
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normalized and Markov operator P has a constant
stationary density f � (e.g. if P is a Frobenius–Perron opera-
tor this is equivalent to lf invariant, see [1], p. 46) Spectral
Decomposition Theorem takes the following compact form
(see [1], p. 90).

Theorem 7. (Version (II) of The Spectral Decomposition
Theorem). Let ðX;R;lÞ be a normalized measure space and

P : L1 ! L1 a constrictive Markov operator. If P has a
stationary density then the representation of Pnf takes the

simple form for all f 2 L1

Pnf ðxÞ ¼
Xr

i¼1

ka�nðiÞðf Þ�1Ai
ðxÞ þ Q nf ðxÞ ð9Þ

where

�1Ai
ðxÞ ¼ ½1=lðAiÞ�1Ai

ð10Þ

[
i

Ai ¼ X with Ai \ Aj ¼ ; for i – j ð11Þ

and8

lðAiÞ ¼ lðAjÞ if j ¼ anðiÞ for some n: ð12Þ

Theorem (7) characterizes the Ergodic Hierarchy levels
by means of permutation fanðiÞg (see [1], p. 92–94).
Theorem 8. (The Spectral Decomposition Theorem
and Ergodic Hierarchy). Let ðX;R;lÞ be a normalized

measure space and P : L1 ! L1 a constrictive Markov
operator. Then

(I) P is ergodic () permutation fað1Þ; . . . ;aðrÞg of
sequence f1; . . . ; rg is cyclical (that is, for which there
no is invariant subset).

(II) If r ¼ 1 in representation of Eq. (6) ) P is exact.
(III) If P is mixing ) r ¼ 1 in representation of Eq. (6).

It should be noted that, under hypothesis of Theorem 8, P
mixing implies P exact. Then since P exact implies P mixing
(see Eq. (4)) it follows that P exact () P mixing ()
r ¼ 1 (see Remark 5.5.1 of [1]).

Theorem (7) says that if classical Hamiltonian is such
that Frobenius–Perron operator P associated to time
evolution T admits an equilibrium density f � then in the
asymptotic limit (n!1) the state of the system
Unf ðxÞ ¼ f ðTnðxÞÞwill oscillate between characteristic func-
tions �1Ai

ðxÞ with a remainder term Qnf ðxÞ going to zero. In
next section we will see that a quantum version of SDT
(called QSDT) contains relevant information about quan-
tum spectrum. We have seen that constrictiveness of a
Markov operator P and normalization of measure space
are sufficient to ensure the existence of stationary densi-
ties and to obtain a representation of their time evolution
by means of SDT.
8 In Eqs. (9)–(12) the index i runs over a countable set.
4. The Quantum Version of Spectral Decomposition
Theorem (QSDT)

The aim of this paper is to obtain a quantum version of
SDT, called the Quantum Version of Spectral Decomposition
Theorem (QSDT), that can be useful to study quantum
systems in the classical limit and to give an alternative
framework for quantum chaos according to Berry’s defini-
tion. In this section we begin by defining the mathematical
concepts of this approach considering the observables as
central objects and the states as functionals of those. In
order to apply QSDT to open quantum systems (see Sec-
tion 6) we consider the quantum characteristic algebra A
whose elements Ô 2 A are observables not necessarily
self-adjoint. In other words, Hermiticity condition Ô ¼ Ôy

can be relaxed and this is motivated for several reasons
some of them we can list below:

(a) The interest in the study of non-Hermitian Hamilto-
nians related with the interpretation of some
properties such as transfer phenomena, nuclear
resonances, typical of open systems.

(b) In scattering systems one can consider quantum
resonances, i.e. ‘‘quasi-stationary states’’ instead of
scattering solutions [27]. These resonances can play
a similar role in open systems as eigenstates in
closed systems and their eigenvalues are complex
numbers with non zero imaginary part, see Sections
5.1.1 and 6.

(c) Any measurement on a wave system drastically
changes its properties by converting discrete energy
levels into decaying resonances called ‘‘quasi-
stationary states’’ which can be described by a
non-Hermitian Hamiltonian [28–30]. This situation
will be illustrated in Section 6.

(d) With the purpose to take into account non-unitary
time evolutions that appear in descriptions of open
quantum systems the introduction of non-Hermitian
observables becomes ‘‘natural’’ and fundamental
from a theoretical viewpoint.

(e) Non-Hermitian operators are frequently used to
mathematically represent potentials of open quan-
tum systems describing ionization or dissociation
where the system breaks up into freely moving
non-interacting subsystems, see p. 4 of [30].

(f) The complex expectation value AÔ ¼ hÔi ¼ jAÔjeia of
a non-Hermitian observable Ô can be physically
interpreted postulating that the absolute value jAÔj
and the phase a are measurable quantities, see p.
11 of [30].

We point out that conclusions obtained from QSDT will
be valid for both closed and open quantum systems.
However, in Section 6 we will only illustrate QSDT with
examples of open quantum systems in the research line9

of [31] which states: ‘‘The approach of linking chaos with
9 We mean that the examples presented in this paper belong theoret-
ically to the category of quantum systems within the approach of [31], i.e.
open quantum systems which are disturbed by the measuring process like
microwave billiards, etc.
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the unpredictability of the measurement outcomes is the right
one in the quantum case’’. In this paper we will not discuss
this entropic approach of quantum chaos but it should be
noted that10

closed quantum systems) hermitian observables

) \intrinsic quantum chaos"

open quantum systems) observables ðherm: and non�herm:Þ
) genuine quantum chaos ð13Þ

This distinction can be seem trivial and meaningless but
it allows to place algebra of hermitian operators and uni-
tary evolutions in the context of closed quantum systems.
On the other hand, second line of Eq. (13) places algebra of
operators (hermitian and non-hermitian) and evolutions
(unitary and non-unitary) in the context of open quantum
systems. Returning to the mathematical background, the
space of states is the positive cone

N ¼fq̂2A0 : q̂ðIÞ¼1; q̂y ¼ q̂; q̂ðâ:âyÞP 0 for all â2Ag
ð14Þ

where the action q̂ðÔÞ of functional q̂ 2 A0 on the observa-

ble Ô 2 A is denoted by ðq̂jÔÞ. In other words, ðq̂jÔÞ is the

mean value of Ô in q̂, i.e. ðq̂jÔÞ ¼ hÔiq̂ ¼ trðq̂ÔÞ. When

Ô ¼ I this action is the trace of q̂ which is equal to
trðq̂Þ ¼ q̂ðIÞ ¼ ðq̂jIÞ ¼ 1. We note the dual of A as A0.

In this approach the state is unknown and we only focus
in the study of expectation values ðq̂ðtÞjÔÞ for large times
t !1. If for all q̂ 2 A0 there exists a unique q̂� 2 A0 such
that

limt!1ðq̂ðtÞjÔÞ ¼ limt!1ðÛtq̂Ûyt jÔÞ ¼ ðq̂�jÔÞ ð15Þ

we say that q̂ has weak-limit q̂� (see [2] p. 248). Functional
q̂� is interpreted as the average value that would result if
state q̂ðtÞ had a limit q̂� for t !1. That is, q̂� is a weak
limit and not a limit in the (strong) usual sense. In other
words q̂� is an equilibrium state, in the weak sense, that
system reaches in its process of relaxation.

Now it is suitable to make the following remark. In

general, if evolution operator Ût is not unitary (for example
when Hamiltonian is non-Hermitian, see Section 6)
then we will have that 0 < trðq̂�Þ < 1, i.e. weak limit
q̂� 2 A0 n N is considered an state not normalized. This
means that trace of any initial state q̂ is not preserved
for non-unitary evolutions in the limit t !1. This is a typ-
ical feature of decoherence in open quantum systems
where interaction between a quantum system and its envi-
ronment produces a non-unitary evolution of reduced
state described by a master equation [32].

A fundamental mathematical element to study the clas-
sical limit of a quantum system is the Wigner transform.
From a quantum state q̂ Wigner transform allows us to
10 The term ‘‘intrinsic’’ refers to quantum dynamical of closed quantum
systems described by wave functions of integrable square and thus
quantum evolution becomes almost periodic at least for the finite
dimensional case. In contrast, the term ‘‘genuine’’ is associated with the
approach based on that successive outcomes of a measurement can form
chaotic and unpredictable sequences [31].
obtain a function f ð/Þ defined over phase space C that
can be interpreted, in the classical limit �h! 0, as a distri-
bution probability governed by Liouville equation of classi-
cal statistical mechanics. We present a brief review of
some relevant properties of Wigner transform.

