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Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves
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We present an alternative perspective on nonharmonic mode coexistence, commonly found in the shear
layer spectrum of open-cavity flows. Modes obtained by a local linear stability analysis of perturbations to
a two-dimensional, incompressible, and inviscid sheared flow over a cavity of finite length and depth were
conditioned by a so-called coincidence condition first proposed by Kulikowskii [J. Appl. Math. Mech. 30, 180
(1966)] which takes into account instability wave reflection within the cavity. The analysis yields a set of discrete,
nonharmonic frequencies, which compare well with experimental results [Phys. Fluids 20, 114101 (2008); Exp.
Fluids 50, 905 (2010)].
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I. INTRODUCTION

Open-cavity flow, a canonical flow geometry of practical
as well as academic interest in fluid mechanics, exhibits
shear layer instabilities that have been subject to extensive,
theoretical [1,2], and experimental [3,4,11,12] as well as
numerical [5,6] studies over the course of the past decades.
Resonant frequencies, commonly observed in open-cavity
flows, were explained in terms of flow-acoustic feedback
mechanisms [7] coupled with secondary hydrodynamic in-
stabilities in the recirculation region of the cavity as well as
three-dimensional instabilities [6]. Yet another mechanism was
proposed by Villermaux and Hopfinger [8] to explain the low
frequency content in the shear layer spectrum as a result of the
recirculation region.

In the compressible subsonic regime, the well-known
semiempirical Rossiter [7] formula, which was derived
based on the assumption of acoustic feedback, describes
the resonance frequencies observed in such flows reasonably
well [9]. Interestingly, the nonharmonic modes were found
experimentally also in the incompressible case by different
groups [11,12]. Yamouni et al. [10] recently tried to link
the compressible to the incompressible dynamics by means
of a global linear stability analysis. His results, however, do
not compare well with experimental data [11,12]. Hence the
phenomenon still lacks a comprehensive explanation.

In the same decade as Rossiter presented his formula,
Kulikowskii [13] derived a condition for linear stability
analysis in a finite domain (LSAFD) that takes into account
an amplified downstream traveling perturbation wave k+ as
well as an evanescent upstream traveling perturbation wave
k−. The waves are reflected at the downstream and upstream
boundaries characterized by the reflection coefficients R1

and R2, respectively. In order for the perturbation to be
self-sustaining, the amplitude of a perturbation wave at a given
point in space must, after successive reflections, coincide with
the amplitude of the original perturbation. Doaré and Langre
[14] retrieved the same results as Kulikowskii, considering
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the complex Ginzburg-Landau amplitude equation in a finite
domain together with a phase and energy closure principle
first proposed by Gallaire and Chomaz [15]. Lindzen and
Rosenthal [16] showed that Kelvin-Helmholtz instabilities
result from wave overreflection in vertical direction with
their energy extracted from the mean flow. Kulikowskii [17]
himself continued research on this subject considering a
two-dimensional domain, where waves can propagate and be
reflected.

Open-cavity flow under the incompressible assumption is
commonly described in terms of two physically different
flow types: the recirculating flow inside the cavity and the
shear layer flow above. The emitted frequencies observed
experimentally are most likely the result of both the three-
dimensional instabilities in the recirculation region and the
shear layer instabilities [6]. None of the previous studies,
however, consider the possibility (and consequences) of
including the reflection of instability waves. In order to gain
further insight into the nature of the mode coexistence in
open-cavity flows, the present work analyzes the phenomenon
through a local linear stability analysis (in the sense of
Ref. [18]) together with the reflection of the instability
waves from both cavity edges. The Kulikowskii condition is
applied within the time asymptotic theory of spatiotemporal
linear stability analysis, described in detail in Ref. [1] for
plasma physics. The present work presents solutions of the
Kulikowskii condition combined with a spatiotemporal linear
stability analysis, thus obtaining a theoretical account for the
nonharmonic mode coexistence commonly found in open-
cavity flows. The results will be compared with six experiments
of the L/H = 2 cavity geometry, published in Refs. [11]
and [12].

The article is organized as follows. A short overview of
the conventional spatiotemporal linear stability analysis is
given in Sec. II. The physical argument of the Kulikowskii
condition and the method developed to find solutions is
presented in Sec. III. In Sec. IV the experiments with which
the theory is compared are introduced, and thereafter the
results of the LSAFD are presented. Conclusions are drawn in
Sec. V.
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FIG. 1. Schematic view of cavity geometry with base flow
U , reflection coefficients R1 and R2, boundary conditions, inflow
momentum thickness �0, and effective momentum thickness �eff

used in the linear stability analysis and defined in Sec. IV A.

