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The proteins of exocytosis: lessons from the sperm model
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Exocytosis is a highly regulated process that consists of multiple
functionally, kinetically and/or morphologically definable stages
such as recruitment, targeting, tethering and docking of secretory
vesicles with the plasma membrane, priming of the fusion
machinery and calcium-triggered membrane fusion. After fusion,
the membrane around the secretory vesicle is incorporated
into the plasma membrane and the granule releases its contents.
The proteins involved in these processes belong to several
highly conserved families: Rab GTPases, SNAREs (soluble
NSF-attachment protein receptors), α-SNAP (α-NSF attachment
protein), NSF (N-ethylmaleimide-sensitive factor), Munc13 and
-18, complexins and synaptotagmins. In the present article, the
molecules of exocytosis are reviewed, using human sperm as a
model system. Sperm exocytosis is driven by isoforms of the
same proteinaceous fusion machinery mentioned above, with
their functions orchestrated in a hierarchically organized and

unidirectional signalling cascade. In addition to the universal
exocytosis regulator calcium, this cascade includes other second
messengers such as diacylglycerol, inositol 1,4,5-trisphosphate
and cAMP, as well as the enzymes that synthesize them and their
target proteins. Of special interest is the cAMP-binding protein
Epac (exchange protein directly activated by cAMP) due in part
to its enzymatic activity towards Rap. The activation of Epac and
Rap leads to a highly localized calcium signal which, together
with assembly of the SNARE complex, governs the final stages of
exocytosis. The source of this releasable calcium is the secretory
granule itself.

Key words: acrosome reaction, calcium, exocytosis, membrane
fusion, Rab, SNARE, SNARE-interacting molecule, sperm.

INTRODUCTION

Sexual reproduction for the perpetuation of species occurs through
fertilization, a process in which the haploid sperm and haploid
egg merge to allow entry of the sperm head, and subsequently
the delivery of the male chromatin, into the egg cytoplasm. As
a result, a diploid zygote is formed that will eventually produce
an individual genetically distinct from his or her progenitors. All
mammalian sperm contain a single, dense-core secretory granule
(the acrosome) which releases its contents at fertilization through
a regulated exocytosis known as the acrosome reaction (AR). As
sperm must travel long distances and encounter many obstacles,
within both the male and the female reproductive tracts, the
initiation of the AR is tightly co-ordinated with the availability
of eggs. Despite decades of intense investigation, reproductive
biologists have not yet reached a consensus about crucial issues
including where (on/within which egg layer) the AR takes place,
what its purpose is and what its physiological inducers are.
Fortunately, recent discoveries have advanced the field rapidly, so
many answers to these questions might soon be available. These
and other important issues have been thoroughly reviewed over
the last few years by leading experts in the sperm biology field, so
they are not revisited in the present review, but interested readers
are referred to the literature [1–8]. Rather, the present review
focuses on some of the membrane fusion molecular mechanisms
occurring during exocytosis in the latest stages of the AR, which

have been clarified after dissection of these events over the past
decade.

ARE SPERM A GOOD MODEL FOR EXOCYTOSIS?

This section is devoted to the argument that sperm represent a
good model of exocytosis and the AR is worthy of attention.
The realization that the central components of the exocytotic
machinery have counterparts in most types of intracellular
membrane trafficking led to the general belief that the mechanisms
of membrane fusion are universal. Indeed, we and others have
shown that the AR relies on the same highly conserved molecules
and goes through the same stages of exocytosis that occur in
neuronal, endocrine and all other cells studied to date (reviewed in
the literature [9–11], and to such an extent that some authors [12]
refer to the anterior region of the acrosomal cap as the ‘acrosomal
synapse’.

Exocytosis is a highly regulated process that consists of multiple
functionally, kinetically and/or morphologically definable stages,
such as recruitment, targeting, tethering and docking of secretory
vesicles with the plasma membrane, priming of the fusion
machinery and calcium-triggered membrane fusion, after which
the membrane around the secretory vesicle is incorporated
into the plasma membrane. A discrete number of molecules
involved in this complex cascade of events have been identified
(for recent reviews see the literature [13–20]).

Abbreviations: 8-pCPT-2-O-Me-cAMP, 8-(4-chlorophenylthio)-2’-O-methyladenosine-3’,5’-cyclic monophosphate acetoxymethyl ester; AR, acrosome
reaction; BoNT, botulinum neurotoxin; Epac, exchange protein directly activated by cAMP; GDI, GDP dissociation inhibitor; GEF, guanine nucleotide
exchange factor; IP3, inositol 1,4,5-trisphosphate; NSF, N-ethylmaleimide-sensitive factor; PKA, cAMP-dependent protein kinase; PLC, phospholipase C;
PTP1B, protein tyrosine phosphatase 1B; sAC, soluble adenylate cyclase; SM, Sec1/Munc18; SNAP, N-ethylmaleimide-sensitive factor attachment protein;
SNARE, soluble NSF attachment protein receptor; SLO, streptolysin O; TeTx, tetanus toxin.
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Exocytosis of the acrosomal vesicle is somewhat unique.
Each sperm contains a single, very large and electron-dense
acrosome that is shed entirely, together with the portion of
plasma membrane that overlays it, in response to exocytosis
inducers. Owing to the size and morphology of the granule
(see schematic diagrams in Figure 2B), as well as the nature
of the acrosomal contents, this exocytosis is a slow event.
Despite these singular morphological and functional features, all
of the fusion-related molecules involved in the AR were initially
found in somatic cells and implicated in various membrane-
fusion events. As such, characterization of the molecular
machinery that drives sperm exocytosis may appear to be a
simple confirmation, in yet another model, of already known
mechanisms.