Let C ¼M2ðNþ1Þ � R2ðNþ1Þ be the phase space. Wigner
transformation symb : A ! Aq sends quantum algebra A
to a ‘‘classical-like’’ Aq algebra by (see [33–35]).

symbðf̂ Þ ¼ f ð/Þ ¼
Z

C
hqþ Djf̂ jq� DieipD

�h dNþ1D ð16Þ

where f ð/Þ 2 Aq are functions defined over space phase C
where / ¼ ðq1; . . . ; qNþ1; p1

q ; . . . ; pNþ1
q Þ. The star product

between two operators f̂ ; ĝ 2 A is given by (see [33])

symbðf̂ :ĝÞ ¼ symbðf̂ Þ � symbðĝÞ ¼ ðf � gÞð/Þ ð17Þ

and the Moyal bracket (see [35]) is

ff ; ggmb ¼
1
i�h
ðsymbðf̂ Þ � symbðĝÞ � symbðĝÞ � symbðf̂ ÞÞ

¼ symb
1
i�h
½f̂ ; ĝ�

� �
ð18Þ

Two important properties are, see [33]

ðf � gÞð/Þ ¼ f ð/Þgð/Þ þ 0ð�hÞ; ff ; ggmb ¼ ff ; ggpb þ 0ð�h2Þ
ð19Þ

The symmetrical or Weyl ordering prescription is used
to define inverse map symb�1, that is

symb�1½qið/Þ; pjð/Þ� ¼ 1
2
ðq̂ip̂j þ p̂jq̂iÞ ð20Þ

Therefore, symb and symb�1 define isomorphisms
between the algebras A and Aq,

symb : A ! Aq; symb�1
: Aq ! A ð21Þ

On the other hand, Wigner transformation for states is

qð/Þ ¼ ð2p�hÞ�ðNþ1Þsymbðq̂Þ ð22Þ

The fundamental property of Wigner transform used
throughout this paper is the preservation of inner product
between states q̂ 2 N and observables Ô 2 A. From a phys-
ical viewpoint this property correspond to the invariance
of mean values calculated in A and Aq respectively. More
precisely,

q̂ðÔÞ ¼ hÔiq̂ ¼ ðq̂jÔÞ ¼ ðsymbðq̂ÞjsymbðÔÞÞ

¼ hqð/Þ;Oð/Þi ¼
Z

C
d/2ðNþ1Þqð/ÞOð/Þ ð23Þ

More generally, if Â; B̂ 2 A then we have (see [33,36])

trðÂB̂Þ ¼ ðÂjB̂Þ ¼ ðsymbðÂÞjsymbðB̂ÞÞ ¼ hAð/Þ;Bð/Þi

¼
Z

C
d/2ðNþ1ÞAð/ÞBð/Þ ð24Þ

where Að/Þ ¼ ð2p�hÞ�ðNþ1ÞsymbðÂÞ and Bð/Þ ¼ symbðB̂Þ.
At this point it is suitable to make the following

remarks and clarifications.
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(I) In this paper we use q̂ðnÞ as a short notation of q̂
after n successive applications of Û, i.e.

q̂ðnÞ ¼ ÛðnÞq̂ÛðnÞy represents q̂ after n arbitrary
time steps at constant intervals in a discretized time

evolution. More precisely, we consider that ÛðnÞ is
the one given by Hamiltonian or Floquet operator
[4]. Both cases are of great interest theoretically

and experimentally.11 That is, we can choose Û as
evolution operator and make the time step to be equal

to a 2 R then we have q̂ðnÞ ¼ e�iĤ�han
� �

q̂ e�iĤ
y

�h an
� �

where

only in the unitary case we will have Ĥy ¼ Ĥ. More-
over, in applications of oscillating electric (or mag-
netic) fields we have Hamiltonians of the type

Ĥ ¼ Ĥ0 þ V̂ðtÞ where Ĥ0 is typically the Hamiltonian
of an atom or nucleus with a time-periodic potential

V̂ðtÞ. In this case the ‘‘natural’’ choice for Û is the Flo-
quet operator so that q̂ðnÞ represents an stroboscopic
observation of the system in q̂ at time t ¼ ns where s
is the periodicity of V̂ðtÞ (see Section 4.1 of [4]). In
Section 5 we will take into account that the choice
of time steps is arbitrary.

(II) By ‘‘a time evolution operator Û having a classical
evolution automorphism T’’ we will mean that if q̂
is a quantum state and q ¼ symbðq̂Þ is its corre-
sponding density then Wigner transform of q̂ð1Þ
(i.e. q̂ð1Þ is q̂ after an application of Û) is
symbðq̂ð1ÞÞ ¼ symbðÛq̂ÛyÞ ¼ q � T. In other words,
Wigner transform connects evolution operator Û
with automorphism T. Moreover, it follows that
symbðq̂ðnÞÞ ¼ symbðÛðnÞq̂ÛðnÞyÞ ¼ q � Tn for all
n 2 N [ f0g.

These remarks will be fundamental for the develop-
ment of next sections.

4.1. The Quantum Spectral Decomposition Theorem (QSDT)

In previous section we presented a framework based on
the classical limit by means of Wigner transform. Now we
can write Spectral Decomposition Theorem (Theorem 7 of
Section 3) in quantum language. First, we assume that

� If Û represents the evolution12 of a quantum system
then Û has a corresponding classical evolution automor-
phism13 T defined over C and T has an associated con-
strictive Frobenius–Perron operator P.
� There exists a stationary density f �, that is, Pf� ¼ f �.

Under these hypothesis we have the following
Quantum Version of Spectral Decomposition Theorem.
11 For instance, when we have Hamiltonians with periodic time depen-
dences the theoreticians prefer periodically kicked systems while the
experimentalists prefer driven systems (see p. 138 and 139 of [4]).

12 By remark (I) of previous section we know that Û is not necessarily
Û ¼ e�iĤ�ht given by Hamiltonian, i.e. Û may also be Floquet operator.

13 Of course, we can make the natural choice of T as T : C! C with
Tð/ ¼ ðq; pÞÞ ¼ /ð1Þ ¼ ðqð1Þ; pð1ÞÞ, i.e. time step is equal to one and T is the
classical evolution operator determined by Hamilton equations. However,
the choice of time steps is arbitrary.
Theorem 9 (The Quantum Spectral Decomposition
Theorem (QSDT)). Let q̂ 2 N and let Ô be an observable.
Then there exists pure states q̂1; q̂2; . . . ; q̂r; observables
Ô1; Ô2; . . . ; Ôr ; a permutation a : f1; . . . ; rg�!f1; . . . ; rg and
~q0 2 A0 such that

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ka�nðiÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð25Þ

where14

q̂ðnÞ ¼ UðnÞq̂UðnÞy and

kiðq̂Þ ¼ ðq̂jÔiÞ
ð26Þ

The states q̂i and ~q0 have the following properties:

(I) q̂iq̂j ¼ 0ð�hÞ for all i – j. So that states q̂i are orthogo-
nal in the classical limit ð�h! 0Þ. Moreover, we have
a decomposition of the identity:
14 q̂ðn
15 Thr

autom
Tt¼1ð/ ¼
1̂ ¼
X

i

aiq̂i with ai P 0;
X

i

ai ¼ 1 ð27Þ
(II) For each integer i there exists a unique integer aðiÞ
such that ðÛq̂iÛyjÔÞ ¼ ðq̂aðiÞjÔÞ. Further aðiÞ– aðjÞ
for i – j so operator Û permutes the states q̂i.

(III) ð~q0ðn� 1ÞjÔÞ�!0 as n�!1.
Proof. We consider that triplet ðX;R;lÞ is the one given by
classical mechanics, i.e. X ¼ C is the 2ðN þ 1Þ-dimensional
phase space, R ¼ PðCÞ is the power set of C and l is the
Lebesgue measure. As is usual, we denote x 2 X by

/ ¼ ðq1; . . . ; qNþ1; p1
q ; . . . ; pNþ1

q Þ 2 C and lðdxÞ by d2ðNþ1Þ/.

Let q̂ 2 N and let Ô be an observable. If we define

f ¼ symbðq̂Þ and g ¼ symbðÔÞ then, multiplying Eq. (9) by
g and integrating over all phase space C we haveZ

C
d2ðNþ1Þ/ Pnf ð/Þgð/Þ ¼

Xr

i¼1

ka�nðiÞðf Þ
Z

C
d2ðNþ1Þ/ �1Ai

ð/Þgð/Þ

þ
Z

C
d2ðNþ1Þ/ Q nf ð/Þgð/Þ ð28Þ

Equivalently,

hPnf ; gi ¼
Xr

i¼1

ka�nðiÞðf Þh�1Ai
; gi þ hPn�1Qf ; gi ð29Þ

Since hPnf ; gi ¼ hf ;Ungi and hPn�1Qf ; gi ¼ hQf ;Un�1gi (i.e.
Koopman operator U is the dual of Frobenius–Perron oper-
ator P both corresponding to automorphism T) we obtain15

hf ;Ungi ¼
Xr

i¼1

ka�nðiÞðf Þh�1Ai
; gi þ hQf ;Un�1gi ð30Þ

Now if we call q̂i ¼ symb�1ð�1Ai
Þ, ~q0 ¼ symb�1ðQf Þ and

use that Ung ¼ g � Tn ¼ gðnÞ ¼ symbðÔðnÞÞ;Un�1g ¼
g � Tn�1 ¼ gðn� 1Þ ¼ symbðÔðn� 1ÞÞ (see Eq. (3)) then
Þ in the sense of the remark (I) of p. 11.
oughout the demonstration we consider that T is an arbitrary
orphism and not necessari ly the classical evolution
ðq; pÞÞ ¼ /ð1Þ ¼ ðqð1Þ; pð1ÞÞ given by the Hamiltonian equations.
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hsymbðq̂Þ; symbðÔðnÞÞi ¼
Xr

i¼1

ka�nðiÞðf Þhsymbðq̂iÞ; symbðÔÞi

þ hsymbð~q0Þ; symbðÔðn� 1ÞÞi
ð31Þ

If we call ki ¼ symbðÔiÞ and use Eq. (7) then coefficient
ka�nðiÞðf Þ can be written as

ka�nðiÞðf Þ ¼
Z

C
d2ðNþ1Þ/ f ð/Þka�nðiÞð/Þ ¼ hf ; ka�nðiÞi

¼ hsymbðq̂Þ; symbðÔa�nðiÞÞi ¼ ka�nðiÞðq̂Þ ð32Þ

Therefore, Eq. (31) reads

hsymbðq̂Þ; symbðÔðnÞÞi ¼
Xr

i¼1

ka�nðiÞðq̂Þhsymbðq̂iÞ; symbðÔÞi

þ hsymbð~q0Þ; symbðÔðn� 1ÞÞi
ð33Þ

Finally, we can use the property of Wigner transform
given by Eq. (31)

8Ô 2 A;8q̂ 2 A0 : ðq̂jÔÞ ¼ hsymbðq̂Þ; symbðÔÞi

¼
Z

C
d2ðNþ1Þ/ qð/ÞOð/Þ ð34Þ

Using this property Eq. (33) can be expressed in quan-
tum language as

ðq̂jÔðnÞÞ ¼
Xr

i¼1

ka�nðiÞðq̂Þðq̂ijÔÞ þ ð~q0jÔðn� 1ÞÞ ð35Þ

We know that ðq̂jÔðnÞÞ and ð~q0jÔðn� 1ÞÞ are equal to

ðq̂ðnÞjÔÞ and ð~q0ðn� 1ÞjÔÞ respectively, and then Eq. (35)
reads as

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ka�nðiÞðq̂Þðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð36Þ

Hence we have proved Eq. (25).