II. LINEAR STABILITY ANALYSIS

The flow is assumed to be steady, parallel, and unidi-
rectional. The streamwise development of the base flow is
therefore entirely neglected. The analysis of flow stability
considers the two-dimensional, inviscid, and incompressible
Euler equations given by

∂tu + u · ∇u = −∇p, (1)

∇ · u = 0, (2)

where u = (u,v)T . As in Huerre and Monkewitz [2] the
flow variables q(x,y,t) = (u,v,p)T and coordinates x,y are
nondimensionalized using the average velocity Ũ and an
effective momentum thickness �eff , introduced in Sec. IV.
The flow is decomposed into a steady laminar base flow
Q(y) = (U,V ,P )T upon which small amplitude perturba-
tions q′(x,t) = (u′,v′,p′)T are permitted (x = (x,y)T ). Normal
mode solutions q′(x,t) = q̂(y)ei(kx−ωt) with q̂(y) = (û,v̂,p̂)T

are then considered to model the spatial and temporal de-
velopment of the perturbations. Note that k and ω are also
nondimensionalized using the average velocity Ũ and the
effective momentum thickness �eff , defined and discussed in
detail in Sec. IV A. The decomposed flow field is subsequently
linearized by neglecting higher order perturbation terms. This
yields a system of linear equations, which is solved as an
eigenvalue problem (EVP) for the wave number k = kr + iki

or for the frequency ω = ωr + iωi . Subscripts r and i stand
for real and imaginary part, respectively.

The linear stability problem is considered in a finite domain
in the streamwise direction, represented by the Kulikowskii
condition, and in the wall-normal direction, characterized by
the boundary conditions as depicted in Fig. 1. The free stream
boundary conditions (y = H ) of the EVP are of Neumann
type for all three variables. In the cavity floor (y = −H ) the
boundary conditions for the velocities are of Dirichlet type

due to the no-slip condition at the solid wall. The boundary
condition for the pressure is of Neumann type, as follows
from the momentum equation. The customary parallel flow
assumptions V = 0, P = const and ∂xQ = 0 are applied. The
one-dimensional base state of the velocity field U = f (y)
was nondimensionalized with the average velocity Ũ and the
momentum thickness �eff . It reads

U (y) = 1 + tanh
(

1
2y

)
. (3)

The EVP together with the base-flow assumptions yield
the dispersion relation of the system, given by the complex
equation

�(ωr,ωi,kr ,ki) = 0. (4)

Its roots ω(k) provide the eigenfrequencies and growth
rates. The dispersion relation is solved numerically using a
Matlab code based on a Chebyshef collocation method with
N = 100 collocation points in the wall-normal direction y.
Differentiation is carried out using a second order nonequidis-
tant finite difference method. According to the Rayleigh
criterion, the inflexion point of the base profile is a necessary
(yet not sufficient) condition for the base flow to be unstable
to small perturbations. Whether instabilities occur and if so,
whether they are are amplified or evanescent in space and time
has to be determined by criteria described in Ref. [1]. It builds
the basis for the LSAFD and will be shortly outlined in the
next section.

A. Amplification and nontransparency

In order to present the argument that leads to the LSAFD,
a brief outline of the steps needed to determine whether a
medium, governed by its dispersion relation, amplifies or
damps an infinitesimal perturbation is given. This theoretical
consideration for the infinite domain is on one hand used
to distinguish between upstream and downstream traveling
waves (k− and k+, respectively) and, on the other hand, to
study the asymptotic behavior of these waves. Normal mode
properties, sustained by a given base state, are encapsulated in
its dispersion relation (4). In general, both the wave number k

and the frequency ω are considered complex. Solutions of the
dispersion relation for given complex wave numbers are called
temporal branches, whereas solutions of the dispersion relation
for given complex frequencies are called spatial branches. The
response of the system (the perturbation wave) to a source

g(x,t) = C · H(t)δ(x)e−iω0t (5)

of a given frequency ω0 is given by

�(x,t) = C

2π

∫
Lω

∫
Fk

eikx

�(ω,k)
dk

︸ ︷︷ ︸
φ(ω,x)

e−iωt

i(ω − ω0)
dω, (6)

where �(ω,k) denotes the dispersion relation, H(t) the
Heavyside step function in time, δ(x) the Dirac delta in space,
and C a constant. The integration contours in the complex
ω plane and the complex k plane, respectively, are defined
according to Lω = (−∞ + iωi,+∞ + iωi) where ωi > 0 and
Fk = (−∞,+∞). The integration contour Lω is located above
all the poles in the complex ω plane, as required by the
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“causality principle,” which states that “effect cannot precede
cause,” meaning that the perturbation occurs only after the
source has been turned on at t = 0.

Below we discuss the asymptotic behavior of the response
of the system perturbed with upstream and downstream
traveling waves. To this end we consider the asymptotic
behavior of expression (6).

B. Asymptotic behavior of the response of the system

In space, a perturbation can travel to x < 0 and to x > 0,
whereas time is unidirectional and thus only t > 0 makes
sense. Therefore, the sign of k cannot serve as an indicator
of stability or instability, as in the temporal case. The physical
nature of the behavior of the waves is embedded in its
dispersion relation, which depends on the medium. In a
transparent medium, the wave only possesses real parts of
the frequency and the wave number. Thus, it passes without
being affected by the medium. On the other hand, if the
medium affects the wave it acquires an imaginary part, which
accordingly yields an amplified or an evanescent wave. If the
perturbation tends to zero as x → ±∞ the wave is evanescent,
while if the perturbation increases as x → ±∞ the wave is
amplified.