However, after establishing that sperm share their basic fusion
molecules and regulatory components with all other eukaryotic
cells, additional mechanisms were unveiled that might be
universal but are difficult to analyse in more complex exocytosis
scenarios because of the following. (i) Most exocytotic cells house
functionally different pools of secretory vesicles. It is a serious
challenge to design experiments to investigate the function of
a given fusion protein in a specific fusion stage when there is
coexistence of vesicular pools undergoing different processes
affected by that protein. In contrast, each sperm contains a
single secretory granule (rather than a heterogeneous pool) with
exocytosis that is driven by unidirectional cascades, thus making
the AR more straightforward to dissect compared with other
secretory processes. (ii) In some cell types (typically neurons), the
same substances (and often more than one substance contained
in different vesicle pools and released in response to a single
stimulus) are secreted again and again, requiring multiple rounds
of fusion such that both membranes and fusion machinery recycle
several times. Each sperm contains one preformed granule, with
no biogenesis of new ones. Sperm exocytosis is thus a singular
event in which the granule membrane is not incorporated into
the plasma membrane. Instead, both membranes form vesicles
and are shed, together with the acrosomal contents and the scarce
cytoplasm around the acrosome during exocytosis (see schematic
diagrams in Figure 2B). Thus there is no post-exocytosis
membrane remodelling and recycling, and/or endocytosis in these
cells. As such, all components of the fusion machinery can exhibit
only pre-fusion roles. (iii) In many exocytotic cells, a pool of
granules is situated very close to or in direct contact with the
plasma membrane even before the application of a stimulus;
these granules are defined as morphologically docked. It has
been suggested that granules in this pool release their contents
faster than others on calcium influx. In contrast, all acrosomes
(in all sperm cells) are undocked before the application of an
exocytosis stimulus. In other words, docking does not pre-exist
but is secondary to the challenge of the cells (but see Tsai et al.
[21]). The AR can be reversibly halted at different stages (e.g.
before docking or after docking but before fusion), which allows
for the detailed analysis of the molecular mechanisms involved.
(iv) Overexpression and ablation of genes are two widely used
technologies in the exocytosis field that were instrumental in the
identification of proteinaceous fusion machinery. Both take place
over very long timescales compared with the life cycle of a vesicle.
As sperm cannot synthesize new proteins, only pre-existing
proteins can be delivered to the intracellular compartments
through artificial pores or coupled to cell-permeable peptides.
Consequently, experiments can take place in a short timescale
(minutes) in sperm. The short incubations used in the sperm
model represent a technical advantage because they do not allow
time for compensatory mechanisms or deep perturbations of the
endogenous fusion machinery; thus the results are basically a

straightforward reflection of the role of the introduced factors in
exocytosis.

INTERMEDIATE EXOCYTOTIC STAGES DURING THE AR

To release their contents, secretory vesicles must travel from
a cytosolic depot pool towards the plasma membrane. Once
they identify the compartment with which they are going to
fuse, tethering (the initial contact event that bridges the space
between the two approaching membranes) ensues [22–25]. Only
recently have vesicles loosely connected over a relatively long
distance (tethered) to the plasma membrane in mammalian models
been captured and visualized. The methods employed to achieve
this task include evanescent wave microscopy [26], cryoelectron
tomography [27] and TEM [28] (reviewed in Hallermann and
Silver [29]). As a result of its size and shape, the acrosome
cannot travel to contact the plasma membrane. In capacitated
human sperm (capacitation is a maturation process that sperm
must go through after leaving the male tract to acquire fertilizing
capacity; for review see Salicioni et al. [30]), the acrosome is
evenly spaced (18 nm) from the cell membrane in all cells. Only
after challenge with AR inducers do the acrosomal contents swell
and the acrosomal membrane stretch towards the cell membrane.
Unfortunately, no method for visual distinction between tethered
and non-tethered acrosomes is available yet. Nevertheless, as these
tethering molecules include Rab GTPases and effector protein
complexes, and sperm exocytosis depends on isoforms of these
proteins, it is likely that the acrosome is tethered to the sperm
plasma membrane at some point during the AR.

Docking is a tighter interaction of the two bilayers engaged
in fusion achieved by pairing across soluble N-ethylmaleimide-
sensitive factor (NSF)-attachment protein receptors (trans-
SNARE complexes). SNARE complexes consist of four
intertwined, parallel helices, each supplied by a different SNARE
motif. When all cognate SNAREs are located on the same
membrane, they spontaneously assemble in stable cis complexes,
which are functionally inactive. Disentangling these complexes
to regenerate monomeric SNAREs that will subsequently be
available to engage in productive trans complexes requires
metabolic energy provided by the NSF via the hydrolysis of
ATP. It is believed that the activity of NSF is constitutive in
most cells to ensure that cis complexes are disassembled under
normal steady-state conditions. In sperm, however, the picture
is different, perhaps owing to their need to co-ordinate the AR
carefully with the exact moment when they encounter the egg.
Thus, under resting conditions sperm SNAREs do not cycle but
are engaged in cis complexes on both plasma and outer acrosomal
membranes [31], because the dissociating activity of NSF is
repressed by tyrosine phosphorylation [32]. On sperm activation,
protein tyrosine phosphatase 1B (PTP1B) dephosphorylates NSF,
derepressing its activity. Free SNAREs are subsequently able to
reassemble in trans formation, a process that is facilitated by
complexin [33,34] and Munc18 [35] (Figure 1). At this stage,
sperm exhibit swollen acrosomes with numerous tight appositions
(distances between 0 and 8 nm) between the outer acrosomal and
plasma membranes [36]. These distances are comparable to those
reported in the literature for morphologically docked secretory
vesicles [37,38] and are a hallmark of docked acrosomes. In
contrast to our findings in human sperm, docked acrosomes
have been detected in capacitated boar sperm that have not been
stimulated to undergo exocytosis [21]. We believe that trans-
SNARE complexes form molecular bridges that stabilize the tight
appositions between the acrosome and the plasma membrane
during the docking stage of the AR.

c© The Authors Journal compilation c© 2015 Biochemical Society



The proteins of exocytosis 361

Figure 1 Schematic diagram for the activation/disassembly/assembly of the fusion molecules that drive the AR