(I) We have
trðq̂iÞ¼ ðq̂ij1̂Þ¼ hsymbðq̂iÞ;symbð1̂Þi

¼ h�1Ai
;1Xi¼

Z
C

d2ðNþ1Þ/ �1Ai
ð/Þ

¼
Z

C
d2ðNþ1Þ/ ½1=lðAiÞ�1Ai

ð/Þ

¼ ½1=lðAiÞ�
Z

C
d2ðNþ1Þ/ 1Ai

ð/Þ

¼ ½1=lðAiÞ�
Z

Ai

d2ðNþ1Þ/¼ ½1=lðAiÞ�lðAiÞ¼1 ð37Þ

where we have used definition of �1Ai
given by Eq.

(10), the Weyl symbol property (see Eq. (34)) and

that symbð1̂Þ ¼ 1X . Thus trðq̂iÞ ¼ 1, i.e. q̂i 2 N for all
i. On the other hand if we apply Eq. (19) to f ¼ �1Ai

and g ¼ �1Aj
we have

symbðq̂iq̂jÞ ¼ �1Ai
ð/Þ�1Aj

ð/Þ þ 0ð�hÞ
¼ 0ð�hÞ if i – j ð38Þ

Now applying symb�1 to both sides of Eq. (38) we
obtain
q̂iq̂j ¼ 0ð�hÞ if i – j ð39Þ

On the other hand from Eqs. (10) and (11) we have

1X ¼
P

ilðAiÞ�1Ai
and therefore symb�1ð1XÞ ¼ symb�1P

ilðAiÞ�1Ai

� �
¼
P

ilðAiÞsymb�1ð�1Ai
Þ where we have

used that symb�1 is a linear map. Now if we call

ai ¼ lðAiÞ since symb�1ð1XÞ ¼ 1̂ and q̂i ¼ symb�1

ð�1Ai
Þ then we obtain Eq. (27).
(II) Due to part (II) of Theorem 6 and taking into account
that we are working under hypothesis of Theorem 7
we have
P�1Ai
¼ �1AaðiÞ ð40Þ

where a : f1; . . . ; rg�!f1; . . . ; rg is a permutation
which satisfies aðiÞ – aðjÞ for i – j and thus operator

P permutes the functions �1Ai
. Let Ô be an observable

and g ¼ symbðÔÞ. Then from Eq. (40) we have

hP�1Ai
; gi ¼ h�1AaðiÞ; gi ð41Þ

and noting that

hP�1Ai
; gi ¼ h�1Ai

;Ugi ¼ hsymbðq̂iÞ; symbðÔð1ÞÞi

¼ ðq̂ijÔð1ÞÞ ¼ ðÛq̂iÛyjÔÞh�1AaðiÞ; gi

¼ hsymbðq̂aðiÞÞ; symbðÔÞi ¼ ðq̂aðiÞjÔÞ ð42Þ

then from Eq. (40) we have that ðÛqiÛ
yjÔÞ ¼ ðq̂aðiÞjÔÞ.
(III) Let Ô be an observable and e > 0. Then by condition
(III) of Theorem 6 we have
kPn�1Qfk ¼ kQ nfk < e
maxfjOð/Þj : / 2 Cg

¼ e
kOk1

with O ¼ symbðÔÞ ð43Þ

Then

ð~q0ðn� 1ÞjÔÞ ¼ hsymbð~q0ðn� 1ÞÞ; symbðÔÞi
¼ hQnf ;Oi 6 kQ nfkkOk1 < e ð44Þ
Therefore, from Eq. (44) it follows that
ð~q0ðn� 1ÞjÔÞ�!0. h

4.2. Quantum Ergodic Hierarchy levels: ergodic, mixing and
exact

Theorems 7 and 8 can be used simultaneously to
determine ergodicity, mixing or exactness just by looking
at the terms in the sums on the right hand side of Eq. (6)
or Eq. (9). This observation holds also for the Quantum
Spectral Decomposition Theorem (QSDT, Theorem 9) sim-
ply because this is a translation to the quantum language
of its original version for dynamical systems. Therefore,
we can apply Theorem 8 and QSDT to obtain the following
theorem in order to characterize the Quantum Ergodic
Hierarchy levels (see [2] Theorems 1, 2 p. 261, 263).

Theorem 10 (Quantum Ergodic Hierarchy levels: Ergodic,
Exact and Mixing). Let S be a quantum system. Let q̂ 2 N
and let Ô be an observable. If Û is a time evolution operator
(i.e. representing a discretized time evolution in the sense of
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remark (I) of Section 4) whose classical analogue T (i.e.
representing the time evolution of the analogue classical
system in the sense of remark (II) of Section 4) has a
constrictive Markov operator P. Then

(I) Û is ergodic () permutation fað1Þ; . . . ;aðrÞg of
sequence f1; . . . ; rg is cyclical (that is, for which there
no is invariant subset).

(II) If r ¼ 1 in representation of Eq. (25) ) Û is exact.
(III) If Û is mixing (see [2] Theorem 1 p. 261) ) r ¼ 1 in

representation of Eq. (25).

Again, as in Theorem 8 we have Û exact () Û mixing ()
r ¼ 1.
16 Again, here we are considering that ÛðnÞ is the one given by the
Hamiltonian or at most given by the Floquet operator. That is, ÛðnÞ ¼ e�iĤ�han

(Hamiltonian evolution) or ÛðnÞ ¼ ½ÛðsÞ�n (Floquet evolution, see Eq. 4.1.14
of [4]).
Proof. It is enough to use Theorems 8 and 9 simulta-
neously. h

In following subsections we examine the QEH levels
established by Theorem 10 and its consequences in more
detail. Since Theorem 10 does not distinguish between
mixing and exact we will only discuss the mixing case
(see Remark 5.5.1 of [1]).

4.2.1. A consequence of QSDT: homogenization of the mixing
level

Consider a quantum system that is mixing. Then from
Theorem 10 and Eq. (25) it follows that

ðq̂ðnÞjÔÞ ¼ ðq̂jÔ1Þðq̂1jÔÞ þ ð~q0ðn� 1ÞjÔÞ ð45Þ

where Ô1 is an observable which does not depend on Ô.
Further, since quantum system is mixing then it has a weak
limit q̂� such that limn!1ðq̂ðnÞjÔÞ ¼ ðq̂�jÔÞ. From this limit
and Eq. (45) we have

ðq̂�jÔÞ ¼ limn!1ðq̂jÔ1Þðq̂1jÔÞ þ limn!1ð~q0ðn� 1ÞjÔÞ

¼ ðq̂jÔ1Þðq̂1jÔÞ ð46Þ

since limn!1ð~q0ðn� 1ÞjÔÞ ¼ 0 (see (III) of Theorem 9).

Now, if we make Ô ¼ 1̂ in Eq. (46) given that ðq̂�j1̂Þ ¼
trðq̂�Þ ¼ 1 and ðq̂1j1̂Þ ¼ trðq̂1Þ ¼ 1 we obtain ðq̂jÔ1Þ ¼ 1

then ðq̂�jÔÞ ¼ ðq̂1jÔÞ for all Ô observable. Therefore,
q̂1 ¼ q̂�. In other words, mixing level is physically respon-
sible for the homogenization of q̂ and its evolution towards
the weak limit q̂1. In this sense we can say that QSDT gives
a physical interpretation of the mixing level.

4.2.2. The ergodic level: oscillation plus a term going to zero
From Theorem 10 we can obtain a necessary and suffi-

cient condition for ergodicity. A quantum system is ergodic
if and only if permutation a of

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð47Þ

is cyclical and ð~q0ðn� 1ÞjÔÞ ! 0. Since a is cyclical there is
an integer N > 0 such that aNðiÞ ¼ i and a�NðiÞ ¼ i for
i ¼ 1; . . . ; r. That is, the inverse permutation a�1 operates
on the indices i ¼ 1; . . . ; r as
ð1; . . . ; rÞ�!a�1 ð2;3; . . . ; r � 2; r

� 1; r;1Þ�!a�2 ð3;4; . . . ; r

� 1; r;1;2Þ . . .�!a�k
. . .�!a�N ð1; . . . ; rÞ ð48Þ

After N successive steps we are back to the original
cycle ð1; . . . ; rÞ. This behavior indicates that sum of
Eq. (47) will also return to its original value after N succes-
sive time instants. Then sum of Eq. (47) is periodic with a
period equal to N, i.e. with the same period as cycle a�1.
More precisely, we have

ðq̂ð0ÞjÔÞ¼ ðq̂jÔ1Þðq̂1jÔÞþðq̂jÔ2Þðq̂2jÔÞþ . . .

þðq̂jÔr�1Þðq̂r�1jÔÞþðq̂jÔrÞðq̂rjÔÞþð~q0ð�1ÞjÔÞ
ðq̂ð1ÞjÔÞ¼ ðq̂jÔ2Þðq̂1jÔÞþðq̂jÔ3Þðq̂2jÔÞþ . . .

þðq̂jÔrÞðq̂r�1jÔÞþðq̂jÔ1Þðq̂r jÔÞþð~q0ð0ÞjÔÞ
ðq̂ð2ÞjÔÞ¼ ðq̂jÔ3Þðq̂1jÔÞþðq̂jÔ4Þðq̂2jÔÞþ . . .

þðq̂jÔ1Þðq̂r�1jÔÞþðq̂jÔ2Þðq̂r jÔÞþð~q0ð1ÞjÔÞ
:

:

:

ðq̂ðNÞjÔÞ¼ ðq̂jÔ1Þðq̂1jÔÞþðq̂jÔ2Þðq̂2jÔÞþ . . .