Following Ref. [1], we now look for the asymptotic form
of the response of the system �(x,t), far from the source, i.e.,
for |x| → ∞, and long after the time origin (t → ∞). The
asymptotic form t → ∞ has to be taken before |x| → ∞, as a
perturbation cannot propagate to infinity in a finite amount of
time. Applying Briggs’ method [19] we consider Eq. (6) and
move Lω downwards (for a given ωr = ω0) in order to get the
asymptotic expression in time. The highest located singularity
in the complex ω plane is ω0. Once this pole is reached, the
asymptotic form of Eq. (6) reads

�(x,t) ∝ e−iω0tφ(ω0,x), (7)

where only the second term φ(ω0,x) is of interest, since the
first term simply oscillates. The poles of φ(ω0,x) are the zeros
of the dispersion relation �(ω0,k) of the system. By definition,
let k+(ω) denote the poles located in the positive k half plane
and k−(ω) the poles located in the negative k half plane for
ωi → ∞. When the Lω contour is lowered, the poles in the
complex k plane move. They might stay in their original half
plane or might cross into the other half plane. The poles of
interest are the ones that are closest to the real k axis if they
have not crossed, or the ones that are farthest from the real axis
in the case they have crossed the kr axis. With these values
of k+ and k− the asymptotic behavior of the response of the
system can be evaluated, considering

�(x,t) ∝ ei[k+(ω0)x−ω0t]

= ei[kr+(ω0)x−ωr0t]e−ki+(ω0)x+ω0i t (8)

for x > 0 and

�(x,t) ∝ ei[k−(ω0)x−ω0t]

= ei[kr−(ω0)x−ωr0t]e−ki−(ω0)x+ω0i t (9)

for x < 0. In the case studied in the present work, a k+ branch
crosses the kr axis, while all k− branches stay in the lower
half plane. Thus, ki+ < 0 and ki− < 0, which means that

downstream traveling waves are amplified [Eq. (8)], while
upstream traveling waves are evanescent [Eq. (9)]. This is
commonly known as convective instability. Once the Lω

contour reaches the most unstable pole, a so-called branch
point (BP) is formed. According to Ref. [20], it can be shown
that when a BP occurs in the complex ω plane, a so-called
pinch point (PP) occurs simultaneously in the complex k plane.
Invoking the arguments introduced above, k+ and k− waves can
be distinguished by considering their behavior for ωi → ∞. A
pole that moves to the positive half plane when ω → ∞ forms
part of the k+ family while a pole that moves to (or stays in) the
negative half plane when ω → ∞ forms part of the k− family.

III. THE FINITE DOMAIN

The finite extent of the domain becomes relevant when
the times taken into consideration are larger than the time
needed by the perturbation to travel along the cavity length.
The geometry under consideration is characterized by its
normalized length L∗ = L

�eff
, the cavity height H ∗ = H

�eff
, and

the two reflection coefficients R2 and R1 at the upstream
and downstream boundaries, respectively. �eff is the effective
momentum thickness that is discussed in detail in Sec. IV A.
L is of the same order as the wavelength of the perturbation
and therefore cannot be neglected. The Kulikowskii condition
is obtained, following Refs. [1] and [13]. Let P be an
arbitrary point inside the domain emitting two countertraveling
perturbation waves k+(ω) and k−(ω). Branches associated with
k+(ω) and k−(ω) are found as solutions of the dispersion
relation �(ω,k) for complex wave numbers and complex
frequencies in an infinite domain. As stated in Ref. [1], the
characteristic oscillations of a finite system may be regarded
as the result of the superposition of traveling waves reflected
by the two boundaries, represented by R1 and R2 ∈ R.
The reflections are accompanied by a mutual transformation
of waves belonging to different branches of the spectrum.
Formally the Kulikowskii condition is obtained by considering
the perturbation wave

�(x,t) = A0ei[k+(ω)x−ωt], (10)

which is emitted at P (0 < P < L∗). A0 is the initially
infinitesimal amplitude. When it reaches the downstream
boundary, � is reflected according to reflection coefficient
R1, and sent back upstream. The wave on its way upstream is
described by

�(x,t) = R1A0eik+(ω)L∗
ei[k−(ω)(x−L∗)−ωt]. (11)

It reaches the upstream boundary, where it is reflected again,
according to the reflection coefficient R2. When it travels
downstream again the wave is described by

�(x,t) = R1R2A0ei[k+(ω)−k−(ω)]L∗
ei[k+(ω)x−ωt ]. (12)

Due to the requirement that �(x,t) must be single valued,
Eqs. (10) and (12) must coincide, leading to the Kulikowskii
condition

R1R2e[i(k+−k−)L∗] = 1. (13)

Note that the frequencies for the downstream traveling
waves (10) and the upstream traveling wave (11) and (12)
do not change. Hence the frequencies of the k+(ω) and k−(ω)
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TABLE I. Summary of L/H = 2 cavity cases. Free stream velocity, U∞. Momentum thickness of boundary layer at x = 0, �0. Cavity
length, L. Location of best fit, xmin. Effective momentum thickness, �eff . Normalized cavity height, H ∗

eff = H

�eff
. Selected Kulikowskii modes,

m1 and m2.

