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In this work a complete description of the 7Li(p,n)7Be reaction near threshold is given using center-of-
mass and relative coordinates. It is shown that this standard approach, not used before in this context,
leads to a simple mathematical representation which gives easy access to all relevant quantities in the
reaction and allows a precise numerical implementation. It also allows in a simple way to include proton
beam-energy spread affects. The method, implemented as a C++ code, was validated both with numerical
and experimental data finding a good agreement. This tool is also used here to analyze scattered pub-
lished measurements such as (p,n) cross sections, differential and total neutron yields for thick targets.
Using these data we derive a consistent set of parameters to evaluate neutron production near threshold.
Sensitivity of the results to data uncertainty and the possibility of incorporating new measurements are
also discussed.
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1. Introduction

Many potential applications of neutron sources have motivated
recently the increase in research and development for accelerator
based devices which are of particular interest in the treatment of
high grade malignant tumors using Boron Neutron Capture Ther-
apy (BNCT) [1–3]. The development of accelerators, capable of
delivering high intensity proton beams, is not trivial but within
reach of present day technology. Appropriate proton-induced
nuclear reactions can be used to produce the neutron spectra
required for this therapy modality. In particular, the endothermic
7Li(p,n)7Be nuclear reaction near threshold can be used to produce
low-energy neutrons with a forward-peaked distribution in the
laboratory system which is suitable for BNCT [4–10]. As it is well
known the ground state Q-value of the reaction is �1644.24 keV
with a threshold value given by a proton energy of 1880.57 keV
yielding neutrons with 29.68 keV close to the desirable epithermal
energy range useful in most of BNCT tumor targets [11–13].

Kinematical calculations including the relativistic correction
with numerical and graphical representations can be made using
different on-line calculators. However, these programs may have
some limitations and do not give the possibility to manipulate
the variables for computing the accelerator-based neutron source
necessary for any Monte Carlo simulation. These is the reason for
which researchers have been developing different codes that pro-
duces yield data for the 7Li(p,n) nuclear reaction near-threshold.
In 1999 Lee and Zhou [14,15] published a code for computing thick
target differential neutron yields from monoenergetic proton
beams near-threshold. The kinematical non-relativistic calcula-
tions are based on a two-body interaction in the laboratory frame.
The use of this reference frame brings with it multiple branches in
the calculation and some associated numerical problems.
DROSG2000 package [16] (first release in 1987 where some nucle-
ar reactions were available) indeed, produces yield data of 59
monoenergetic accelerator-based neutron sources using relativis-
tic expressions. However, in particular for the 7Li(p,n)-reaction
near threshold, an unbounded behavior in the differential neutron
yield at 0� occurs. In 2008 a new Monte-Carlo based program
namely PINO (Protons In Neutrons Out), was developed to estimate
the neutron spectra during activation experiments [17]. According
to Reifarth et al. in PINO the emission angle and energy are ran-
domly acquired based on the double differential cross-section
compiled by Liskien and Paulsen [18] fulfilling momentum and
energy conservation laws. It should be pointed out that according
to Shorin [19] ‘‘A certain problem with the experimental data arose
after publication of Ref. [20] in 1966, in which the graphic data of a
number of works were tabulated. In the process, errors were made
in the determination of the energy scale amounting to �1.35 keV
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Fig. 1. Laboratory neutron angle vs. CM neutron angle. Note that when the proton
energy is lower than E�p ¼ 1:92 MeV exist maximum LR angles for each proton
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for the data of Refs. [21–24] which proved very important in the
region around the threshold. The data in Ref. [20] were auto-
matically included in Ref. [18]’’. Care should be taken if this data
is used in the calculation. On the basis of the cross section formula
and the values given in Ref. [18], a correction was performed by
Shorin to the values in the threshold energy region.