þðq̂jÔr�1Þðq̂r�1jÔÞþðq̂jÔrÞðq̂rjÔÞþð~q0ðN�1ÞjÔÞ
ðq̂ðNþ1ÞjÔÞ¼ ðq̂jÔ2Þðq̂1jÔÞþðq̂jÔ3Þðq̂2jÔÞþ . . .

þðq̂jÔrÞðq̂r�1jÔÞþðq̂jÔ1Þðq̂r jÔÞþð~q0ðNÞjÔÞ
ð49Þ

Then
Pr

i¼1ðq̂jÔa�ðNþ1ÞðiÞÞðq̂ijÔÞ ¼
Pr

i¼1ðq̂jÔa�1ðiÞÞðq̂ijÔÞ. That
is, if we call FðnÞ ¼

Pr
i¼1ðq̂jÔa�nðiÞÞðq̂ijÔÞ then

FðN þ 1Þ ¼ Fð1Þ ð50Þ

Thus sum FðnÞ is periodic with a period equal to N. More-
over, permutation a is cyclical then N ¼ r. Therefore, we
see that in the ergodic case the mean values are composed
by an oscillating part plus a term which tends to zero for
large times (n goes to1). From this remark we can obtain
a sufficient and necessary condition for ergodicity. Let S be
a quantum system having a constrictive markovian Frobe-
nius–Perron operator P associated with the temporal evo-
lution T of its classical analogue. Then we have

� S is ergodic () for all discretized time evolution16

(with discrete time steps at constants intervals) any
mean value ðq̂ðnÞjÔÞ has only two terms, one of which
is an oscillatory function of n (with a period N equals to
the number of terms r of the QSDT decomposition given
by the Eq. (25)) and the other goes to zero for n!1.

In next section the physical interpretation of condition
ð�Þ is studied which is the key to the characterization of
the ergodic systems spectrum.
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5. QSDT and the quantum spectrum

In addition to the characterization of mean values form
of Quantum Ergodic Hierarchy QSDT provides also a link
between QEH levels and spectrum. In this section we
extend this relationship to discrete case and continuous
case, and when both types of spectrum are present. We
point out the formalism we use was introduced by Anto-
niou et al. in order to a give a rigorous mathematical
description on the algebraic formalism of quantum
mechanics [37].

Moreover, although condition ð�Þ of previous section is
a general result it is of great interest to examine the partic-
ular case ÛðnÞ ¼ e�iĤ�han (i.e. the evolution operator is given
by the Hamiltonian) where a is a real parameter which
defines the discrete time steps. In this section we study
what conditions for ergodicity and mixing can be obtained
under this assumption.

5.1. Discrete spectrum

Let q̂ 2 N be a state and let Ô be an observable. For sim-
plicity, we assume the spectrum is finite and discrete. Also,
we assume real eigenvalues. Let E1; E2; . . . ; EN be the ener-
gies of the system with their corresponding frequencies
x1 ¼ E1

�h ;x2 ¼ E2
�h ; . . . ;xN ¼ EN

�h . Let j1i; j2i; . . . ; jNi be their
corresponding eigenvectors. We express any initial state

q̂ in the basis fjiigN
i¼1 as

q̂ ¼
XN

i¼1

qijiihij þ
XN

j–j0
qjj0 jjihj

0j ð51Þ

Then considering ÛðnÞ ¼ e�iĤ�han the mean value of Ô in q̂
after n time steps is

ðq̂ðnÞjÔÞ ¼
XN

i¼1

qiOi þ
XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þan ð52Þ

On the other hand, by QSDT we have

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ka�nðiÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð53Þ

Then, combining Eqs. (52) and (53) we obtain

XN

i¼1

qiOi þ
XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þan

¼
Xr

i¼1

ka�nðiÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð54Þ

From Eq. (54) we can make the following
considerations.

(A) If we suppose the system is ergodic thenPr
i¼1ka�nðiÞðq̂ijÔÞ is a periodic function and because

ð~q0ðn� 1ÞjÔÞ ! 0 for n!1 it follows thatPr
i¼1ka�nðiÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ is a quasi-periodic

function of n.17 The left hand side of Eq. (54) contains
17 If we add a function gðnÞ going to zero for n!1 to a periodic function
f ðnÞ then the sum f ðnÞ þ gðnÞ is a quasi-periodic function.
the term
PN

i¼1qiOi that is constant and therefore the
sum

PN
j–j0q�jj0Ojj0e

�iðxj�x0
j
Þan is a quasi-periodic function

of n.
(B) Now suppose x1 ¼ E1

�h ;x2 ¼ E2
�h ; . . . ;xN ¼ EN

�h are ratio-
nally related. This means that there exists kij; lij 2 N

such that

xi

xj
¼ kij

lij
8i; j ¼ 1; . . . ;N ð55Þ

Now if we put x0 ¼ minfx1; . . . ;xNg then we have18

xj ¼
nj

mj
x0 8j ¼ 1; . . . ;N and nj; mj 2 N ð56Þ

On the other hand we know that each term19

q�ijOije�iðxi�xjÞat þ C:C of non-diagonal part of ðq̂ðnÞjÔÞ (see

Eq. (52)) has a period Tij ¼ 2p
aðxi�xjÞ

. The number Tij is not nec-

essarily an integer and it depends on the values of xi;xj;a.
Moreover, using Eq. (56) we can write Tij as

Tij ¼
2pmimj

aðni � njÞx0
8i; j ¼ 1; . . . ;N ð57Þ

Now the trick is to choose a parameter a such that

non-diagonal part of ðq̂ðnÞjÔÞ is periodic. Consider the low-
est common multiple of products mimj and the greatest
common divisor of all differences ni � nj denoted by
LCMfmimjg and GCDfnimj � njmig respectively. If we
choose a ¼ 2p

GCDfnimj�njmigx0
then it is not difficult to see thatPN

i–jq�ijOije�iðxi�xjÞan is a periodic function of n. For this, it

is enough to show that each term q�ijOije�iðxi�xjÞan þ C:C
takes the same value as in n ¼ 0 (i.e. q�ijOij þ C:C) after n
steps where n ¼ LCMfmimjg. If n ¼ LCMfmimjg and
a ¼ 2p

GCDfnimj�njmigx0
we have

q�ijOije�iðxi�xjÞanþC:C¼q�ijOije
�i

ni
mi
�

nj
mj

� �
x0an
þC:C

¼q�ijOije
�i

nimj�njmi
mi mj

� �
x0an
þC:C

¼q�ijOije
�i

nimj�njmi
mi mj

� �
x0

2p
GCDfnimj�njmigx0

LCMfmimjg

þC:C

¼q�ijOije
�i2p

ni mj�njmi
GCDfni mj�njmig

LCMfmimjg
mimj

� �
þC:C

ð58Þ

Since nimj � njmi is divisible by GCDfnimj � njmig and
LCMfmimjg is divisible by mimj then there exists
Kij; Lij 2 Z such that

Kij ¼
nimj � njmi

GCDfnimj � njmig

Lij ¼
LCMfmimjg

mimj

ð59Þ

Thus combining Eqs. (58) and (59) we have
18 From Eq. (55) it follows that xi
x0
¼ ki0

li0
for all j ¼ 1; . . . ;N. Now if make

ni ¼ ki0 and mi ¼ li0 then we obtain the Eq. (56).
19 C.C denotes the complex conjugate.



I. Gomez, M. Castagnino / Chaos, Solitons & Fractals 70 (2015) 99–116 109
q�ijOije�iðxi�xjÞan þ C:C ¼ q�ijOije�i2pKijLij þ C:C

¼ q�ijOij þ C:C ð60Þ

Therefore
PN

j–j0q�jj0Ojj0e
�iðxj�x0

j
Þn is a periodic function of n.

Now if we assume the system is ergodic thenPr
i¼1ka�nðiÞðq̂ijÔÞ is a periodic function of n (see Sec-

tion 4.2.2.). Then we have

XN

i¼1

qiOiþ
XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þn�

Xr

i¼1

ka�nðiÞðq̂ijÔÞ¼ ð~q0ðn�1ÞjÔÞ

ð61Þ

is a non-trivial periodic function of n going to zero
for n�!1. Contradiction. Then S is not ergodic as we
assumed.

Summing up, given a quantum system S of finite
discrete spectrum with a constrictive and markovian
Frobenius–Perron operator P associated with the temporal
evolution of its classical analogue and considering
ÛðnÞ ¼ e�iĤ�han, from the considerations (A) and (B) we obtain
the following conditions for ergodicity.

ðHÞ S is ergodic ) quantum mean values ðq̂ðnÞjÔÞ
are quasi-periodic functions of n for all state q̂
and observable Ô.

ðHHÞ If frequencies x1 ¼ E1
�h ;x2 ¼ E2

�h ; . . . ;xN ¼ EN
�h are

rationally related ) S is not ergodic.
It is interesting to note that if we associate
frequencies x1 ¼ E1

�h ;x2 ¼ E2
�h ; . . . ;xN ¼ EN

�h with
angular velocities x1;x2; . . . ;xN of N indepen-
dent and autonomous oscillators then the con-
dition ðHHÞ is the same that the one obtained
for rotation on the torus (see p. 190–193 of
[1]). A possible explanation for this fact is as
follows. QSDT allows to express mean values

ðq̂ðnÞjÔÞ of a quantum system S such that clas-
sical properties like ergodicity, mixing can be
translated into quantum language in the same
manner as the Spectral Decomposition Theo-
rem (SDT), i.e. looking the number of terms
and the periodicity of SDT (QSDT) decomposi-
tion (see Eqs. (9) and (25)). Put in other words,
as well as SDT only gives conditions for classical
ergodicity (mixing) and does not distinguish
between two ergodic (mixing) dynamical sys-
tems the same happens with QSDT. If we have
two quantum systems S1; S2 of finite discrete
(and real) spectrum QSDT does not distinguish
whether any of them is an harmonic oscillator,
a particle in a box, etc. But it only says that S1 or
S2 are not ergodic if any of them satisfy that
x1 ¼ E1

�h ;x2 ¼ E2
�h ; . . . ;xN ¼ EN

�h are rationally
related. Equivalently, condition ðHHÞ can be
read as

ðHHHÞ S is ergodic) frequencies x1 ¼ E1
�h ;x2 ¼ E2

�h ; . . . ;

xN ¼ EN
�h are not rationally related.