Case Symbols U∞( m
s ) �0 (mm) L (mm) xmin/L(−) �eff (mm) H ∗

eff (−) m1 m2

LH20 • 2.250 — 100 — 1.296a 38.6 3 8
LH21 ◦ 2.180 1.072 100 0.227 1.325 37.7 4 8
LH22 	 1.898 1.294 100 0.227 1.425 35.1 4 8
LH23 � 1.715 1.260 100 0.250 1.525 32.8 5 9
LH24 � 1.379 1.310 100 0.227 1.675 29.9 5 –
LH25 � 0.992 1.420 100 0.250 1.975 25.3 5 –

aMomentum thickness was not obtained experimentally but extrapolated from cases LH21 to LH25.

waves are the same. The Kulikowskii condition is a complex
equation which can be split up into a real and an imaginary
part. This yields

�kr = kr+(ω) − kr−(ω) = πm

L∗ , (14)

�ki = ki−(ω) − ki+(ω) = 1

L∗ ln

[
1

R1R2

]
≈ 0, (15)

where m ∈ N0. Poles of the linear stability analysis which also
solve Eqs. (14) and (15) will hereafter be called Kulikowskii
points.

A. Reflection coefficients

As we consider a rigid cavity walls, the reflection co-
efficients are assumed to be real with a phase shift of π .
Following Ref. [14] we impose a zero total deformation
boundary condition at the upstream and downstream corner
of the cavity, which is expressed as

�(x = 0,t) = 0, (16)

�(x = L,t) = 0. (17)

Let us denote A+
1 the amplitude of the wave at the

downstream boundary (1) before it was reflected and let us
denote A−

1 the amplitude of the wave at the downstream
boundary (1) after it was reflected. Then we can write the
deformation �(x = 0,t) at the location where the boundary
condition is imposed as the sum of the two waves k+ and k−,
which have to add up to zero. This yields (for all times t)

�(x = 0,t) = [A+
2 eik+x + A−

2 R1e
ik−x]e−iωt = 0, (18)

�(x = 0,t) = A+
2 + A−

2 R1 = 0, (19)

R1 = −A+
2

A−
2

= −1 (20)

if we assume that no forcing is induced by the boundaries and
therefore the amplitudes before and after the reflection are the
same. The same reasoning holds for the upstream boundary
(2) from which follows R2 = −1.

Physically it is plausible to expect the product of the
reflection coefficients to be smaller than unity since a part
of the perturbation wave could be lost and travel off to infinity.
A rough computation following Lighthill [21] gave a value

of R1R2 ≈ 0.8 which translates into �ki = 0.0029 for case
LH21 (see Table I) when applied to Eq. (15). The effect of
this positive difference of the spatial amplification rates is
depicted in Fig. 2. Since the real part of the frequency does not
change upon reflection, the Kulikowskii points for �ki = 0
(red �) must move on branches ωr = const (indicated by
black circles in Fig. 2) until the corresponding �ki is reached.
The resulting difference in the real part of the wave number
�kr is approximately equal to �kr for R1R2 = 1. This is true
even for values R1R2 < 0.8 since the branches ωr = const are
predominantly vertical and therefore �kr changes only little
when �ki is increased.

Based on the considerations outlined above we propose a
first order approximation, assuming the reflection coefficients
to be R1 = R2 = −1.

B. Interpretation of the Kulikowskii condition

Physically, Eq. (14) states that the finite domain can contain
only an integer number of waves, which is in agreement with
the wavelength selection criterion found in Ref. [22]. This

FIG. 2. (Color online) LSAFD with �ki = 0.0029, which trans-
lates into R1R2 = 0.80. Case LH21: Branches (+) and branches
(•) correspond to different ωi = const; Branches (◦) correspond
to ωr = const. Horizontal solid line indicates �ki = 0 (R1R2 = 1)
for Kulikowskii points (red �). Horizontal dashed lines separate
Kulikowksii points (blue 	) by �ki = 0.0029 (R1R2 = 0.8).
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FIG. 3. (a) Complex k plane with k branches for ωi → ∞. (b) Complex ω plane with integration contours before (——) and after (– · –)
the branch point is crossed. (c) k branches before (——) and after (– · –) the branch point is crossed, together with two exemplary poles (•) that
solve the Kulikowskii Condition. The straight dashed line S (– – –), separates k+ poles from k− poles. The dashed arrows indicate movement
of respective poles when ωi → ∞.

yields a discretization of a continuous spectrum of solutions
and thus will lead to a selection mechanism of the associated
frequency. Note that in the infinite domain (L → ∞) such
a discretization does not occur since �kr = 0 ∀m ∈ N. The
second equation (15) states the coincidence condition in terms
of the spatial growth rates. The difference of the spatial growth
rates for the upstream and downstream traveling waves has
to be compensated by the reflection coefficients R1 and R2,
to prevent the system from getting out of balance. Hence,
Eq. (15) expresses the self-limited nature of the system. For
the case of total reflection, the right-hand side of Eq. (15) is
zero, which means that if the amplitude of the perturbation
wave is not diminished by reflection, the spatial amplification
rates of the upstream and downstream traveling waves must be
equal in absolute terms. The more general case of R1R2 �= 1
yields a strictly positive right-hand side of Eq. (15) and the
amplification rates adapt accordingly in order to maintain valid
Eq. (15). However, since as mentioned above the product of
the reflection coefficients is close to unity, the numerical value
of �ki is small and does not affect the results significantly.