Top: in resting sperm, the acrosome is flat, its contents are not swollen and its membrane is not docked to the plasma membrane. SNAREs, synaptotagmin and NSF are inactive, with the former
engaged in cis complexes and the latter phosphorylated on threonine and tyrosine respectively. One of the earliest events triggered by exposure to AR inducers is the swelling of the acrosome.
Also, in response to inducers, Rab27 exchanges GDP for GTP; subsequently, Rab27-GTP promotes the activation of Rab3. Next, two phosphatases dephosphorylate their substrates: calcineurin
on synaptotagmin and PTP1B on NSF. Once dephosphorylated, NSF, together with α-SNAP, disassembles cis-SNARE complexes. Munc18 binds monomeric syntaxin, keeping it temporarily in a
closed configuration. Munc18 and complexin help SNAREs to reassemble in trans complexes. At this stage, the swollen acrosome is docked to the plasma membrane. A local increase in calcium
coming from the acrosome through IP3-sensitive channels binds synaptotagmin. Afterwards, a series of sub-reactions that include displacement of complexin lead to the opening of fusion pores and
vesiculation of the fusing membranes. Post-fusion cis-SNARE complexes remain trapped inside the vesicles. Middle/bottom: in resting sperm, synaptobrevin engaged in cis-SNARE complexes is
resistant to cleavage by TeTx and therefore an antibody can detect the intact protein in the acrosomal region of the cells (red staining). Binding of a specific lectin demonstrates the integrity of the
acrosome (green staining). After the initiation of the AR, monomeric synaptobrevin is susceptible to cleavage by TeTx; the antibody does not detect proteolysed synaptobrevin (left), even though all
four cells in the shown field (asterisks) have intact acrosomes (green). OAM, outer acrosomal membrane; PM, plasma membrane. The model was modified from Roggero et al. [33] and the drawings
were modified from Söllner [156].

In most cells, a single fusion pore opens between the fusing
membranes; eventually the pore widens and the membrane around
the secretory vesicle is incorporated into the plasma membrane
as the granule contents discharge. In sperm, however, the pores
that open at the docking sites widen, but, as the outer acrosomal
membrane is as large as the area of plasma membrane with
which it is fusing, the result of pore widening is fenestration
of the fusion membranes and joining of pores to produce
hybrid plasma membrane/outer acrosomal membrane vesicles
and tubules. The AR is completed when vesicles, tubules and
acrosomal contents are shed [39–41] (see schematic diagrams
in Figure 2B). Intermediate stages are hard to capture in sperm
undergoing the AR because they are transient. Nevertheless,
swelling, docking and vesiculation can be easily visualized by
TEM and quantified after simple pharmacological interventions
[35,36,42–44].

MEMBERS OF THE STANDARD PROTEINACEOUS FUSION
MACHINERY DRIVE THE AR

Secretory Rabs: Rab27 and Rab3

Rab3 (A, B, C and D) and Rab27 (A and B) constitute the two
main Rab subfamilies directly implicated in regulated exocytosis.
These ‘secretory Rabs’ localize to vesicles and secretory granules
in a variety of secretory cell types [13,45–48]. They control the
recruitment and attachment of secretory vesicles to the plasma
membrane through interaction with effectors [49].

Rab3A is present in the acrosomal region of human [50], rat
and mouse sperm [51]; in the latter, it is predominantly membrane
bound and sheds during the AR [52]. In human sperm, capacitation
[53] and challenging sperm with AR inducers [54] lead to
an enhanced association of Rab3A with membranes. Rab3A is
required for the AR triggered by calcium [31,53,55], cAMP [56],
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Figure 2 Schematic representation of Rab3 and 27 activation status and localization: morphological changes undergone by sperm during the AR

(A) In resting sperm, Rab27 is inactive and membrane bound, whereas Rab3 is also inactive but distributed between the cytosol and the particulate fraction. The acrosome is intact and therefore
stained with a green lectin (photograph). On initiation of the AR, Rab27 exchanges GDP for GTP, without appreciably modifying its subcellular localization. Rab27-GTP promotes the activation of Rab3
through the recruitment of a Rab3-GEF activity (orange pentagons); GTP-bound Rab3 is targeted to the particulate fraction. Later, Rab3 hydrolyses GTP, which allows vesiculation of the acrosomal
and plasma membranes. We do not have data on Rab27′s activation status at this stage. Finally, the apical portion of the cell, which contains Rab proteins, is shed and the AR completed. Note that
when the acrosome is lost, the green lectin cannot stain the cell (photograph). Modified from Bustos et al. [54]. (B) The drawings summarize my interpretation of the activation status of Rab proteins
combined with the schematic diagrams of the morphological changes undergone by sperm during the AR. Modified from Bustos et al. [61].

sphingosine 1-phosphate [57] and diacylglycerol [58], as well as
for the docking of the acrosome to the plasma membrane [42].
The Rab3 effector, Rab3-interacting protein RIM, is present in
the acrosomal region of mouse [59] and human [42] sperm, and is
required for docking, and therefore the AR, in the latter. Rab3A
is activated (exchanges GDP for GTP) in response to exocytosis
inducers early during the exocytotic cascade [54,58,60–62] and
must be inactivated (e.g. hydrolyse GTP) to accomplish the
later phases [61] (Figure 2A). The accessory protein Rab-GDI
(GDP dissociation inhibitor) binds Rab-GDP and extracts it from
membranes. Rab-GDI is present in the acrosomal region of human
sperm and is required during the AR with a timeframe identical
to that in which Rab3 must hydrolyse GTP [61].