In the next section we examine the case of discrete
complex eigenvalues.
5.1.1. Discrete complex eigenvalues
Now we consider that eigenvalues are complex and

finite. This is the case of quantum systems described by
an effective non-hermitian Hamiltonian Heff that appears
in atomic, molecular, nuclear physics and in chemical

reactions. Let q̂ 2 N be a sate and let Ô be an observable.
As in previous section, we assume that any state q̂ after

n successive steps is given by ÛðnÞq̂ÛyðnÞ where

UðnÞ ¼ e�i
Heff

�h an and a 2 R defines the time steps. Let
E1 ¼ x1 þ ic1; E2 ¼ x2 þ ic2; . . . ; EN ¼ xN þ icN be the com-
plex eigenvalues of Heff . Non-Hermiticity of Heff yields two

set of eigenvectors called h~1j; h~2j; . . . ; h~Nj left eigenvectors
and j1i; j2i; . . . ; jNi right eigenvectors (see Eq. (2) of [28])

Heff jji ¼ Ejjji; h~jjHeff ¼ h~jjEj j ¼ 1; . . . ;N ð62Þ

satisfying conditions

h~jjki ¼ djkj; k ¼ 1; . . . ;N ðbi-orthogonalityÞ
XN

j¼1

jjih~jj ¼ I ðcompletenessÞ
ð63Þ

where Ej ¼ xj þ icj gives the energy xj and the resonance
width �cj > 0 of jth resonance (see p. 3 of [28]). In a more
realistic case (see Section 6) we can suppose that only first
K eigenvalues are real with 1 6 K 6 N, i.e. cj ¼ 0 for all
j ¼ 1; . . . ;K. Again, we express q̂ in the basis (co–basis)

fjjigN
j¼1 (fjh~kjg

N

k¼1)

q̂ ¼
XN

i¼1

qijiih~ij þ
XN

j–j0
qjj0 jjih~j

0j ð64Þ

From Eq. (64) we have

q̂ðnÞ ¼ ÛðnÞq̂ÛyðnÞ

¼ ÛðnÞ
XN

i¼1

qijiih~ij þ
XN

j–j0
qjj0 jjih~j

0j

0
@

1
AÛðnÞy

¼
XK

i¼1

qijiih~ij þ
XK

j–j0
q�jj0e

�i
ðxj�x0

j
Þ

�h anjjih~j0j

þ
XN

j¼Kþ1

qje
2an

cj
�h jjih~jj

þ
X

j–j0 ;j or j02fKþ1;...;Ng

q�jj0e
�i
ðxj�x0

j
Þ

�h ane
ðcjþc0

j
Þ

�h anjjih~j0j ð65Þ

Coefficients of last two sums of Eq. (65) contains
probabilities of transitions to eigenstates with complex
eigenvalues called ‘‘quasi-stationary states’’ whose reso-
nance width �cj is related to the lifetime Cj by �cj 	 �h

Cj
,

see p. 559 of [38]. Physically, jK þ 1i; jK þ 2i; . . . ; jNi repre-
sent states of an open quantum system in interaction with
an environment where the exponentially decreasing
coefficients of last two sums Eq. (65) can be interpreted
as probabilities of finding a particle in one of the states
jK þ 1i; jK þ 2i; . . . ; jNi ‘‘inside the system’’.

Next step is to show how quasi-stationary states can be
interpreted in terms of QSDT. From Eq. (65) the mean value
of an observable Ô after n time steps reads
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ðq̂ðnÞjÔÞ ¼
XK

i¼1

qiOi þ
XK

j–j0
q�jj0Ojj0e

�i
ðxj�x0

j
Þ

�h an

þ
XN

j¼Kþ1

qjOje2an
cj
�h

þ
X

j–j0 ;j or j02fKþ1;...;Ng

q�jj0Ojj0e
�i
ðxj�x0

j
Þ

�h ane
ðcjþc0

j
Þ

�h an ð66Þ

Therefore, by QSDT we have

Xr

i¼1

ka�nðiÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ

¼
XK

i¼1

qiOi þ
XK

j–j0
q�jj0Ojj0e

�i
ðxj�x0

j
Þ

�h an þ
XN

j¼Kþ1

qjOje2an
cj
�h

þ
X

j–j0 ;j or j02fKþ1;...;Ng

q�jj0Ojj0e
�i
ðxj�x0

j
Þ

�h ane
ðcjþc0

j
Þ

�h an ð67Þ

Since ð~q0ðn� 1ÞjÔÞ ! 0 for n!1 and last two sums on
the right hand of Eq. (67) are the only terms that decay
then we have

Xr

i¼1

ka�nðiÞðq̂ijÔÞ¼
XK

i¼1

qiOiþ
XK

j–j0
q�jj0Ojj0e

�i
ðxj�x0

j
Þ

�h anð~q0ðn�1ÞjÔÞ

¼
XN

j¼Kþ1

qjOje2an
cj
�h þ

X
j–j0 ;j or j02fKþ1;...;Ng

q�jj0Ojj0e
�i
ðxj�x0

j
Þ

�h ane
ðcjþc0

j
Þ

�h an

ð68Þ

From Eq. (68) and Theorem 10 we conclude that the
number of ‘‘quasi-stationary’’ states jK þ 1i; jK þ 2i; . . . ;

jNi determines chaotic nature of the quantum system.
For instance, if we have only one real eigenvalue E1 then
we have maximum number of quasi-stationary states

j2i; j3i; . . . ; jNi. In this case K ¼ 1 and
Pr

i¼1ka�nðiÞðq̂ijÔÞ is
equal to q1O1. Then r ¼ 1, i.e. the system is mixing. When
K ¼ 2 we have two real eigenvalues E1; E2 andPr

i¼1ka�nðiÞðq̂ijÔÞ is equal to q1O1 þ q2O2 þ q�12O12e�i
ðx1�x2 Þ

�h an

þq�21O21e�i
ðx2�x1 Þ

�h an that (by the arguments of the consider-
ation (B) of the previous section) is an oscillatory function
of n if x1;x2 are rationally related and taking
a ¼ 2p

GCDfn1m2�n2m1gx0
, i.e. x1 ¼ n1

m1
x0 and x2 ¼ n2

m2
x0. Then

by condition ð�Þ of Section 4.2.2 we have the system is
ergodic.

We can see that in the finite spectrum case we have a
substantial difference between having real eigenvalues
and complex eigenvalues. In the case of real eigenvalues
(see condition ðHHÞ of Section 5.1) we have seen that
natural frequencies rationally related imply the system is
not ergodic. While in the complex case if the real part of
eigenvalues are rationally related then from the first line
of Eq. (68) it follows the system is ergodic.20 Moreover,
in the complex case the decay term of QSDT, i.e.
ð~q0ðn� 1ÞjÔÞ, is exponentially decreasing and provided by
resonances widths cj as we can see from the Eq. (68).
20 i.e. Using the same arguments of (B) of Section 5.1.
Summing up, we see that QSDT gives a characterization
of open quantum systems of discrete complex eigenvalues
where exponentially decreasing terms of mean values (the
right hand on second line of Eq. (68)) are associated with
the decay term of QSDT, ð~q0ðn� 1ÞjÔÞ. All the analysis
described in this section will be illustrated in some detail
with examples in Section 6.

5.2. Continuous spectrum

Now we assume that spectrum is continuous being
Ex ¼ �hx 2 ½0;1Þ the energies, jxi the generalized eigen-
vectors and x ¼ Ex

�h the natural frequencies. Let q̂ be a state
and let Ô be an observable. In order to obtain an approach
to equilibrium we restrict the space of observables and
consider only van Hove Observables (see [39,40] for a more
detail discussion). There is no loss of generality in this
restriction since observables not belonging to van Hove
space are not experimentally accessible (see [41] for a
complete argument). The components of a van Hove obser-
vable ÔR are ORðx;x0Þ ¼ OðxÞdðx�x0Þ þ Oðx;x0Þ where
OðxÞdðx�x0Þ; Oðx;x0Þ are singular and regular21 part of
ÔR respectively. Then we can expand Ô in the basis
fjxihxj; jxihx0jg as

Ô ¼
Z 1

0
OðxÞjxihxjdxþ

Z 1

0

Z 1

0
Oðx;x0Þjxihx0j ð69Þ

Therefore, mean value of Ô in q̂ after n time steps is22

ðq̂ðnÞjÔÞ ¼
Z 1

0
qðxÞ�OðxÞdxþ

Z 1

0

�
Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0 ð70Þ

On the other hand, by QSDT we have

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ¼

¼
Z 1

0
qðxÞ�OðxÞdxþ

Z 1

0

�
Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0 ð71Þ

If we assume that qðx;x0Þ�Oðx;x0Þ 2 L1ð½0;1Þ � ½0;1ÞÞ
then by Riemann-Lebesgue Lemma we haveZ 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0�!0 ð72Þ

when n�!1. That is, using van Hove observables and
assuming that qðx;x0Þ�Oðx;x0Þ 2 L1ð½0;1Þ � ½0;1ÞÞ then
the system is mixing.

Moreover, from Eqs. (70) and 72 it follows that

ðq̂ðnÞjÔÞ�!ðq̂�jÔÞ ¼
R1

0 qðxÞ�OðxÞdx as n�!1 with
q̂� ¼

R1
0 qðxÞ�jxihxjdx.