In short, the solutions to the Kulikowskii condition consist
of two different values of kr , which are associated with one
single set of values of ki , ωr , and ωi . Poles of the linear
stability analysis in the infinite domain that also solve the
finite domain constraint, namely, the Kulikowskii condition,
are denoted Kulikowskii points. Kulikowskii points therefore
characterize the instability behavior of the finite system.

C. Evaluation of the Kulikowskii condition

As stated above, the right-hand side of Eq. (15) is always
positive or zero, since 0 � R1R2 � 1. For the conventional
case (i.e., ωi > ωiBP), however, the respective locations of the
k+ branch and the k− branch [see Fig. 3(a)] do not allow
for such a solution, since the k+ branch is located above the
k− branch, which will always yield k−(ω) − k+(ω) � 0. The
only point where the equation holds is the PP itself. However,
if the BP is crossed (i.e., ωi < ωiBP) by means of analytic
continuation of the Lω contour, as depicted in Fig. 3(b), the
branches change their location so that nonzero solutions for
Eq. (15) become possible. As stated in Sec. II A, once the
integration contour Lω crosses the least stable pole in the ω

plane, causality is violated. This holds for the infinite domain

in which the reflection of the perturbation wave is not taken into
account. In the case of a finite domain, the concepts of “before”
and “after” become inadequate, since due to reflection, a wave
has to be considered as cause and effect at the same time. In
order to know whether a pole is located on a k+ branch or a
k− branch, the same criterion as before is applied. A pole that
moves to the upper half plane as ωi → ∞ is located on a k+
branch, while a pole that stays in the lower half plane when
ωi → ∞, is located on a k− branch. The straight dashed line
in Fig. 3(c) separates the two types of branches according to
this criterion.

IV. RESULTS

A. Experiments and momentum thickness

The results of the LSAFD are now compared to experimen-
tal results obtained by Refs. [11] and [12]. The momentum
thickness � is the only variable parameter in the analysis.
As noted in Ref. [23] (and confirmed in the present work),
the analysis is quite sensitive to �. It is therefore crucial to
choose the momentum thickness with care. The base profile is
assumed to follow the shape of a hyperbolic tangent function.
Hence, the incoming Blasius boundary layer needs a certain
time (and space) to relax, in order to fit the hyperbolic tangent
assumption. The authors of Ref. [24] propose to choose �

in the vicinity of the plateau where the momentum thickness
varies only marginally, i.e., ∂�

∂x
≈ 0. Since the plateau in our

case is found at approximately 0.1 < x/L < 0.45, the base
profile [Eq. (3)] was fitted in this region to the experimental
velocity profiles [12] along the cavity length with a least-square
fit method as done by Ref. [25] and � was taken at the
streamwise position xmin, for which the least-square error
(Utan − Uexp)2 exhibits a minimum. xmin was found to be at
approximately one quarter of the cavity length. This is in
agreement with Ref. [23], which suggests using the value of
� one instability wave length downstream of the trailing edge
and before any significant nonlinear interactions occur. Thus
instead of the inflow momentum thickness �0, an effective
momentum thickness �eff = �(xmin) is used as length scale.

Table I summarizes the six cases analyzed in the present
work. The cavity geometry (L/H ) is kept constant and only the
free stream velocity U∞ is varied. With U∞ changes �0 and
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FIG. 4. (Color online) k branches in complex k plane for ωi =
−0.0632 (◦) and ωi = −0.0636 (×) for case LH21. Color scale
indicates value of increasing ωr from light green (ωr = 0.1676) to red
(ωr = 0.1728). Pinch point marked by •. Kulikowskii points marked
by �. Horizontal solid line (—) indicates ki = const.

therefore �eff , which likewise affects the normalized cavity
height and length, H ∗ and L∗, respectively.

B. Evaluation of the Kulikowskii condition

Figure 4 shows four branches, that result from mapping
ωi = const through the dispersion relation into the complex
k plane, before (circles) and after (crosses) the branch point
is crossed. Comparison between the (◦) branch and the
(+) branch shows that, as stated above, solutions of the
Kulikowskii condition [Eqs. (14) and (15)] are possible only
after the BP is reached. Solutions to the Kulikowskii condition
are called Kulikowskii points. The mapping of a Kulikowskii
point from the k plane into the ω plane is depicted in Fig. 5. By
means of a spatial analysis ki = const is mapped through the

0.168 0.17 0.172 0.174 0.176
−0.074

−0.072

−0.07

−0.068

−0.066

−0.064

−0.062

ω
r

ω
i

FIG. 5. (Color online) ω branch for ki = −0.3015. Intersection
(�) indicates Kulikowskii point. Color scale indicates value of
increasing kr from blue (kr = 0.0220) to red (kr = 0.1400).