Despite the fact that Rab3A is absolutely essential for the
human sperm AR measured in vitro, Rab3A− / − animals are fertile
[63]. It is worth noting that the AR has not been characterized in
these animals, although other Rabs or even Rab3 isoforms could
function in the place of Rab3A in vivo. Candidates might be
a protein similar to Rab37, which was classified as a secretory
Rab by Fukuda [46] and has been predicted to be present in a
bull sperm proteome [64]. Meanwhile, transcripts for isoforms of
Rab3 and Rab27 have been detected in whole mouse testes [65]
and mouse type A spermatogonia, pachytene spermatocytes and
round spermatid libraries [66]. Rab3 and Rab27 have also been
detected in a human sperm proteome [66a]. Rab3A deficiency can
be rescued by calcium elevation at certain synapses [67,68]. My
colleagues and I hypothesize that a similar situation might operate

during fertilization in vivo. In this scenario, sufficient calcium
concentrations in the female tract could overcome the Rab3A
deficit in sperm from Rab3A− / − males and explain the lack of
an infertility phenotype. Interestingly, the human sperm AR is
resistant to Rab3A blockers at elevated calcium concentrations
(M.A. Bustos and C.N. Tomes, unpublished work).

Rab27 is present in the acrosomal region of human sperm and
is also required for the AR. Unlike the Rab3 isoform, Rab27
membrane localization is not coupled to the initiation of the
AR, but the levels of acrosomal GTP-bound Rab27 increase on
initiation of exocytosis [54] (Figures 1 and 2A). The average
litter size in Rab27A knock-out mice (Rab27Aash/ash) is reduced
compared with the wild-type background strain, which suggests
lower fecundity rates [45]. I would like to point out, however,
that overt reproductive phenotypes are rarely observed in mating
experiments, even when egg- or sperm-specific proteins with
well-established roles in fertility are knocked out. The fertility
of the null mice might simply attest to Nature’s drive to guarantee
species perpetuation. In contrast, problems are readily detected
when gametes of deficient animals are tested in experiments
designed to assess their fertility directly, such as AR assays and
in vitro fertilization (something that has not been done for Rab3-
or Rab27-null animals).

The coexistence of Rab3 and Rab27 on the same membrane
raises the question of functional redundancy, and whether and
how their roles are co-ordinated to regulate exocytosis. From the
sperm model we now know that Rab27A-GTP recruits a Rab3
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guanine nucleotide exchange factor (GEF) activity. The AR’s
Rab27/Rab3A constitutes the first Rab GEF cascade described
in dense-core vesicle exocytosis [54] (Figures 1 and 2A).

Chaperones: α-SNAP and NSF

α-SNAP (α-N-ethylmaleimide-sensitive factor attachment pro-
tein) and NSF are essential for all fusion events. α-SNAP
stimulates the ATPase activity of NSF to disassemble cis-SNARE
complexes. NSF has been detected in the acrosomal region of
horse [69], bull, mouse and rhesus macaque sperm [70,71].
The AR is sensitive to dominant negative mutants of NSF
that cannot bind or hydrolyse ATP [72], to NSF-sequestering
antibodies [56,62,73] and to reagents that prevent NSF tyrosine
dephosphorylation [32]. NSF, and presumably also α-SNAP,
exhibits its role in sperm exocytosis downstream of the step
catalysed by Rab3-GTP [62] (Figure 1).

α-SNAP has been found on the acrosome of mouse round
spermatids [74] and in the acrosomal region of mouse [75] and
human [73] sperm. It is essential for sperm exocytosis [56,73]. The
only mammalian organism known to date that carries a genetically
modified form of α-SNAP is the hyh mouse strain, which bears a
M105I point mutation. Males from this strain are subfertile due
to defective sperm exocytosis [75]. Meanwhile, NSF is present
in rat, mouse and human sperm, and localizes to the acrosomal
region in the latter [72].

Despite its positive role in membrane fusion, addition of
recombinant α-SNAP to native membranes inhibits fusion.
This effect has been observed in permeabilized human sperm
[43,73], membrane sheets prepared from PC12 cells [76] and
vacuoles from Saccharomyces cerevisiae [77,78]; NSF, and its
yeast homologue Sec18p, reverses this effect (not tested in
Schwartz and Merz [78]). Recombinant α-SNAP also inhibits
the fusion in vitro between liposomes containing bacterially
expressed versions of the Q-SNAREs (see below) syntaxin1 and
SNAP-25, and chromaffin granules (containing the native R-
SNARE synaptobrevin); once again, NSF reverses this effect [79].
Results from human sperm and PC12 cells led to the hypothesis
that recombinant α-SNAP inhibits exocytosis because it binds
monomeric syntaxin and prevents this SNARE from assembling
with its cognates in trans. Simulations carried out with the
COmplex PAthway SImulator (COPASI [80]) program fed with
known rate parameters taken from the literature (not restricted to
any particular model system) accurately fit the AR bench data
[43]. Furthermore, TEM experiments show that sequestration of
free syntaxin impedes docking of the acrosome to the plasma
membrane in human sperm treated with recombinant full-length
α-SNAP; a truncated version unable to bind syntaxin inhibits
neither docking nor fusion [43]. In contrast, in chromaffin granules
fusing with liposomes, α-SNAP binds partially assembled trans-
SNARE complexes and arrests zippering midway, therefore
preventing fusion, but not docking. No retardation effects on
zippering or fusion are observed when synaptic vesicles are
used instead of chromaffin granules, which suggests that there
is an influence of the membrane environment on the effect of α-
SNAP [79]. α-SNAP binds non-fusogenic, stalled (because of a
deletion mutation that impairs full zippering), partially assembled
trans-SNARE complexes on yeast vacuoles and rescues fusion
in an NSF-independent manner [78]. In in vitro experiments
conducted with soluble yeast proteins, Sec17 binds SNARE
complexes and promotes selective loading of members of the
Sec1/Munc18 (SM) protein families on to cognate complexes.
SM proteins impair Sec18-mediated disassembly and therefore
stabilize SNARE complexes [81]. This mechanism is different

from that described using the (mammalian) synaptic versions of
all fusion proteins in liposome-based assays [82].