Therefore, q̂ has weak limit q̂�. Also, if system is mixing
then by Theorem 10 we have r ¼ 1 in the sum of (71). Then
we have
f ðx;x0Þ�Oðx;x0Þ 2 L1ð½0;1Þ � ½0;1ÞÞ for all f ðx;x0Þ.
22 Again, q̂ðnÞ ¼ ÛðnÞq̂ÛyðnÞ with UðnÞ ¼ e�iĤ�han and a 2 R.
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ðq̂ðnÞjÔÞ ¼ ðq̂jÔ1Þðq̂1jÔÞ þ ð~q0ðn� 1ÞjÔÞ

¼
Z 1

0
qðxÞ�OðxÞdx

þ
Z 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0Þandxdx0

ð73Þ

Now since ðq̂jÔ1Þðq̂1jÔÞ and
R1

0 qðxÞ�OðxÞdx are con-

stants and
R1

0

R1
0 qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0�!0;

ð~q0ðn� 1ÞjÔÞ�!0 then by Eq. (73) we obtain

ðq̂jÔ1Þðq̂1jÔÞ¼
Z 1

0
qðxÞ�OðxÞdx

ð~q0ðn�1ÞjÔÞ¼
Z 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0

ð74Þ

From Eq. (74) we see the physical interpretation of term
ð~q0ðn� 1ÞjÔÞ: It is the manifestation of Riemann-Lebesgue
Lemma in closed quantum systems with continuous spec-
trum [26] where observable space is the van Hove space.
Therefore, the fact that mixing systems with continuous
spectrum are those with only one term ðq̂jÔ1Þðq̂1jÔÞ in
decomposition given by Eq. (25) is a consequence of QSDT
where Riemann-Lebesgue Lemma is contained in term
ð~q0ðn� 1ÞjÔÞ. From these arguments it follows the follow-
ing property.

Summing up, given a quantum system S of continuous
spectrum with a constrictive markovian Frobenius–Perron
operator P associated with temporal evolution of its classi-
cal analogue and considering UðnÞ ¼ e�iĤ�han we have

ð�Þ S is mixing and the sum of QSDT decomposition (see
Eq. (25)) only contains the term ðq̂jÔ1Þðq̂1jÔÞ which
is the constant part of quantum mean value of Eq.
(70), i.e.

R1
0 qðxÞ�OðxÞdx. The term ð~q0ðn� 1ÞjÔÞ is

the manifestation of Riemann-Lebesgue Lemma.

5.3. The general case: discrete and continuous spectrum

If both types of spectrum are present according to Eqs.
(52) and 70 we have

ðq̂ðnÞjÔÞ ¼
XN

i¼1

qiOi þ
XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þan

þ
Z 1

0
qðxÞ�OðxÞdx

þ
Z 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0Þandxdx0

ð75Þ

where first two sums and last two integrals represent the
discrete and continuous contributions to spectrum respec-
tively. By QSDT we have

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð76Þ
From Eqs. (75) and (76) we obtain

XN

i¼1

qiOi þ
XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þan þ

Z 1

0
qðxÞ�OðxÞdx

þ
Z 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0

¼
Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð77Þ

From Eq. (77) we can analyze the different cases. Let S
be a quantum system having both types of spectrum as
in Eq. (75). Suppose S has a constrictive markovian Frobe-
nius–Perron operator P associated with the temporal evo-
lution of its classical analogue. One would be tempted to
think that this case is simply the superposition of discrete
and continuous cases each separately, but this is not so.

We begin with the ergodic case. From Theorem 10 and
Section 4.2.2 we know that S is ergodic if and only if sum
on right hand of Eq. (77) is periodic and we see the only
term on left hand of Eq. (77) that can be periodic isPN

j–j0q�jj0Ojj0e
�iðxj�x0

j
Þan. Here we see a substantial difference

from discrete case where we have S is ergodic
)
PN

j–j0q�jj0Ojj0e
�iðxj�x0

j
Þan is quasi-periodic (see condition

ðHÞ of Section 5.1). Furthermore, the term ð~q0ðn� 1ÞjÔÞ
which goes to zero should be associated with the only
decay term on left hand of Eq. (77), i.e. the ‘‘Riemann-
Lebesgue term’’

R1
0

R1
0 qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0.

Then we have

XN

i¼1

qiOi þ
XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þan þ

Z 1

0
qðxÞ�OðxÞdx

¼
Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ

�
Z 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0

¼ ð~q0ðn� 1ÞjÔÞ ð78Þ

Therefore we can see that in the ergodic case decay
term is only provided by continuous part of spectrum as
a consequence of QSDT. By contrast, in the mixing case this
situation is very different due to non-degeneration condi-
tion of quantum chaos. Let us see why this is so.

In the mixing case we have that S is mixing if and only
r ¼ 1 in the sum on right hand of Eq. (77) and this happens
if and only if double sum on left hand of Eq. (77) is
constant. In this case there is no oscillatory term or quasi-
periodic term and all frequencies xj are equal, e.g. xj ¼ x0

for all j ¼ 1; . . . ;N. Then energy levels are degenerated. But
if we recall that non-degeneration is a necessary condition
of quantum chaos then this situation should not be physi-
cally admissible. Thus the only possibility that xj are non-
degenerated without any oscillatory or quasiperiodic term

is if double sum
PN

j–j0q�jj0Ojj0e
�iðxj�x0

j
Þan of Eq. (77) can be

approximated by a double integral in order to apply
Riemann-Lebesgue Lemma. In other words, discrete part
must be quasicontinuous, i.e. adjacent energy levels are
very close. More precisely, considering discrete part is
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supported in an interval ½a; b� such that23 ½a; b� \ ½0;1Þ ¼ ;
with N equispaced frequencies xj ¼ aþ ðj�1Þðb�aÞ

N�1 and
j ¼ 1; . . . ;N then sums on left hand of Eq. (77) must be
replaced by

XN

i¼1

qiOi�!
XN

j¼1

qðxjÞOðxjÞDxj Dxj ¼
b�a
N�1

; Dxj0 ¼
b�a
N�1

XN

j–j0
q�jj0Ojj0e

�iðxj�x0
j
Þan

�!
XN

j;j0¼1

XN

j–j0
qðxj;x0jÞ

�Oðxj;x0jÞe
�iðxj�x0

j
ÞanDxjDxj0 ð79Þ

where Dxj ¼ b�a
N�1 is the length of segment ½xj;xjþ1� and

DxjDxj0 ¼ b�a
N�1

� �2
is the volume of square ½xj;xjþ1��

½xj0 ;xj0þ1�. Now since discrete part is quasicontinuous then

frequencies xj are very close and we have Dxj ¼ b�a
N�1
 1,

i.e. we can take limit N !1 in sums of (79). In such case
we can approximate sums of Eq. (79) by integrals and we
have the replacements24

xj�!x; Dxj�!dx; DxjDxj0�!dxdx0

XN

j¼1

qðxjÞOðxjÞDxj�!
Z
½a;b�

qðxÞOðxÞdx

XN

j;j0¼1

XN

j–j0
qðxj;x0jÞ

�Oðxj;x0jÞe
�iðxj�x0

j
ÞanDxjDxj0�!

Z Z
½a;b��½a;b�nfðx;xÞ:x2½a;b�g

qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0

¼
Z Z

½a;b��½a;b�
qðx;x0Þ�Oðx;x0Þe�iðx�x0Þandxdx0 ð80Þ

Therefore, for the quasicontinuous case Eq. (77) becomesZ
½a;b�

qðxÞOðxÞdxþ
Z 1

0
qðxÞ�OðxÞdx ¼ ðq̂jÔ1Þðq̂1jÔÞZ Z

½a;b��½a;b�
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0

þ
Z 1

0

Z 1

0
qðx;x0Þ�Oðx;x0Þe�iðx�x0 Þandxdx0

¼ ð~q0ðn� 1ÞjÔÞ ð81Þ

That is,Z
½a;b�[½0;1Þ

qðxÞOðxÞdx ¼ ðq̂jÔ1Þðq̂1jÔÞZ Z
½a;b��½a;b�[½0;1Þ�½0;1Þ

qðx;x0Þ�Oðx;x0Þe�iðx�x0Þandxdx0

¼ ð~q0ðn� 1ÞjÔÞ ð82Þ

Now if we apply Riemann–Lebesgue to double integral
of Eq. (82) then this integral can be associated with term

ð~q0ðn� 1ÞjÔÞ. Moreover, we can see how quasicontinuous
23 Since ½0;1Þ is the continuous part of spectrum and we assume non-
degeneration.

24 It is understood that integrals
R R
½a;b��½a;b� and

R R
½a;b��½a;b�nfðx;xÞ:x2½a;b�g of

Eq. (80) are equal since fðx;xÞ : x 2 ½a; b�g is a zero measure set of plane
fðx;x0Þg ¼ RP0 � RP0.
part fxj ¼ aþ ðj�1Þðb�aÞ
N�1 : j ¼ 1; . . . ;Ng joins with continuous

part x 2 ½0;1Þ in the limit N !1 expressed in integralsR
½a;b�[½0;1Þ and

R R
½a;b��½a;b�[½0;1Þ�½0;1Þ of Eq. (82).

Summing up, given a quantum system S having both
types of spectrum, discrete and continuous, with a con-
strictive and markovian Frobenius–Perron operator P asso-
ciated with the temporal evolution of its classical analogue
we have

� S is ergodic ) nondiagonal term of the discrete part of
any quantum mean value (i.e. the second term of the
right hand of Eq. (75)) is a periodic function of n.
� S is mixing () discrete part is quasicontinuous.

6. QSDT applications

In this section we apply the QSDT to two examples25 to
illustrate its physical relevance: Microwave billiards and a
phenomenological Gamow model. As we pointed out in
Sections 4 and 5.1.1, both examples are open quantum sys-
tems that can be described by an effective non-Hermitian
Hamiltonian.