FIG. 6. (Color online) Red solid graph (—) shows continuous set
of solutions to Eq. (15). Horizontal lines (– · –) depict solutions to
Eq. (14) for m = 2, . . . ,10. Vertical solid lines (—) indicate by the
LSAFD selected frequencies ωrm1 and ωrm2 . Dashed vertical lines
(– – –) indicate frequencies obtained experimentally [11,12]. The
pinch point is marked by � and indicates the minimum frequency
ωr,min selected by the LSAFD. Kulikowskii points are marked by •.
Only case LH21 is depicted for the sake of clarity.

dispersion relation into the complex ω plane and results in a
self-intersecting branch. The intersection yields a Kulikowskii
point as the following conditions are met:

ωi+ = ωi−, (21)

ωr+ = ωr−, (22)

ki+ = ki−, (23)

kr+ = kr− + πm

L∗ m ∈ N0. (24)

A special solution to the Kulkowskii condition is obtained
for m = 0. This double root of the dispersion relation is
commonly called a pinch point in the literature. Evaluating
the second Kulikowskii condition [Eq. (15)] results in the
continuous red graph in Fig. 6. For various ki = const,
�kr (ωr ) = kr+(ωr ) − kr−(ωr ) is plotted over the associated
frequency ωr . The quadratic form confirms the validity of
the Taylor series expansion of the dispersion relation around
the pinch point [1], which yields k − k0 ∼ ±(ω − ω0)

1
2 . The

continuous spectrum obtained by the second Kulikowskii
condition is discretized by the right-hand side of the first
Kulikowskii condition [Eq. (14)], which adds the horizontal
lines to Fig. 6 and thus selects a set of discrete frequencies ωrm,
m ∈ N0. Certain frequencies, labeled ωrm1 and ωrm2 , compare
well with experimental results [11,12] shown in Fig. 7.

Figure 7 compares experimental results for the open-cavity
flow [11,12] with the results of the LSAFD. The square root of
the power spectral density (PSD), normalized by the respective
maximum value, is depicted as a function of the free stream
velocity U∞ and the frequency f . The cases investigated
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FIG. 7. (Color online) Y offset graph comparing the results from
LSAFD (red symbols as in Table I) with the square root of the
normalized power spectral density (PSD) of experimental results
[11,12] (black graphs), measured using an LDV technique. The
streamwise velocity component for the six cases in Table I is depicted.
Dashed lines indicate frequency branches f0, f1, and f2. The arrow
indicates the direction of increasing U∞.

in the present work are represented by the thick lines and
U∞ varies in the vertical axis as indicated by the arrow.
Results of the LSAFD are indicated by the red symbols. Three
incommensurable frequency branches (denoted f0,f1,f2 in the
graph) are amplified depending on U∞. At low velocities f0

and f1 coexist, though f0 is dominant. While f0 disappears
for velocities larger than U∞ ≈ 1.4, f1 keeps growing until it
dies out for velocities U∞ > 2.5. f2 starts to develop around
U∞ ≈ 1.6 and keeps growing from there on. f0 lies outside
of the frequency range selected by the Kulikowskii condition
and is therefore assumed to be due to other effects, mentioned
in the introduction [6,8]. The two high-frequency branches
f1 and f2 enter the regime predicted by the LSAFD for all
velocities.

Frequencies selected by the Kulikowskii condition for
m = 4,5 and m = 8,9, respectively, are in good agreement
with experimental data [11,12]. However, the Kulikowskii
condition selects a larger number of discrete frequencies than
experimentally observed.

C. Evolution of Kulikowskii modes in space and time

The values of ki and ωi along the Kulikowskii points are
depicted in Figs. 8 and 9, respectively. In accordance with
Eqs. (8) and (9), a negative value of ki amplifies downstream
traveling waves and attenuates upstream traveling waves as
required by the Kulikowskii condition. Close to the cutoff
frequency ωr,min (which is nearly equal for all six cases), the
value of ki changes rapidly, whereas the increase or decrease
depends on the local topology of the PP. Farther away from
ωr,min the value of ki levels out and tends to a constant, hence
being approximately equal for both amplified frequencies ωrm1

and ωrm2 .
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FIG. 8. Values of ki for different cases.

The value of ωi is negative throughout the entire frequency
band. This is in accordance with the convective nature of
the instabilities in the present flow and the idea of spatially
amplified waves. If ωi were positive, the perturbations would
grow exponentially in time in every point in space and thus
contaminate the entire flow (absolute instability). The value
of ωi as a function of ωr drops linearly (with slope ≈ −1)
moving away from the cutoff frequency. This means that mode
m2 is temporally more damped than mode m1. A mechanism
which eludes the predominance of either one of the modes, as
discussed in Ref. [26], could not be identified by the present
theory. However, it should be noticed that the temporal growth
rate has only a weak meaning in the present work since
we do not consider an infinitely extended shear layer, but a
system confined by boundaries within which the question of
self-sustaining modes induced by the constructive interference
of reflected waves is addressed.