It is clear then that more research is necessary to determine
whether those functions of α-SNAP not related to cis-SNARE
complex disassembly proceed through conserved mechanisms; at
this point it would appear that they do not. It would be equally
interesting to determine whether the effects of α-SNAP also take
place in native systems with normal levels of endogenous proteins
and, if they do, what their purpose is.

SNAREs

Syntaxin1, SNAP-25 and synaptobrevin2 families are the
synaptic isoforms of the SNARE superfamily. Based on
the identity of highly conserved residues, syntaxins and SNAPs
are classified as Q-SNAREs (glutamine-containing SNAREs),
whereas synaptobrevins are R-SNAREs (arginine-containing
SNAREs) [83]. The Q- and R-SNAREs join into parallel four-
helix bundles during all fusion processes; Q-SNAREs and R-
SNAREs contribute three and one helices respectively to these
complexes. It is hypothesized that SNARE proteins zipper
progressively from the N-terminal portion of the molecules
towards the membranes, and this zippering provides the force that
overcomes the energy barrier for bilayer mixing (see Gao et al.
[84] and references therein). In addition to pulling the membranes
together, it has been suggested that the transmembrane domains
of these proteins line/regulate the fusion pore opening and/or
expansion [19,85–87].

The notion that synaptobrevin2, syntaxin1 and SNAP-25 have
a direct function in exocytosis has received strong support from
the identification of these proteins as the targets of clostridial
neurotoxins. Tetanus toxin (TeTx) and seven structurally related
botulinum neurotoxin serotypes (BoNT/A, B, C1, D, E, F and
G) are potent inhibitors of secretory vesicle release due to
their highly specific, zinc-dependent, proteolytic cleavage of
SNARE proteins. BoNT/A and E cleave SNAP-25, BoNT/C
cleaves syntaxin and, with much lower efficiency, SNAP-25.
The remaining BoNTs, as well as TeTx, are specific for
synaptobrevin [88]. The synaptic isoforms of all SNAREs are
sensitive to cleavage by neurotoxins only when not packed in
tight heterotrimeric complexes [89]. Whatever the steady-state
configuration of SNAREs in neuroendocrine cells might be,
exocytosis is blocked by neurotoxins, suggesting that SNAREs
go through toxin-sensitive stages [90,91].

Published data on the presence of members of the SNARE
complex in sperm comprise all three protein homologues in sea
urchins [92–94] and mammals [21,31,41,69,95–99]. Treatment
with BoNT/A, E, F, B and C and TeTx resulted in inhibition of
acrosomal release, indicating a need for toxin-sensitive members
of all three SNARE families and their productive assembly in
trans complexes in the AR, regardless of the stimulus applied
[31–33,35,43,56,58,97,100]. As intact SNAREs are required for
the docking of the acrosome to the plasma membrane, cleavage
of syntaxin with BoNT/C or of synaptobrevin with TeTx prevents
docking [36].

Understanding the dynamics of SNARE assembly and
disassembly during membrane recognition and fusion is
central to unravelling the mechanisms that underlie regulated
exocytosis. We have developed a protocol that detects
syntaxin and synaptobrevin sensitivity to neurotoxins by
indirect immunofluorescence as a reporter for SNARE protein
configuration in human sperm. Both R- and Q-SNAREs are stably
protected from toxin cleavage in resting cells. Acquisition of
toxin sensitivity is coupled to the initiation of exocytosis [31] or
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treatment with recombinant PTP1B [32] or NSF [31]. Therefore,
we hypothesize that sperm SNAREs are engaged in cis complexes
until the cells are challenged to undergo exocytosis (Figure 1).

Differential sensitivity to BoNT/B and TeTx is a powerful
approach to distinguish between monomeric synaptobrevin
and that which is engaged in partial trans complexes. These
toxins cleave the same peptide bond, which is exposed in
both configurations [101]. However, TeTx binds the N-terminal
whereas BoNT/B binds the C-terminal portion of synaptobrevin’s
coil domain. As SNARE complex assembly starts at the
N-terminus, the TeTx-recognition site is hidden in partially
assembled SNARE complexes whereas the BoNT/B recognition
site is exposed. In other words, TeTx cleaves only monomeric
synaptobrevin whereas BoNT/B also targets synaptobrevin
loosely assembled in complexes [31,102,103]. Halting the AR
with recombinant α-SNAP or Munc18-1 (see below) freezes
syntaxin in a monomeric configuration, preventing its assembly
in trans complexes and therefore the docking of the acrosome to
the plasma membrane [35,43]. In contrast, halting exocytosis with
intra-acrosomal calcium chelators [31] or exogenous complexin
II [33] captures SNAREs in a loose trans configuration (sensitive
to BoNT/B but resistant to TeTx) and the acrosome docked to the
plasma membrane [35,36,42,43] (Figure 1)

The capacity to gather these findings highlights the strength
of the sperm model because assigning molecular correlates to
exocytotic stages, as defined by toxin sensitivity in other secretory
cells, would have been difficult given the heterogeneous vesicular
pools undergoing non-synchronic release.

Munc-13 and -18

In addition to SNAREs, members of the Munc-13 and -18 protein
families participate in all types of intracellular membrane fusion
(for recent reviews see the literature [15–17,104–106]). These
proteins do not act independently but engage in supramolecular
complexes [107] and co-operate to achieve fusion [82].

Munc18 is proposed as both a regulator of SNARE function
(e.g. it assists in the formation of SNARE complexes) and an
intrinsic component of the fusion apparatus. Members of the
Munc18 family are present in human (Munc18-1 [35]) and boar
(Munc18-2 [41]) sperm. Munc18-1 is essential for the human
sperm AR. It plays a key role in the dynamics of trans-SNARE
complex assembly and/or stabilization, which is necessary for
the docking of the outer acrosomal membrane to the plasma
membrane [35] (Figure 1).