6.1. Quantum ergodic and quantum mixing: microwave
billiards

Microwave billiards are special examples of scattering
systems [4,5]. Typically, to determine the spectrum of such
systems antennas are used as scattering channels. An
external coupling determines the resonances positions
and widths, and the spectrum of microwave billiards are
modified by the presence of the coupling antennas. We
can start with an expression for the scattering matrix
(see [4] p. 221)

Ŝ ¼ 1̂� 2iŴy 1̂

E� Ĥ0 þ iŴŴy
Ŵ ð83Þ

where 1̂ is the identity matrix, Ĥ0 is the undisturbed
Hamiltonian assumed to be a N � N truncated matrix and
matrix elements Wnk of Ŵ contain information on the
coupling strengths of the kth channel to the nth resonance.
The poles of scattering matrix are eigenvalues of the effec-
tive Hamiltonian

Ĥ ¼ Ĥ0 � iŴŴy ð84Þ

Information on widths and shifts induced by antennas
is completely contained in the eigenvalues of effective
hamiltonian Ĥ. Effective Hamiltonians of this type have
been extensively used in nuclear physics [42–47]. We are
only interested in the limiting case of large coupling
strengths where Ĥ is dominated by the term �iŴŴy. The
key is to select a basis where this term is diagonal and
Ĥ0 is treated as a perturbation. If we have K channels with-
out loss of generality we may assume that the K vectors ŵk

with components Wnk are mutually orthogonal,

ŵykŵl ¼
X

n

W�
nkWnl ¼ jŵkj2dkl ð85Þ
25 We omit exact case since by QSDT (Theorem 10) we have Û exact ()
Û mixing.



26 This assumption is reasonable since dimensions of billiard can be
adjusted such that frequencies are rationally related. Indeed, since only
frequencies xm

�h are related with term
Pr

i¼1ðq̂jÔa�nðiÞÞðq̂ijÔÞ (see first line of
Eq. (92)) then it is enough to consider that frequencies xm

�h are rationally
related.
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Then we can take the orthogonal basis formed by the K

vectors m̂k ¼ ŵk
jŵk j

and the N � K vectors ûa where Ĥ0 is

diagonal in subspace generated by vectors ûa (see [4] p.
221 and 222). Using first order perturbation theory the

eigenvalues of Ĥ are

El ¼ m̂yl Ĥ0m̂l � ijŵlj l 6 K

El ¼ ûyl Ĥ0ûl l > K
ð86Þ

Now we can consider the Hamiltonian

Ĥ ¼
XK

l¼1

Eljmlih~mlj þ
XN

m¼Kþ1

Emjumih ~umj ð87Þ

which is a first order approximation of effective
Hamiltonian Ĥ. We have renamed m̂l; ûm as jmli; jumi
respectively, and Hamiltonian Ĥ has been expressed in
two sums to analyze different cases according to the
number of channels K. Also, left vectors h~mlj; h ~umj are those
defined by Eqs. (62) and (63). We consider an initial state q̂
given by

q̂ ¼
XK

l¼1

XK

l0¼1

qll0 jmlih ~ml0 j þ
XN

m¼Kþ1

XN

m0¼Kþ1

qmm0 jumih ~um0 j

þ
XK

r¼1

XN

k¼Kþ1

qrkjmrih ~ukj þ h:c:

( )
ð88Þ

where qij ¼ hijq̂jji for all i; j ¼ 1; . . . ;N and first two sums
of Eq. (88) are diagonal blocks corresponding to the sub-

spaces spanned by fjmligK
l¼1 and fjumigN

m¼Kþ1 respectively.
Third term of Eq. (88) contains nondiagonal elements of
q̂ which connect subspaces spanned by fjmligK

l¼1;

fjumigN
m¼Kþ1 and h:c. denotes the hermitian conjugate oper-

ation. We rename m̂yl Ĥ0m̂l and ûymĤ0ûm as cl and xm for all

l; m. Again, operator ÛðnÞ is given by ÛðnÞ ¼ e�iĤ�han so q̂
after n steps is

q̂ðnÞ ¼ ÛðnÞq̂ÛðnÞy ¼ e�iĤ�hanq̂ei
^Hy
�h an

¼
XK

l¼1

XK

l0¼1

qll0e
�
ðjŵl jþjŵl0 jÞan

�h e
�iðcl�c

l0 Þan

�h jmlih ~ml0 j

þ
XN

m¼Kþ1

XN

m0¼Kþ1

qmm0e
�iðxm�xm0 Þan

�h jumih ~um0 j

þ
XK

r¼1

XN

k¼Kþ1

qrke�
jŵr jan

�h e
�iðcr�xk Þan

�h jmrih ~ukj þ h:c:

( )
ð89Þ

Then the mean value of an observable Ô in q̂ after n
steps is

ðq̂ðnÞjÔÞ ¼ trðq̂ðnÞÔÞ

¼
XK

l¼1

XK

l0¼1

qll0Oll0e
�
ðjŵl jþjŵl0 jÞan

�h e
�iðcl�c

l0 Þan

�h

þ
XN

m¼Kþ1

XN

m0¼Kþ1

qmm0Omm0e
�iðxm�xm0 Þan

�h

þ
XK

r¼1

XN

k¼Kþ1

qrkOrke�
jŵr jan

�h e
�iðcr�xk Þan

�h þ h:c:

( )
ð90Þ
where Oij ¼ hijÔjji for all i; j ¼ 1; . . . ;N. From Eq. (90) we
see that first and third sums decay exponentially as
n!1 while second sum oscillates according to frequency
differences xm �xm0 . This remark is crucial in order to
analyze different cases according to number of channels
K. By QSDT we have

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ ð91Þ

Considering the previous remark and comparing Eqs.
(90) and (91) we have

Xr

i¼1

ðq̂jÔa�nðiÞÞðq̂ijÔÞ¼
XN

m¼Kþ1

XN

m0¼Kþ1

qmm0Omm0e
�iðxm�xm0 Þan

�h

ð~q0ðn�1ÞjÔÞ¼
XK

l¼1

XK

l0¼1

qll0Oll0e
�
ðjŵl jþjŵl0 jÞan

�h e
�iðcl�c

l0 Þan

�h

þ
XK

r¼1

XN

k¼Kþ1

qrkOrke�
jŵr jan

�h e
�iðcr�xkÞan

�h þh:c:

( )

ð92Þ

First line of Eq. (92) shows the oscillatory part of
ðq̂ðnÞjÔÞ while second line of Eq. (92) expresses the decay
terms of ðq̂ðnÞjÔÞ. This can be considered as a ‘‘global’’
QSDT characterization of first order Hamiltonian spectrum
of microwave billiards.

Going into more detail, we consider a rectangle
microwave billiard whose quantum mean values (at first
order) are given by Eq. (92). In this case unperturbed

Hamiltonian Ĥ0 has frequencies cl
�h ¼

m̂y
l
Ĥ0 m̂l

�h ; xm
�h ¼

ûymĤ0 ûm
�h

which can be considered rationally related26 for all
l ¼ 1; . . . ;K; m ¼ K þ 1; . . . ;N then by arguments of consider-
ation (B) of Section 5.1 we have double sum of the first line
of Eq. (92) is a periodic function of n. Now varying number
of channels K we can obtain different chaotic transitions from
integrable regime to chaotic one.

We begin with K ¼ 0 that corresponds to integrable
case Ŵ ¼ 0. Then jŵlj ¼ 0 for all l ¼ 1; . . . ;K in Eq. (86)
and quantum mean values have no terms going to zero,
e.g. all terms of ðq̂ðnÞjÔÞ in Eq. (90) are oscillatory. Since
there is no term that tends to zero then QSDT does not
apply in this case.

Case 1 6 K < N � 1. In this case Ŵ – 0 and we have an

exponential decay of ð~q0ðn� 1ÞjÔÞ with characteristic
times sll0 ¼ �h

jŵl jþjŵl0 j
; sr ¼ �h

jŵr j for all l; l0;r ¼ 1; . . . ;K. Since

frequencies xl are rationally related for all
m ¼ K þ 1; . . . ;N then right hand of first line of Eq. (92) is
a periodic function of n. Therefore, from QSDT we have that
microwave billiard is ergodic for 1 6 K < N � 1 (see end of
Section 5.1). This case corresponds to pseudointegrable
regime (K ¼ 1) and chaotic regime (K > 1).

Case K ¼ N � 1. When K ¼ N � 1 we have ð~q0ðn� 1ÞjÔÞ
decays exponentially with characteristic times
sll0 ¼ �h

jŵl jþjŵl0 j
; sr ¼ �h

jŵr j for all l; l0;r ¼ 1; . . . ;N � 1 and right
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hand of the first line of Eq. (92) has only one term, qNNONN .
Then by QSDT it follows that r ¼ 1 and this means that
microwave billiard is mixing. Therefore, microwave billiard
is mixing for K ¼ N � 1. This case corresponds to a fully
chaotic regime with maximum number of terms that decay
exponentially.

The case K ¼ N is physically excluded because all quan-
tum mean values ðq̂ðnÞjÔÞ can not tend to zero.

Therefore, application of QSDT to microwave billiards
says that increasing of coupling channel number K can be
interpreted as chaotic transitions from integrable (K ¼ 0)
to ergodic (1 < K 6 N � 1) and from ergodic to mixing
(K ¼ N � 1).

