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Quantum manifestations of isoperiodic stable structures (QISSs) have a crucial role in the current behavior of
quantum dissipative ratchets. In this context, the simple shape of the ISSs has been conjectured to be an almost
exclusive feature of the classical system. This has drastic consequences for many properties of the directed
currents, the most important one being that it imposes a significant reduction in their maximum values, thus
affecting the attainable efficiency at the quantum level. In this work we prove this conjecture by means of
comprehensive numerical explorations and statistical analysis of the quantum states. We are able to describe the
quantum parameter space of a paradigmatic system for different values of �eff in great detail. Moreover, thanks to
this we provide evidence on a mechanism that we call parametric tunneling by which the sharp classical borders
of the regions in parameter space become blurred in the quantum counterpart. We expect this to be a common
property of generic dissipative quantum systems.

DOI: 10.1103/PhysRevE.91.010903 PACS number(s): 05.45.Mt, 05.60.Gg

The idea of directed transport [1] proved to be very fruitful,
and has attracted a huge interest in recent years [2]. It can
be very briefly defined as transport phenomena in spatial
and time periodic systems which are not subject to thermal
equilibrium. The current appears since all spatiotemporal
symmetries leading to momentum inversion are broken [3].
Examples of ratchet models (as they are also usually referred
to) have found application in many areas of research. Here we
will mention just a few, such as biology [4], nanotechnology
[5], granular crystals [6], and some chemical reactions as
isomerization [7]. This gives an idea of how different the fields
of interest could be.

At the classical level, deterministic ratchets with dissipation
are generally associated with an asymmetric chaotic attractor
[8]. Quantum ratchets show very rich behavior [9]. In this
respect we should mention that cold atoms in optical lattices
have been deeply investigated from both the theoretical and
experimental points of view [10,11]. This extends also to
Bose-Einstein condensates, which have been transported by
means of quantum ratchet accelerators [12], where the current
has no classical counterpart [13] and the energy grows
ballistically [14,15]. Within this framework, a dissipative
quantum ratchet interesting for cold atoms experiments has
been introduced in [16]. Very recently, the parameter space of
the classical counterpart of this system has been the object
of a detailed study [17,18]. There it has been found that
families of isoperiodic stable structures (ISSs are Lyapunov
stable islands, generic in the parameter space of dissipative
systems), have a very important role in the description of the
currents. Subsequently, the effects of temperature have been
included in the investigations leading to the determination of
resistant optimal ratchet transport in its presence [19].

When looking at the quantum counterparts of these struc-
tures it has recently been found that, in general, the quantum
manifestations of isoperiodic stable structures (QISSs) look
like the quantum chaotic attractors at their vicinity in parameter
space [20]. In other words, the simple structure of the classical
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ISSs has been conjectured to be an almost exclusive property
of the classical system. Just in comparatively few cases the
quantum structures are similar to these classically simple
objects (periodic points in the case of maps). One of the main
results of this Rapid Communication consists of providing a
comprehensive proof to this conjecture. For that purpose, we
give a complete description of the quantum parameter space
for two different �eff values. On the other hand, we show how
the regions that can be associated with ISS families become
interwoven at the quantum level, blurring their classically
sharp borders, and thus giving rise to what we call parametric
tunneling.

The system under investigation is a paradigmatic dissipative
ratchet system given by the map [16,19,20]

n = γ n + k[sin(x) + a sin(2x + φ)],
(1)

x = x + τn,

where we have denoted by n the momentum variable conju-
gated to x, τ being the period of the map and γ the dissipation
parameter. These equations describe a particle moving in one
dimension [x ∈ (−∞,+∞)] subjected to the periodic kicked
asymmetric potential

V (x,t) = k

[
cos(x) + a

2
cos(2x + φ)

] +∞∑
m=−∞

δ(t − mτ ); (2)

again τ is the kicking period, having a dissipation parametrized
by 0 � γ � 1. γ = 0 corresponds to the particle in the
overdamped regime and γ = 1 to the conservative evolution.
The directed transport appears due to broken spatial (a �= 0 and
φ �= mπ ) and temporal (γ �= 1) symmetries; we take a = 0.5
and φ = π/2 in this work. The classical dynamics depends
only on the parameter K = kτ , which can be directly noticed
when introducing the rescaled momentum p = τn.

The quantum version can be obtained following a stan-
dard procedure: x → x̂, n → n̂ = −i(d/dx) (� = 1). Since
[x̂,p̂] = iτ , the effective Planck constant is �eff = τ . The
classical limit corresponds to �eff → 0, while K = �effk

remains constant. Dissipation can be introduced thanks to the
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master equation [21] for the density operator ρ̂ of the system

˙̂ρ = −i[Ĥs,ρ̂] − 1

2

2∑
μ=1

{L̂†
μL̂μ,ρ̂} +

2∑
μ=1

L̂μρ̂L̂†
μ. (3)

Here Ĥs = n̂2/2 + V (x̂,t) is the system Hamiltonian, { , } is
the anticommutator, and L̂μ are the Lindblad operators given
by

L̂1 = g
∑

n

√
n + 1 |n〉 〈n + 1|,

(4)
L̂2 = g

∑
n

√
n + 1 | − n〉 〈−n − 1|,

with n = 0,1, . . . and g = √− ln γ (according to the Ehrenfest
theorem). We have evolved 106 classical random initial
conditions having p ∈ [−π,π ] and x ∈ [0,2π ] (〈p0〉 = 0) in
all cases, and also their quantum density operator counterpart
in a Hilbert space of dimension N .