D. Eigenfunctions of Kulikowskii modes

The location of Kulikowskii points in their respective
complex planes yields information on the stability behavior as
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FIG. 9. Values of ωi for different cases. Symbols as in Table I.
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FIG. 10. (Color online) (a–c) Eigenmodes of amplifying k+
waves (solid lines) and evanescent k− waves (dashed lines) of m = m1

of case LH21 (ωr = 0.1848, ωi = −0.0801). (d–f) Kelvin-Helmholtz
modes of same frequency ωr = 0.1848, but ωi = 0.

well as on the wave number and frequency of the perturbation
waves. The corresponding eigenfunctions provide further
information on the structure of the respective waves in their
three components u, v, and p. Figures 10(a)–10(c) shows
the eigenmodes for the streamwise velocity perturbation u,
wall-normal velocity perturbation v, and pressure perturbation
p of a single set of Kulikowskii points (k+ and k−) at
approximately the frequency corresponding to mode m1 (ωr =
0.1848) of case LH21. For the same frequency, Figs. 10(d)–
10(f) shows the u, v, and p eigenmodes corresponding to the
pole on the Kelvin-Helmholtz (KH) branch. Comparing the
k+ perturbations structure with the KH perturbation structure
it becomes clear that the amplifying k+ wave is a KH-like
perturbation. This is in accordance with the general picture
of the cavity mechanism. The components of the evanescent
k− wave [dashed lines in Figs. 10(a)–10(c)] do not resemble
the KH modes. In all three components their amplitudes show
a more dispersed behavior. The velocity components of the
k− modes are most active inside the cavity (y < 0), while
the pressure component shows a maximum above the cavity
(y > 0). Which one of the components is responsible for the
reflection mechanism cannot be clearly identified; however, it
can be stated that while the downstream traveling k+ waves
are active in a rather narrow region close to the center line
(y = 0), the upstream traveling k− waves are active over the
entire domain (−H < y < H ). It is worthwhile noting that the
choice of the KH like k+ branch is not arbitrary but follows
directly from the spatiotemporal stability theory described in
Sec. II, which states that the k+ branch to be chosen is the one
with the greatest negative value of ki+ [1]. The choice of the
k− branch is dictated by the Kulikowskii condition.

E. Phase speed of Kulikowskii modes

Figures 11 and 12 show the phase speed of the downstream
traveling k+ waves and the upstream traveling k− waves,
respectively, as a function of the frequency for the six cases
summarized in Table I. The dimensionless phase speed of
the downstream and upstream traveling waves, respectively, is

0.15 0.2 0.25 0.3
0
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3
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ω
r

c +

FIG. 11. Phase speeds of k+ waves for all cases.

defined as

c± = ω

k±
. (25)

As shown in Fig. 11, c+ increases near the pinch point
singularity but tends to a constant value of approximately c+ ≈
0.6 for larger frequencies. All six cases collapse in a single line.
Figure 12 depicts the phase speed of the upstream traveling
waves for the different cases together with the nondimensional
speed of sound in air

a = a∞
U∞

with a∞ = 340 m/s. (26)

For the feedback mechanism to be acoustic, waves must
travel at the speed of sound. As shown in Fig. 12 the
upstream traveling waves travel in fact substantially faster
than the downstream traveling waves, but do still not reach
the speed of sound in the frequency band where the amplified
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FIG. 12. Phase speeds of k− waves. Symbols as in Table I. Dashed
horizontal lines indicate nondimensionalized speed of sound in air
a∗ = a∞

U∞ of the respective case.
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FIG. 13. (Color online) Comparison of experimental results
[11,12] (black) with LSAFD (red) for all six cases as well as with a
temporal (spatial) linear stability in infinite domain marked by blue
♦ (
). Long vertical black lines show Rossiter modes n = 1,2,3 from
Eq. (27). Long vertical magenda lines show global modes n = 2,3
from Ref. [10]. Short vertical lines show minimum Strouhal number
Stmin = ωr,minL∗

4π
, defined by pinch point frequency of the respective

cases (see Fig. 6). Gray shaded area shows frequency range selected
by LSAFD (St > Stmin). Symbols as in Table I.

frequencies are observed experimentally (0.18 < ωr < 0.27).
These results suggest that the feedback mechanism in the
incompressible limit is rather due to slower traveling instability
waves than to acoustic pressure waves.

F. Discussion

Figure 13 compares the results obtained by the LSAFD with
data from several other works in the literature. Results from
the LSAFD (StL,FD = ωL∗

4π
, red symbols) compare well with

experimental results [12] (StL,exp = fexpL

U∞
, black symbols). The

blue diamond ♦ (or star 
) symbols in Fig. 13 show the Strouhal
number StL,LS = ωLSL∗

4π
of a conventional local temporal (or

spatial) linear stability analysis in an infinite domain (i.e., no
Kulikowskii condition applied), where ωLS(kr ) is the frequency
for which ωi(kr ) [or ki(ωr )] is maximal (or minimal). The
conventional (temporal or spatial) linear stability analysis can,
however, predict only one single amplified frequency which
tends to fall between the two nonharmonic peaks observed
experimentally and does not predict either one of them with
clarity.