The computational tool SimLiT [25] (also a Monte-Carlo based
program) is similar to that developed by Reifarth et al. but allows
higher simulation statistics and addresses in a different way criti-
cal issues of energy dependence of the cross-section just above
threshold and proton statistics. However, the calculation shows
some sensitivity near threshold leading a small dip in the spectrum
at 28 keV approximately (See Fig. 5 in [25]). Recently in 2014, a
new calculation based on the binary collision approximation
(BCA) method, or the detailed Monte Carlo technique, was pub-
lished to study the D-T and p-7Li neutron sources [26]. In particular
for the 7Li(p,n)7Be nuclear reaction, the program has a numerical
bug to get Eth. As a result a ‘‘well’’ appears at the neutron energy
around 30 keV (see Fig. 9 in [26]).

In this work, we consider a new method to evaluate the
7Li(p,n)7Be reaction near threshold based on the parameterization
of the p-7Li reaction using center-of-mass (CM) and relative coor-
dinates. The method allows to compute not only the differential
neutron yield but also to give a more practical way to calculate
all the relevant quantities involved in this reaction avoiding all
the singularities. The proposed numerical implementation (here
coded in C++) allows a straightforward analysis of the problem
where the relevant quantities are calculated independently by sim-
ple functions. Using this method we review most (if not all) of the
available experimental neutron data near threshold including cross
section and differential, integrated and total neutron yields. These
data sets are compared and analyzed finding a consistent descrip-
tion of the neutron source and giving new insight for possible
strategies to enhance the value of future measurements via sensi-
tivity analysis.

2. Center-of-mass and relative coordinate kinematical approach

In this work we parametrize the kinematic variables involved
in the 7Li(p,n)7Be nuclear reaction by the center-of-mass and
relative coordinates. The new parameterization proposed in the
present work makes it easy to manipulate the kinematical quan-
tities in the reaction via simple functions and, as it will be
shown below, this parameterization is useful not only to com-
pute the kinematics back in the laboratory reference frame but
also to calculate the differential neutron yield for thick targets
including a proton energy spread effect, improving the previous
numerical codes.

It should be pointed out that an exact description of the reac-
tion can be given via relativistic energy and momentum conserva-
tion (as in Ref. [16]) however, in the energy range considered in
this work we can use a newtonian approximation for the linear
momentum and kinetic energy with a relative error below 10�3.
For example, the small corrections associated to a fully relativistic
calculation lead to threshold of 1880.57 keV (and 1880.30 keV
when the approximation is made).

In order to clarify our notation let us call En and hn the energy
and emission angle of the neutron in LR and Ep the incident proton
energy in such frame. Instead of using the neutron emission angle
in LR, hn, we parametrize the output using Hn, the neutron angle in
a reference system at rest in the >center-of-mass of the products.
An invertible mapping

En ¼ EnðEp;HnÞ

hn ¼ hnðEp;HnÞ
will be established using momentum and energy conservation. In
what follows the pair of coordinates ðEp;HnÞ will be used to derive
all the quantities of interest and the inversion back to the LR will be
invoked when needed. Note that the angle Hn is in principle a vari-
able in the range ½0;p� that will have a certain probability distribu-
tion according to the specific form of the nuclear reaction cross
section (low energy processes for example will result in a uniform
distribution). When the incident proton energy is equal to the mini-
mum energy required to produce the reaction given by 1880:3 keV.
In this case the neutron is at rest in the center-of-mass of the prod-
ucts giving a LR energy of 29:68 keV. Nuclear masses employed
were calculated using the 2003 mass evaluation [27] neglecting
the electron binding energies.

Considering the momentum conservation, it is easy to obtain
together with a Galileo transformation the neutron velocity in LR
which explicitly define ~vnðEp;HnÞ. The calculation is completed
when the neutron final state is determined in terms of Ep and
Hn. Of course, any quantity of interest such as En and hn can be cal-
culated based on the center-of-mass approach. For example, Fig. 1
depicts the variation of the neutron emission angle in LR for differ-
ent proton energies as a function of the angle in the final center-of-
mass frame. This clearly shows that an energy E�p exists for which
the maximum emission angle is limited below p=2. Unlike Lee
and Zhou program where some difficulties may arise at or close
to the maximum emission lab angle, using the attached numerical
implementation in C++ the maximum values for each proton ener-
gy can be easily extracted. These maximum values are shown in
Fig. 2 as a function of the incident proton energy. Other quantities
of interest are the maximum and minimum neutron energies in LR
as a function of the incident proton energy. These values can be