Members of the Munc13 family have been reported to catalyse
the priming of the fusion machinery and to aid in the assembly
of trans-SNARE complexes by themselves or through interaction
with other proteins, e.g. Munc18 or RIM [108]. Munc13-1 is
present in the acrosomal region of human sperm and is required
for exocytosis. It interacts functionally with Rab3 and RIM in
these cells [42]. However, the exact point(s) of the signalling
pathways where Munc13-1 is required during the AR remains
unclear and as such this protein has been omitted from the models
shown in Figures 1 and 3.

Complexin

Complexins are small soluble proteins that regulate exocytosis
through their binding to the SNARE complex. They exhibit
both activating and inhibitory functions on secretion; these
activities have been mapped to different domains of the
complexin polypeptides (reviewed in the literature [17,109–111]).
Antiparallel binding of the complexin N-terminus to the SNARE

complex has been proposed as having a stabilizing effect. The
binding of the complexin C-terminal region to phospholipids is
also thought to mediate its activating functions. Moreover, it is
proposed that complexin acts as a prefusion clamp which arrests
SNARE complexes and prevents fusion; this clamp is removed
on activation of synaptotagmin by calcium and its binding to the
SNARE complex, which causes a rearrangement of the complexin
inhibitory helix. These and other concepts have been thoroughly
explored in recent publications [112–117].

Complexin exhibits different localizations in non-capacitated
and capacitated boar sperm heads, neither of which are
predominantly acrosomal [41]. In contrast, complexin is present
in the acrosomal region of human [33] and mouse [34,118] sperm.
Experiments conducted with streptolysin O (SLO)-permeabilized
human [33,55] and complexin I-null [34,118] sperm demonstrated
the requirement of complexin in the calcium- and zona pellucida-
induced AR respectively. In the former, endogenous complexin
facilitates the assembly of trans-SNARE complexes, whereas,
in the zona pellucida-induced AR, complexin is necessary
to penetrate the zona pellucida at fertilization. An excess of
recombinant complexin II arrests the AR at the docking stage
[36,43] and this inhibition can be relieved by the C2B domain of
synaptotagmin VI (see below) [33]. In porcine sperm, the plasma
and outer acrosomal membranes are stably docked during in vitro
capacitation; however, they do not fuse until an AR-inducing
signal arrives [21]. This lack of spontaneous fusion has been
attributed to stabilization of trimeric trans-SNARE complexes by
complexin [41]. Thus it would appear that mammalian sperm fit
into the model in which complexin acts as a transient fusion clamp
that is released by calcium and synaptotagmin (Figure 1).

Synaptotagmin

In the early stages of the secretory pathway, in both constitutive
exocytosis and the endocytic pathway, vesicle fusion follows
immediately after the two fusing membranes make contact.
In regulated exocytosis a trigger is required, so that vesicle
fusion starts only when an appropriate signal, most frequently an
elevation of the intracellular calcium concentration, is received
[14,15,119]. It follows that, notwithstanding its earlier actions,
calcium must act at a very late stage on vesicles poised for
fusion. Thus synaptotagmins were found to be calcium sensors
that act during synchronic release to detect the concentration of
calcium by binding it and thereafter signalling to other targets via
conformational changes. Synaptotagmins constitute a large family
of transmembrane proteins found predominantly on synaptic
and secretory vesicles. They contain two calcium-binding C2-
domains (C2A and C2B) with distinct apparent calcium affinities.
Synaptotagmins also bind the core fusion machinery composed
of SNAREs and accessory proteins [15,119].

Several synaptotagmin isoforms have been described in
mammalian sperm, e.g. synaptotagmin VI localizes to the
acrosomal region in human [120], synaptotagmin VIII in mouse
[121], synaptotagmin I in stallion [69], and undefined isoforms
in hamster, bull, rhesus monkey, mouse and human [95] sperm;
synaptotagmin IV has been reported in porcine sperm [41].
The requirement for synaptotagmin in human and mouse sperm
exocytosis has been demonstrated by pre-incubation of SLO-
permeabilized cells with various peptides encompassing portions
of the cytoplasmic domains of synaptotagmins I, VI and VIII, or
antibodies to synaptotagmin VI and VIII [98,120,122].

Binding of synaptotagmin VI to the protein machinery involved
in sperm exocytosis can be disturbed by protein kinase C (PKC)-
catalysed phosphorylation on Thr419 (and by phosphomimetic
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Figure 3 Updated working model for the AR showing a bifurcated signalling pathway downstream of cAMP/Epac

Calcium enters the cell from the extracellular milieu through channels or SLO-generated pores and stimulates, directly or indirectly, the exchange of GDP for GTP on Rab27. Cyclic AMP synthesized by
sAC activates Epac and here the signalling pathway splits into two branches. In one, Epac catalyses the exchange of GDP for GTP on Rap; in the other, Epac-cAMP indirectly activates Rab3A. Rap-GTP
heads a pathway that leads to acrosomal calcium mobilization (marked as ‘calcium efflux’). Downstream of active Rap, a PLCε hydrolyses phosphatidylinositol 4,5-bisphosphate into diacylglycerol
(DAG) and IP3, which mobilizes calcium from the acrosomal store. This local increase in calcium activates synaptotagmin. Rab3A-GTP heads a pathway that leads to the correct assembly of the
fusion machinery [‘fusion competent (trans) SNAREs’]. Somewhere downstream of Rab3-GTP, there is a unidirectional (Rab3 branch → Rap1 branch) connection between both branches of the
pathway. After this point, PTP1B is activated and/or recruited to the sites where it dephosphorylates NSF, derepressing its activity. Next, dephospho-NSF, in a complex with α-SNAP, disassembles
cis-SNARE complexes. Monomeric SNAREs engage in heterotrimeric trans complexes aided by Munc18 and complexin. The steps catalysed by trans-SNARE complexes and synaptotagmin–calcium
converge to accomplish the final steps of membrane fusion (‘AR’). OAM, outer acrosomal membrane; PM, plasma membrane. Unbroken arrows mean that there is one connecting step between the
terms whereas dashed arrows indicate that the number of steps is either unknown or not depicted for simplicity. Modified from Ruete et al. [62].