As mentioned in the introduction, high subsonic compress-
ible open-cavity flow is commonly related to the acoustic
feedback mechanism (Rossiter mechanism) expressed in terms
of the Strouhal number StL,R by the semiempirical Rossiter
[7] formula

StL,R = fRL

U∞
= n − γ

M + 1
κ

, (27)

which was derived under the assumption that the feedback
waves travel upstream at the speed c = ω

k
where c is the speed

of sound c. In the incompressible limit the Mach number is
zero and the cavity length L is given in Table I. In Eq. (27)
n = 1,2,3 . . . is the mode number, κ is the ratio between the

convection speed of the vortices and the free stream velocity,
and γ is the lag time between the impact of a vortex on
the cavity edge and the emission of an acoustic wave. The
values κ = 0.66 and γ = 0.25 were used [9]. As mentioned
by Ref. [5] for the L/H = 2 cavity the first two Rossiter modes
are prevalent in the compressible case. Reference [10] tried to
link the Rossiter mechanism to the results of a global instability
analysis when approaching the incompressible limit. However,
only for mode n = 2 could a good agreement be found.
In Fig. 13 Rossiter’s results for M = 0 (vertical lines) are
compared with the global linear stability results [10], with
the results from the LSAFD (red symbols), the results from
a spatial linear stability analysis (blue stars), the results from
a temporal linear stability analysis (blue diamonds), and the
experimental results [11,12] (black symbols) for the six cases
evaluated in the present work (see Table I).

Rossiter mode 1 does not enter the frequency range selected
by the LSAFD (gray shaded area in Fig. 13), given by the cutoff
Strouhal number Stmin, which is defined by the pinch point
frequency ωr,min in Fig. 6. This is in agreement with Ref. [10],
which found Rossiter’s mode 1 to be absent when approaching
M = 0. Frequencies smaller than Stmin are outside of the
selectable frequency range, while the frequency band above
StL,min is discretized by the finite extent of the domain.
Experimentally obtained frequencies [11,12] can be found
at St > Stmin. Rossiter modes for n = 2 and n = 3 are also
found within the discretized frequency band; however, they do
not compare well with experimental results by Refs. [11] and
[12]. Rossiter’s mode 2 is somewhat close to the experimental
mode 1, but Rossiter’s mode 3 is found at substantially higher
frequencies than the experimental mode 2. Global modes [10]
compare reasonably well to Rossiter’s modes but neither to the
experimental results nor to the results obtained by the LSAFD.

These results indicate that in the incompressible limit the
mechanisms responsible for the existence of nonharmonic
modes are at least partly due to the reflection and the linear
interaction of instabilities in the shear layer. This mechanism is
not included in the acoustic feedback mechanism of Rossiter’s
formula.

V. CONCLUSIONS

This work reports results obtained by combining a local,
incompressible linear stability analysis in the infinite domain
with the so-called Kulikowskii condition, first introduced by
Kulikowskii [13] and later revisited by Landau and Lifshitz
[1], which limits the streamwise coordinate to L and takes into
account the reflection of the perturbation waves. A theoretical
framework for a linear stability analysis in a finite streamwise
direction was developed. A wave reflection scenario was
introduced in which downstream traveling k+ waves are
reflected into upstream traveling k− waves and vice versa at
the respective boundary. Total reflection was assumed, though
the implications and consequences of nontotal reflection were
outlined. As a result the Kulikowskii condition discretizes
the frequency band in which the amplified nonharmonic
frequencies are observed experimentally. It was found that
the downstream traveling k+ waves are spatially amplified and
temporally damped, while the upstream traveling k− waves are
spatially and temporally attenuated. This results in a convective
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type of instability, a necessary condition for Kulikowskii’s
theory to be applicable. Solutions to the Kulikowskii condition
become possible only after the pinch point singularity is
crossed, which yields a minimum frequency ωr,min (or St�,min,
respectively) that can be selected by the LSAFD.

The momentum thickness of the base profile used in the
local linear stability analysis was chosen by a least square
fit to experimental data [11,12] in accordance with previous
works [23–25]. Kulikowskii’s condition was evaluated for six
different free stream velocities in a L/H = 2 cavity, yielding
discrete frequencies ωrm1 and ωrm2 , respectively, that compare
well with experiments [11]. It was found that the finite extent
of the geometry is a necessary condition for the discretization
of the frequency band. The low frequency content of the
spectrum of the experimental data [11,12] f0 (Fig. 7) was
found to lie outside of the predicted regime (ω > ωr,min). It is
concluded that another mechanism [6,8] must be at play than
for the higher frequencies peaks f1 and f2 which enter the
predicted regime and compare well with experimental results
[11,12]. The frequency of mode 1 predicted by Rossiter’s
semiempirical formula [Eq. (27)], which is based on an
compressible assumption, is also found outside of the regime
(St < St�,min). Frequencies of Rossiter’s mode 2 and 3 enter
the predicted regime, which is in agreement with Ref. [10].

However, the results of Ref. [10] do not compare well with
experimental data in Refs. [11] and [12].

Our results indicate that the rather simple linear wave
interaction model which is based on a local linear stability
analysis and Kulikowskii’s condition, describes well the
nonharmonic modes observed experimentally. Thus in the
incompressible limit the mechanisms responsible for the
existence of nonharmonic modes are at least partly due to
the reflection and the linear interaction of instabilities in the
shear layer. This mechanism is not included in the acoustic
feedback mechanism of Rossiter’s formula. In our model the
upstream traveling k− waves are found to travel substantially
faster than the downstream traveling k+ waves, though do not
reach the speed of sound.
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