6.2. Quantum mixing case: a phenomenological Gamow
model

Phenomenological Gamow model type [6,7] is perhaps
one of simplest and more illustrative examples of decoher-
ence and approach to equilibrium of a quantum system.
Our system is a single quantum oscillator embed in a
environment composed of a large bath of noninteracting
quantum oscillators which can be considered a continuum.
Degeneracies of this system render it convenient for appli-
cation of Hamiltonian analytic extension (see [6,48–50]) in
order to obtain a non-Hermitian effective Hamiltonian 27

given by

Ĥ ¼
X1
k¼0

zkjkih~kj ð93Þ

where zk ¼ kðx0 � ic0Þ are complex eigenvalues (except
z0 ¼ x0), k ¼ 0;1;2; . . . Natural frequency of single oscilla-
tor is x0 and c0 is associated with relaxation time tR by
tR ¼ �h

c0
(see [7] p. 288). In other words, c0 is inversely pro-

portional to decay rate of dumping of single oscillator. We
consider an initial state q̂ given by

q̂ ¼
X1
k¼0

X1
m¼0

qkmjkih ~mj ð94Þ

where qkm ¼ hkjq̂jmi and qkk P 0, qmk ¼ q�km with
k;m 2 N0. State q̂ after n time steps is given by

q̂ðnÞ ¼ q00j0ih0j þ
X1
k¼1

qkke�2k
c0
�h njkihkj

þ
X1
k¼0

X1
m¼0;k–m

qkme�
c0
�h ðkþmÞnjkihmj ð95Þ

Then mean value of an observable Ô in q̂ after n time
steps is

ðq̂ðnÞjÔÞ ¼ trðq̂ðnÞÔÞ ¼
X1
k¼0

h~kjq̂ðnÞÔjki

¼
X1
k¼0

fq̂ðnÞÔgkk ¼
X1
k¼0

X1
m¼0

fq̂ðnÞgkmfÔgmk

¼ q00O00 þ
X1
k¼1

qkkOkke�2k
c0
�h n

þ
X1
k¼0

X1
m¼0;k–m

qkmOkme�
c0
�h ðkþmÞn ð96Þ
27 In fact, in this non-Hermitian case we have Ĥ ¼
P1

k¼0zkjkih~kj–P1
m¼0z�mjmih ~mj ¼ Ĥy due presence of complex eigenvalues zk (k – 0) with

nonzero imaginary parts.
where hnjÔjmi ¼ Onm with k; m 2 N0 and parenthesis with
subindexes fq̂ðnÞÔgkk; fq̂ðnÞgkm; fÔgmk are notations for
corresponding matrix elements of q̂ðnÞÔ; q̂ðnÞ and Ô
respectively. On the other hand by, QSDT we have

Xr

i¼1

ðq̂wjÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ

¼ q00O00 þ
X1
k¼1

qkkOkke�2k
c0
�h n

þ
X1
k¼0

X1
m¼0;k–m

qkmOkme�
c0
�h ðkþmÞn ð97Þ

Since first term q00O00 on right hand of Eq. (97) is constant
and remaining terms tends to zero when n!1 (due
presence of decreasing exponentials) then sum on left
hand of Eq. (97) must consists of only one term, i.e. r ¼ 1.
From this fact it follows that ~q0ðn� 1Þ ¼ q̂ðnÞ � q00j0ih0j
is associated with decay modes zk (k – 0). Therefore, from
Theorem 10 (II, III) it follows that Gamow model is mixing.
Moreover, we can obtain weak limit of state q̂ (see [2] Sec-
tion 6.3 def. B). From Eq. (97) we have

ðq̂ðnÞjÔÞ ¼
Xr

i¼1

ðq̂wjÔa�nðiÞÞðq̂ijÔÞ þ ð~q0ðn� 1ÞjÔÞ�!q00O00

¼ q00ðq̂j0ih0jjÔÞ for n�!1 ð98Þ

where q̂j0ih0j ¼ j0ih0j. That is, q̂w ¼ q00j0ih0j is the weak
limit of q̂.28

7. Conclusions

Assuming that the classical limit of a quantum system
has a constrictive Markovian Frobenius–Perron operator
associated with its classical evolution T we presented a
Quantum Version of Spectral Decomposition Theorem of
dynamical systems (Theorems 6 and 7) we called Quantum
Spectral Decomposition Theorem (QSDT, Theorem 9).
QSDT gives a representation of expectation values of all
observable Ô characterizing ergodic level of QEH by pres-
ence of an oscillatory term (see Eq. (49)) and at the same
time contains Riemann–Lebesgue Lemma for van Hove
observables in the mixing case (see Eq. (74)). Moreover,
in the mixing case QSDT provides a physical interpretation
of ‘‘homogenization’’ (see Eqs. (45) and 46) which is repre-
sented by the state q̂1 that is weak limit of q̂.

Considering that quantum evolution is given by
ÛðnÞ ¼ e�iĤ�han, i.e. a discretized evolution at constants inter-
vals where the parameter a 2 R defines the time step,
QSDT links QEH levels with spectrum. More precisely,
when the spectrum is discrete we have that quasi-period-
icity of quantum mean values is a necessary condition for
ergodicity and linear dependence in the ring of integers
of energy frequencies x1 ¼ E1

�h ;x2 ¼ E2
�h ; . . . ;xN ¼ EN

�h is a suf-
ficient condition for non-ergodicity (see condition ðHHÞ of
Section 5.1).
28 Non-normalization of q̂w ¼ q00j0ih0j is a consequence of non-Hermi-
ticity of Hamiltonian Ĥ given by Eq. (93). This is so because if Ô ¼ Î from Eq.
(96) we have trðqðnÞÞ is decreasing and trðqðnÞÞ ¼ ðqðnÞĵIÞ ! q00 when
n!1. Therefore, 0 < q00 � 1 and q00 ¼ 1 () qkk ¼ 0 for all k – 0.



Table 1
QSDT characterization of microwave billiards30

Number of
channels K

Quantum mean values

ðq̂ðnÞjÔÞ
QEH level,
regime

K ¼ 0 Oscillatory None,
integrable

1 6 K < N � 1 Exponential decay terms Ergodic,
chaotic

K ¼ N � 1 Maximum number of
exponential terms

Mixing, fully
chaotic

30 Again, we consider dimensions of billiard can be adjusted such that

unperturbed Hamiltonian Ĥ0 has frequencies cl
�h ¼

m̂y
l
Ĥ0 m̂l

�h ; xm
�h ¼

ûym Ĥ0 ûm
�h

which are rationally related.
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For the complex discrete case QSDT gives us a
characterization of quasi-stationary states (see Eq. (68))
where exponentially decreasing terms of any mean value

ðq̂ðnÞjÔÞ are associated with decay term ð~q0ðn� 1ÞjÔÞ. This
can be considered as a QSDT characterization of open
quantum systems described by an effective and non-
Hermitian Hamiltonian.

For the continuous case we have that mean values
of van Hove observables are composed by two terms,
diagonal and non-diagonal, whose physical interpretation
can be analyzed by means of QSDT decomposition. The
terms

R1
0 qðxÞ�OðxÞdx and

R1
0

R1
0 qðx;x0Þ�Oðx;x0Þ

e�iðx�x0 Þ
�h ndxdx0 can be identified with ðq̂jÔ1Þðq̂1jÔÞ and

ð~q0ðn� 1ÞjÔÞ respectively, see Eq. (74). In other words,
mixing case corresponds to continuous spectrum with a
van Hove algebra. When both spectra are present QSDT
give us two conditions (see Section 5.3).

� Quantum system is ergodic then non-diagonal term of
discrete part of spectrum is a periodic function of n,
see Eq. (78).
� Quantum system is mixing if and only if discrete part of

spectrum can be approximated by a quasicontinuous,
see Eqs. (79) and (80).

As we pointed out in Section 5.3, the general case is not
the superposition of discrete and continuous cases simul-
taneously. In the ergodic case periodic term is provided
by discrete part of spectrum while decay term is contrib-
uted by continuous part of spectrum. On the other hand,
in the mixing case both continuous part and discrete part
provide decay terms associated with ð~q0ðn� 1ÞjÔÞ where
discrete part is necessarily quasi-continuous. Roughly
speaking, we can say that continuous part ‘‘forces’’ to dis-
crete part to be periodic in the ergodic case and to be
quasi-continuous in the mixing case.

In Section 6 we apply QSDT to two examples, micro-
wave billiards and a phenomenological Gamow type
model. In the first case QSDT allows us to characterize cha-
otic transitions, from integrable regime to chaotic one, of
microwave billiards in terms of the number of channels
K. When there is no channels (K ¼ 0) mean values

ðq̂ðnÞjÔÞ are oscillatory which corresponds to integrable
regime. For a number of channels K such that
1 6 K < N � 129 QSDT says that microwave billiard is ergo-
dic which corresponds to pseudointegrable regime (K ¼ 1)
and chaotic regime (K > 1). This results due presence of
terms that decay exponentially with a rate inversely propor-
tional to the coupling strength jŵrj for all r ¼ 1; . . . ;K (see
Eq. (92)). This seems physically reasonable since a large
coupling strength jŵrj � 1 implies a high scattering channel
which corresponds to a small characteristic time
sr ¼ �h

jŵr j 
 1, i.e. the exponential decay is fast. When

K ¼ N � 1 QSDT says that microwave billiard is mixing
which corresponds to fully chaotic regime where mean val-

ues ðq̂ðnÞjÔÞ contain a maximum number of terms that
decay exponentially (see Eq. (92)). We summarize QSDT
29 N is the dimension of truncated matrix of undisturbed Hamiltonian Ĥ0.
characterization of microwave billiards in the following
table.

From Table 1 we see that increasing of number of chan-
nels implies an increasing of chaotic level. System starts
with an integrable regime for K ¼ 0, enters to a chaotic
ergodic regime when 1 6 K < N � 1 and finally reaches a
fully chaotic mixing regime for K ¼ N � 1, i.e. as number
of antennas increases system becomes more chaotic. This
can be considered as a QSDT characterization of microwave
billiards in the limit of large coupling strengths.

In the case of Gamow model QSDT decomposition
determines its mixing level, see Eq. (97). Moreover, given
an initial state q̂ its weak limit q̂w ¼ q00j0ih0j can not be
normalized due non-Hermiticity of effective Hamiltonian
Ĥ, see Eqs. (93) and (98).

We hope that all these features provided by QSDT can
be useful in shedding light on quantum chaos in future
studies through more examples and theoretical essays.
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