trivially obtained as Emin
n ¼ EnðEp;pÞ and Emax

n ¼ EnðEp;0Þ, as it is
shown in Fig. 3, where the neutron energy range is plotted as func-
tion of the incident proton energy. Moreover, in the figure it is
included different lines that separate the same number of particles,
in this case 10 % of the neutrons are contained within each interval
of adjacent lines. This plot is useful to understand the neutron
energy spread as a function of incident proton energy. In particular
it shows that the number of high energy neutrons is relatively low
and most of the neutrons are concentrated at energies near thresh-
old. Typically, when the incident energy is above 1.96 MeV there is
a clear trend to larger energy values. Similar ideas can be applied to
the angular distribution of particles.

Fig. 4 depicts the energy integrated cross section per unit angle
dN=dHn (that is

R p
0 dHn dN=dHn ¼ 1) in a polar plot. The angular
energy contour.



Fig. 2. Maximum laboratory neutron emission angle as a function of the proton
energy. Above E�p all angles are permitted.

Fig. 4. Neutron angular distribution dN=dHn (polar-plot) for different proton
energies. Black dashed lines represent � 45�.
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distribution is not very sensitive to the incident energy and is
typically centered around 30� (maximum probability in the polar
plot goes from 22� for 1.90 MeV to 36� at 2.00 MeV).

Other ranges not near threshold can be calculated in a similar
fashion using this technique.

Despite the fact that we use the (Ep;Hn) coordinates in the cal-
culation, it should be stressed that no generality is lost because the
mapping ðEp;HnÞ ! ðEn; hnÞ can be univocally inverted. This calcu-
lation is explicitly shown in the appendix and succinctly coded into
the supplementary files of this publication. As will be shown in the
following section the center-of-mass and relative coordinate kine-
matical approach will be useful to calculate the double differential
neutron yield for thick lithium targets in a straightforward manner.

3. Neutron yield calculation based on the center-of-mass and
relative coordinates approach

The calculation of the neutron yield based on the parameteriza-
tion of the kinematic quantities using the center-of-mass and rela-
tive coordinates is described in this section. In particular this
method can be used to compute the angular and energy distribu-
tions of neutrons near threshold. The formalism for computing
the differential neutron yield for the 7Li(p,n) reaction was previ-
ously proposed by Ritchie in 1976 [28] and later used by others
authors [14,15,29–31]. It is characterized by

d2N
dEn dX

ðEn; hnÞ ¼
f 7Li N0

eAeff

1
SðEpÞ

dr
dXCM

dXCM

dX
@Ep

@En

����
hn

ð1Þ
Fig. 3. Neutron energy as a function of the incident proton energy. Intermediate
lines separate the total number of particles in fractions of 10 %.
where f 7Li is the 7Li atomic fraction of natural lithium (0.925), N0 is
Avogadro’s number, e is the electronic charge, Aeff is the effective
atomic weight of natural lithium and SðEpÞ is the proton mass stop-

ping power in lithium. In this expression dXCM=dX is the Jacobian
factor between solid angles (CM and LR) and @Ep=@En accounts for
the neutron energy interval generated by proton energy loss in

the material. The variables in d2N=dEn dX are ðEn; hnÞ and thus it is
implicitly assumed that non-zero values correspond to beam ener-
gies above EpðEn; hnÞ. In particular, the stopping power function
SðEpÞ has to be evaluated via Ep :¼ EpðEn; hnÞ. Eq. (1) already takes
into account the sum of all contributions from protons with ener-
gies in the range Eth to the incident beam energy. Eq. (1) also applies
to semi-thick targets, in such case non-zero values correspond to a