mutants) within the polybasic region of the C2B domain.
Phosphorylation in this polybasic region affects its overall charge,
which prevents its interaction with effectors and therefore renders
the motif inactive. Synaptotagmin is phosphorylated in resting
sperm [122]. The initiation of the AR induces calcineurin-
dependent dephosphorylation [123] (Figure 1). Dephosphorylated
synaptotagmin VI engages in an interplay with complexin during
the late stages of the AR [33]. Our model proposes that the
calcium to which synaptotagmin binds to achieve fusion comes
from the intra-acrosomal store. Synaptotagmin binds to loose
trans-SNARE complexes and contributes to their full zippering
by relieving the complexin clamp (Figure 1). This does not rule
out a potentially direct role for synaptotagmin in acrosome-to-
plasma membrane fusion as has been suggested in other models
[124,125].

OTHER COMPONENTS: cAMP, Epac, Rap AND INTRAVESICULAR
CALCIUM

When an AR trigger binds to its receptor, an influx of calcium
into the cytosol through plasma membrane channels ensues,
with the consequent initiation of complex signalling cascades,
which include synthesis of second messengers, protein–protein
interactions, post-translational modifications and intracellular
calcium mobilization. This productive, sequential and orderly
assembly of the fusion protein machinery is crucial for
accomplishing the late stages of sperm exocytosis. Calcium is

also essential for all regulated exocytosis and therefore for sperm
secretion, except that, in this case, the relevant calcium comes
from inside the cell. Sperm lack endomembranes that typically
behave as calcium reservoirs (e.g. endoplasmic reticulum, Golgi
apparatus, lysosomes). Instead, the acrosome itself is the internal
store of releasable calcium necessary for sperm exocytosis
[62,126–128]. Intracellular calcium is mobilized via inositol
1,4,5-trisphosphate (IP3)-sensitive channels in human sperm
[58,60,62,128]. In the last part of the present review, I focus
on the signalling pathway that drives calcium mobilization and
present our current integrated molecular model which includes
both phenomena: calcium signalling and the assembly of the
fusion machinery (Figure 3). The key components of these
cascades are not arranged in a linear sequence: a GEF activated
by cAMP specific for Rap1 and Rap2 (exchange protein directly
activated by cAMP or Epac) sits at a central point of the signalling
cascade, after which the exocytotic pathway branches, with one
arm assembling the fusion machinery into place and the other
eliciting the release of calcium from the acrosome. Both parts of
this pathway must act in concert to achieve exocytosis [60,62].

Cyclic AMP/Epac

Cyclic AMP is a central second messenger that controls many
vital functions. In certain neurons, and neuroendocrine and
exocrine acinar cells, cAMP potentiates calcium-dependent
exocytosis whereas, in various non-neuronal cells, cAMP is the
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principal trigger of regulated secretion [13,129,130]. Previously
the effects of cAMP in regulated exocytosis were thought to
be mediated by cAMP-dependent protein kinase (PKA) through
the phosphorylation of relevant substrates. More recently, cAMP
was found to modulate exocytosis by co-ordinating both PKA-
dependent and PKA-independent mechanisms. The latter are
mediated by Epacs (reviewed in the literature [131–133]),
although how Epac and PKA cross-talk during cAMP signalling
is still unclear.

An elevation of cAMP alone is sufficient to trigger exocytosis
in human sperm [56]. Cyclic AMP is produced endogenously by
a soluble adenylate cyclase (sAC) that is essential for the AR
[60,62,134]. Epac-1 and -2 have been detected using Western
blotting in human, stallion and boar [135] sperm, Epac2 in
hamster sperm [136] and Epac1 in mouse sperm [137]. Messenger
RNAs corresponding to Epac-1 and -2 have been detected by
reverse transcriptase PCR in mouse spermatogenic cells [138].
Epac is also present in the acrosomal region in human sperm.
In these cells, calcium-induced AR is mediated by cAMP/Epac
and is independent of PKA [56], which makes sperm an ideal
model for the direct study of the role of Epac in secretion, without
the confounding effects that the superimposed actions of PKA
may cause in other systems. Rab3A is indirectly activated by
cAMP/Epac, which puts into motion the fusion machinery branch
of the cascade [54,60,62] (Figure 3).

Rap

Rap proteins (Rap1a and -b, and Rap2a, -b and -c) are small-
molecular-mass GTPases of the Ras family, which controls cell
growth, differentiation, adhesion-related events and survival. Raps
are activated by a number of GEFs, with Epac being one, that
connect different inputs to the many Rap functions [131,139–142],
one of which is regulated exocytosis. Cyclic AMP/Epac/Rap1
is required for the potentiation of insulin release [143,144], the
secretion of pancreatic amylase [145] and the non-amyloidogenic
soluble form of the amyloid precursor protein α [146], as well as
the exocytosis of Weibel–Palade bodies in endothelial cells [147].

Rap1 has been detected in human [60,135], boar [135]
and mouse [136] sperm, and Rap2 is present in hamster
sperm [137]. The AR elicited by the Epac-selective
cAMP analogue 8-(4-chlorophenylthio)-2’-O-methyladenosine-
3’,5’-cyclic monophosphate acetoxymethyl ester (8-pCPT-2-O-
Me-cAMP), recombinant Rab3A-GTP-γ -S, diacylglycerol and
calcium requires endogenous active Rap1 [58,60,62]. Calcium
used as an AR trigger activates Rap1 in the acrosomal region
of human sperm in an Epac-dependent manner [62] (Figure 3).
Likewise, the amount of Rap1-GTP pulled down from cells
challenged with 8-pCPT-2 -O-Me-cAMP is substantially higher
than that from untreated controls in human [60], mouse [137] and
boar [135] sperm.