In [17–19] several classical parameter space portraits have
been shown. Thanks to them three main kinds of ISSs were
identified and called BM , CM , and DM , where M stands for an
integer or rational number and corresponds to the mean mo-
mentum of these structures in units of 2π . With the exception
of γ → 1 (i.e., near the conservative limit), ISSs organize the
parameter space structure and then are essential to understand
the current behavior. In previous work [20], sampling a set
of relevant points in the quantum parameter space has been
the only possibility, due to computational restrictions. In
this Rapid Communication we report a major breakthrough
in this direction, since we were able to completely extend
these classical results and provide quantum parameter space
portraits in the areas of interest. This can be seen in Fig. 1,
where we show the quantum current Jq (we take Jq,Jc = 〈p〉,
where 〈p〉 stands for either the quantum or classical average
momentum, respectively) as a function of parameters k and γ .
The upper panel corresponds to �eff = 0.411, while the lower
one corresponds to �eff = 0.137, both having a resolution of
170 × 100 points. They have been obtained by using a cluster
having more than 100 processors. It is noticeable how the large
B1 structure is almost the only clearly recognizable feature that
resembles the classical ISSs found in parameter space. There
is also a poorly defined region of positive current that can
be attributed to one of the higher order B families. However,
the areas associated with chaotic attractors are recognizable,
especially the ones at k ∼ [3.0,4.0] and γ ∼ [0.6,0.8].

In order to investigate what happens with the other ISSs
that seem not to have a quantum counterpart and also the
behavior of the B1 QISS, we explore the three highlighted
regions [green (gray) squares] of Fig. 1 in more detail. In Fig. 2
we show zooms (100 × 100 points) taken inside these areas,
the upper row corresponding to �eff = 0.411, the middle one to
�eff = 0.137, and the lower row to the classical counterparts for
an easier visualization of the differences between the classical
and quantum results. In the left column we can appreciate how
the largest of the C structures (C−1) influences the B1 region.
This causes a lowering of the current inside the positive ISS
region that is remarkably more pronounced in the �eff = 0.137
case than for �eff = 0.411. This indicates a kind of tunneling
of one structure into the other and since this takes place

FIG. 1. (Color online) Quantum current Jq as a function of
parameters k and γ in a grid of 170 × 100 points. The upper panel
corresponds to �eff = 0.411, while the lower one corresponds to
�eff = 0.137. Black lines correspond to the classical sharp borders of
the B1 structure (as in Fig. 1 of [17]). Green (gray) squares highlight
the regions shown in Fig. 2.

in the parameter space, we propose it as the definition of
parametric tunneling. Also, there is a positive current chaotic
region different from the B1 structure but contiguous to it,
that forms a continuum with B1 at the quantum level. The
middle column shows the next zoom area that is connected
with the previous one by its upper-left corner as can be seen

FIG. 2. (Color online) Quantum current Jq for the three different
regions highlighted by means of green (gray) squares in Fig. 1.
The upper panels correspond to �eff = 0.411, while the middle
ones correspond to �eff = 0.137. Bottom row shows the classical
counterparts (classical current Jc) for comparison purposes. All grids
are of 100 × 100 points.
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FIG. 3. (Color online) Top panel shows the participation ratio
histograms Pη as a function of η. Statistics corresponds to all the
cases shown in Fig. 1. Classical Pη is represented with black circles
(solid line), and quantum Pη for �eff = 0.411 and �eff = 0.137 with
red (dark gray) squares (dotted line) and green (light gray) diamonds
(dashed line), respectively. Inset shows the same histograms in the
η ∈ [0 : 0.05] range. Bottom left panel: Black circles represent η as
a function of Jc, with integer values of k in different shades of gray
(colors). Bottom right panel: Comparison of classical (circles) and
quantum (lines) η as a function of Jq,Jc for �eff = 0.137 with integer
values of k = 2, . . . ,10 and 100 values of γ ∈ [0.2,0.8].

in Fig. 1. It shares the mentioned positive current region and
also has a negative current chaotic zone. This latter also has
an influence on the B1 structure, a phenomenon that is clearly
more marked for the lower �eff = 0.137 case and that can be
appreciated with the help of the central panel in Fig. 2. Finally,
the right column shows an isolated area corresponding to one
part of the D−1 structure which seems to faintly manifest itself
through negative currents but whose shape makes it difficult
to precisely relate it to its classical counterpart. In fact it
seems to be merged with the negative current chaotic region
embedding it.