region where there exist solutions to Ein
p P EpðEn; hnÞP Eout

p with Ein
p

and Eout
p the input and output proton energies on the slab of

material.
Lee and Zhou’s algorithm uses Eq. (1) for the computation of the

angular and energy distributions of neutrons. Their method is
based on the use of the variables En and hn in LR, that is, for each
point ðEn; hnÞ they calculate the proton energy using an analytical
expression and some intermediate parameters defined previously
by Winter and Schmid in 1968 [32]. Then they work out the Jaco-
bian products of Eq. (1) which they need to handle all together to
avoid some computational problems for values of ðEn; hnÞ at or
close to the maximum emission lab angle however, no reasons
are given in their paper. Lee and Zhou also remark that there is

another difficulty near threshold where dXCM

dX
dEp
dEn
! 1, because

one of the parameters in their method is unbounded when Ep is
close to the threshold value. As we shall see in what follows, using
the CM parameterization in Eq. (1), yields a simple way to identify
and remove singularities, however using our proposed method no
singularity will be found at or close to the maximum emission lab
angle as in Lee and Zhou’s procedure. In particular it will be shown
that only when sinðhnÞ ! 0 a removable singularity appears, which
can be circumvented taking a limit by extrapolation without hav-
ing to use a specific analytical form for the model dr=dXCM (See
also Section 4 for the discussion on this quantity).

The neutron yield in our scheme can be coupled to the kine-
matical analysis to obtain quantities that can be calculated in
any of the two coordinate systems (LR or CM) by simple function
calls, which allows a more flexible framework to manipulate the
quantities in the problem.



Fig. 5. Double differential neutron yield for Ep ¼ 1:910 MeV incident protons on a
natural thick lithium target.
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To derive the conversion of Eq. (1) to CM variables first note that

dr
dX

Ep; hn
� �

dX ¼ dr
dXCM Ep;Hn

� �
dXCM ð2Þ

which implies that

dr
dX

Ep; hn
� �

¼ dr
dXCM Ep;Hn

� � sin Hnð Þ
sin hnð Þ

1
@hn
@Hn

���
Ep

2
64

3
75: ð3Þ

Then the double differential neutron production takes the form

d2N
dEn dX

¼ f 7Li N0

eAeff

1
SðEpÞ

@Ep

@En

����
hn

dr
dXCM Ep;Hn

� � sinðHnÞ
sinðhnÞ @hn

@Hn

���
Ep

2
64

3
75: ð4Þ

The only quantity that remains to be transformed in the Eq. (4) to
the set of variables ðEp;HnÞ is @Ep=@Enjhn