Intra-acrosomal calcium mobilization

Cyclic AMP binds both PKA and Epac to regulate intracellular
calcium release. In many models, cAMP/PKA and/or cAMP/Epac
facilitates the opening of calcium release channels located in
intracellular stores, typically the endoplasmic reticulum; such
release is important to accomplish biological responses. In
pancreatic β cells, perhaps the most-studied secretory model
for these pathways (reviewed in the literature [129,148]),
additional sources of intracellular calcium, e.g. endosomes,
lysosomes and insulin secretory granules themselves, have
been described. The activation of Epac by cAMP sensitizes

intracellular calcium release channels, which increase cytosolic
calcium concentrations and, subsequently, insulin secretion
[149,150]. Metabolites, such as IP3, cADP-ribose (the proposed
endogenous ligand for ryanodine receptors) and nicotinic acid
adenine dinucleotide phosphate, enhance the ability of cytosolic
calcium to activate various calcium release channels located
on intracellular organelles [132,151]. Pharmacological blocking
of these pathways impairs glucose-induced insulin secretion,
pointing to the requirement of intracellular calcium efflux for
exocytosis [152].

A large number of effectors that are either recruited or
activated by GTP-bound Rap to induce biological responses
have been identified (reviewed in Raaijmakers and Bos [142]).
The one implicated in Epac-mediated secretory responses is
phospholipase C epsilon (PLCε) [144,153]. PLCs catalyse
the hydrolysis of phosphatidylinositol 4,5-bisphosphate into
diacylglycerol and IP3. Hence, PLCε might be the link that
connects cAMP/Epac/Rap with intracellular calcium mobilization
through pathways sensitive to its reaction products. In fact, this
enzyme is required downstream of cAMP/Epac2/Rap1 for the
potentiation of glucose-induced insulin release and intracellular
calcium mobilization [144,153].

A PLC activity is required for the AR induced by
calcium, persistently active Rab3A, 8-pCPT-2-O-Me-cAMP
[60], diacylglycerol and a non-hydrolysable analogue [58].
Furthermore, 8-pCPT-2-O-Me-cAMP elicits a calcium signal in
population studies that is abrogated by the PLC blocker U73122
[60]. We have recently detected the presence of PLCε1 in the
acrosomal region of human sperm and its requirement for the
AR (O. Lucchesi, M. C. Ruete, M. F. Quevedo, M. A. Bustos
and C. N. Tomes, unpublished work), and it is exciting to
have found one more link to complete the pathway (Figure 3).
Pharmacological blockers applied in different experimental
strategies have demonstrated that the PLC’s reaction product
diacylglycerol exhibits essential roles during the AR. In addition
to its other functions, diacylglycerol engages in a positive
feedback loop that contributes to maintain the production of IP3,
the other reaction product of PLC [58]. This second messenger is
required for the AR elicited by all inducers [56,58,128,154].

The acrosomal calcium store can be readily visualized with the
calcium indicator Fluo3-AM in sperm with plasma membranes
permeabilized with SLO (in non-permeabilized cells there is
a diffuse cytosolic staining in the whole cell that impairs the
visualization of acrosomal calcium; see Tomes [9]). The AR
inducers active Rab3A [128], diacylglycerol [58], cytosolic
calcium [62] and 8-pCPT-2-O-Me-cAMP (O. Lucchesi, M.
C. Ruete, M. F. Quevedo, M. A. Bustos and C. N. Tomes,
unpublished work) decrease the concentration of calcium inside
the acrosome assessed by single-cell fluorescence microscopy. So
does adenophostin A, an IP3 receptor agonist that rescues all AR
blockers that interfere with intra-acrosomal calcium mobilization
[60,62]. Cyclic AMP and Epac are also necessary for intra-
acrosomal calcium efflux [62]. The complete Rap/PLC/intra-
acrosomal calcium efflux pathway is summarized in Figure 3.

Both branches (right and left arms in Figure 3) of the exocytotic
cascade are joined at or near the stage catalysed by Rab3 in
a unidirectional, hierarchical connection, in which the intra-
acrosomal calcium mobilization branch is subordinated to the
fusion protein branch; somewhere after Rab3, the pathways
become independent [60,62,128]. My colleagues and I have
proposed the existence of a loop that connects Rab3 with
cAMP/Epac, wherein all components of this loop must be
available and active to achieve secretion. Once the system has
progressed beyond the loop, the calcium mobilization branch will
proceed regardless of the status of the fusion machinery branch.
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We speculate that the Rab3 effector RIM might play some part
in this loop based on its reported interaction with Epac [155].
Whichever the mechanism, we hypothesize that its purpose is to
target Epac, and therefore Rap-GTP and PLCε, to the productive
contact sites between the acrosome and the plasma membrane
created by active Rab3 and trans-SNARE complexes. In this way,
intravesicular calcium will be released at or near these points.
This hypothetical requirement for a highly localized calcium
signal explains the dependence of the AR on intracellular calcium
mobilization and why this cannot be overcome with high overall
cytosolic concentrations from an extracellular source.

CONCLUDING REMARKS

In addition to the core fusion proteins, sperm contain accessory
molecules that tightly regulate the exocytotic cascade. These
molecules act as ‘gatekeepers’ of the fusion reaction, holding
components temporarily in an inactive state and coupling their
transition to a fusion-competent state before the arrival of the
appropriate signal. It is believed that this level of strict regulation
avoids the risk of inappropriate activation of the fusion machinery
(e.g. when an egg is not readily available for fertilization). The
human sperm exocytosis model is privileged in terms of permitting
the direct inspection, in great detail and with high resolution, of
the dynamics of individual molecular species in an almost in vivo
configuration. This has allowed the development of a conceptual
model that integrates biochemical and morphological data and
assigns molecular correlates to each stage of the fusion cascade.
It will be exciting to determine whether the cascades covered in
the present review are unique to the sperm system or part of a more
universal, and still unexplored, regulated exocytosis mechanism.
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