In order to systematically prove that simple (pointlike)
structures are exceptional at the quantum level, we have
analyzed the shape of the limiting quantum momentum
distributions (obtained after 50 time steps) by means of the
participation ratio η = [

∑
i P (pi)2]−1/N . This measure is a

good indicator of the fraction of basis elements that effectively
expands the quantum state. For comparative purposes we
have also calculated the corresponding classical η by taking
a discretized p distribution (after 10 000 time steps), having
a number of bins given by the Hilbert space dimension of
the lower �eff case (this being N = 36). It is clear that a

finer coarse-graining would slightly change the classical η

distributions but this will not affect their main properties. This
is because the distance among points of the ISSs is almost
always greater than the chosen bin size. We have calculated
the histograms Pη vs η, and we have also studied how η

behaves as a function of the current Jq,Jc. Results are shown
in Fig. 3, where the upper panel corresponds to the histograms
(normalized to 1) for all the cases shown in Fig. 1. The classical
Pη values (black circles and solid line) have a peak at extremely
low η, which can be seen in the inset. The quantum Pη for
�eff = 0.411 [red (dark gray) squares and dotted line] and
�eff = 0.137 [green (light gray) diamonds and dashed line]
have larger values at the tail of the distributions. These are the
most important properties and they are enough to prove our
conjecture. Moreover, with the exception of the peak around
η = 0.2 the classical distribution falls below 0.01 very quickly,
while the quantum ones acquire finite values after η ∼ 0.03.
On the other hand, the quantum distribution for �eff = 0.137
starts to follow the shape of the classical one for higher η

but it is almost unchanged with respect to �eff = 0.411 for
the lowest values. In the bottom left panel in Fig. 3 we can
see that the maximum Jc correspond to the lowest η, and
when superimposed to the quantum values (see Fig. 3, bottom
right panel) they roughly match them for some of the lowest
Jq,Jc. In general the classical η are extremely discontinuous, a
signature of the classical sharp borders of the different regions
in parameter space, while the quantum ones behave smoothly,
also reflecting the appearance of the corresponding quantum
parameter space. It is worth mentioning that the maximum of
Jq is attained for one of the lowest η values and that can be
associated to the “core” of the B1 region (around k = 7.5 and

FIG. 4. (Color online) Quantum and classical current Jq and Jc

as a function of parameter k for γ = 0.45 (top panel), and γ = 0.55
(bottom panel). Quantum currents are represented with solid green
(light gray) lines for �eff = 0.411, orange (gray) lines for �eff = 0.137,
and blue (dark gray) lines for �eff = 0.068. Their corresponding scales
are shown on the left side. Classical currents are illustrated with
dashed black lines with their corresponding scales on the right.
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γ = 0.3). The few lower quantum η values have also much
lower Jq and belong to the lowest k region.

Finally, we have selected transversal cuts of Fig. 1 for two
different γ values, these being 0.45 and 0.55. This shows
that the classical features are very slowly approached by
the quantum distributions and also how different parameter
space neighboring regions influence each other. The results are
shown in Fig. 4 (upper and bottom panels, respectively), where
it is important to notice that the classical current scale (on the
right side) is much larger than the quantum one (on the left
side). It is clearly visible that the sharp borders corresponding
to the classical regions cannot be reproduced by the quantum
counterparts, even though the current significantly grows as
�eff drops from 0.411 to 0.068 for the B QISSs. Moreover we
see how negative Jq,Jc values, typical of the chaotic region
near B1 that is highlighted in the middle panels of Fig. 2, also
can be found inside a small portion of the B1 area near its
border (see Fig. 4, upper panel). The influence suffered from
the C−1 structure near B1 can be appreciated as a clear drop
in Jq values inside the region corresponding to this structure
(see Fig. 4, bottom panel). Again, it is remarkable that this
phenomenon is more pronounced for the lowest �eff = 0.068
value.

To summarize, we have performed a comprehensive ex-
ploration of the quantum parameter space of a paradigmatic
system in the directed transport, open systems, and quantum
chaos literature, i.e., the dissipative quantum kicked rotator
with a biharmonic kick. As a result we were able to develop
a complete picture of the quantum parameter space for
this kind of systems. Thanks to statistically exploring the
limiting distributions through the participation ratios η, we
have systematically proved that the simple structure of the
classical ISSs is exceptional at the quantum level. This is of
huge relevance for the properties of quantum directed currents,
mainly limiting their maximum values and as such, reducing
the efficiency. Moreover, we have found a remarkable feature
of QISSs, this being the influence that they suffer among each
other that blurs their classically sharp borders, a phenomenon
we have called parametric tunneling. In the future, we will
try to identify the details behind this mechanism and also its
consequences at the current level. Also, we plan to consider a
nonzero temperature in order to test how robust is the obtained
quantum parameter space picture.
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