, but for fixed hn (that is
dhn ¼ 0) one has the relations

0 ¼ @hn
@Hn

���
Ep

dHn þ @hn
@Ep

���
Hn

dEp

dEn ¼ @En
@Hn

���
Ep

dHn þ @En
@Ep

���
Hn

dEp

8><
>: ð5Þ

therefore

dEnjhn
¼ @En

@Hn

����
Ep

�
@hn
@Ep

���
Hn

@hn
@Hn

���
Ep

0
B@

1
CAþ @En

@Ep

����
Hn

0
B@

1
CAdEp

��
hn

ð6Þ

yielding

@Ep

@En

����
hn

¼
@hn
@Hn

@En
@Ep

@hn
@Hn
� @En

@Hn

@hn
@Ep

: ð7Þ

In this way we have

d2N
dEn dX

Ep;Hn
� �

¼ f 7Li N0

e Aeff

1
SðEpÞ

dr
dXCM Ep;Hn

� �

� 1
@En
@Ep

@hn
@Hn
� @En

@Hn

@hn
@Ep

" #
sinðHnÞ
sinðhnÞ

� �
ð8Þ

where En ¼ EnðEp;HnÞ considering

~vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpEp

p
Mf

þmBe

Mf
mf cosðHnÞ

 !
x̂þ mBe

Mf
mf sinðHnÞ

� 	
ŷ; ð9Þ

in EnðEp;HnÞ ¼ 1
2 mn v2

n;xðEp;HnÞ þ v2
n;yðEp;HnÞ


 �
. The neutron angle

in LR is the unique solution in ½0;p� of the system

j~vnj cos hnð Þ ¼ vn;xðEp;HnÞ ð10Þ

j~vnj sin hnð Þ ¼ vn;yðEp;HnÞ; ð11Þ

defining univocally hn ¼ hnðEp;HnÞ. Eq. (8) explicitly allows to calcu-

late d2N=dEn dX as a function of ðEp;HnÞ, furthermore, exploiting the

mapping ðEp;HnÞ $ ðEn; hnÞ one can also evaluate d2N=dEn dX as a
function of ðEn; hnÞ by simple composition of functions. In our pro-
cedure for computing the double differential neutron yield near
threshold (for example for an incident proton beam of 1:910 MeV)
only the values of En and hn that satisfy 1.910 MeV P EpðEn; hnÞ will
be allowed producing a surface with a sharp boundary shown in
Fig. 5 thus, increasing the incident energy only increases the acces-
sible region without changing the shape of the surface as can be
seen in the Fig. 6 where a top view of the double differential yield
and the lines that separate different incident proton energies are
shown. However, if a proton energy spread is included in the calcu-
lation, for example through a gaussian energy distribution with a
standard deviation of 6 keV, the boundary of Fig. 5 changes as
shown in Fig. 7. The possibility of including a probability model in
the double differential cross section calculation is a simple exercise
and has been included in the code provided with this manuscript.

Eq. (8) shows where the calculation of the differential neutron
yield may have instabilities. Derivatives in equation are calculated
numerically in our code using centered finite differences. The
numerical difficulties can only appear when the determinant of
the transformation

d ¼ @En

@Ep

@hn

@Hn
� @En

@Hn

@hn

@Ep
ð12Þ

approaches zero or when sinðhnÞ ! 0. The condition d ¼ 0 implies a
singularity in the mapping ðEp;HnÞ $ ðEn; hnÞ, which occurs only at

the threshold energy Ep ¼ Eth
p for any Hn or at Ep ¼ E�p for Hn ¼ p

(see Fig. 1). The case where Ep ¼ E�p at Hn ¼ p is a soft removable
singularity that does not generate problems for the purpose of this
work because the numerical truncation at hn ¼ p=2 renders it finite.

In contrast, the singularity at Ep ¼ Eth
p only gives a finite result when

multiplied by the CM cross section.
The other case to be analyzed involves the limit sinðhnÞ ! 0

which, as it can be seen from Fig. 1, is no more than a removable
singularity because the ratio sinðHnÞ= sinðhnÞ is always convergent

as sinðhnÞ ! 0 (note that for these cases Ep – Eth
p and Ep – E�p). This

removable singularity can also be handled by extrapolation. The
threshold point is included in the latter case, thus both limits are
solved with the same extrapolation procedure. In practice, our
implementation extrapolates these values with a quadratic
Lagrange polynomial and values of hn in the range ½0;0:15� degrees,
which give a maximum deviation of 0:08% for neutrons in a range
of 0.05 keV around the threshold. This maximum deviation decays
rapidly away from threshold, for example it goes below 0:001% in
the next 0.05 keV. When h! p the double differential cross section
is very flat and the limit can be estimated using the value
h ¼ p� 10�5 with a relative error below 10�5 %.

Moreover, using the code attached with this manuscript it is
easy to show that a finite result can only be found if

lim
Ep!Eth

p

dr
dXCM Ep;Hn

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep � Eth

p

q < 1: ð13Þ

That is, the CM cross section model must behave as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep � Eth

p

q
for Ep

near threshold to obtain a finite (non-zero) neutron yield. Note that
this behavior is a consequence of energy and momentum conserva-
tion only. In the following section the theoretical model discussed
satisfies this condition and thus the singularity can be easily
removed taking the numerical limit.



Fig. 6. Double differential neutron yield (colors) as function of emission angle and
neutron energy for different incident proton energies on natural thick lithium
target. Higher values of the incident proton beam energy broaden the accessible
region. Here energies of ð1:89 þ 0:01 nÞMeV with n an integer in the range n 2 ½0;7�
are shown. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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4. Differential cross section model, experimental data and
discussion

An evaluation of the available total cross-section data until
1994 of the 7Li(p,n) reaction in the proton energy region up to
2 MeV was performed by Shorin [19]. In his article the theoretical
formula described previously in Refs. [21,22,24] of the total cross
section rðp; nÞ near threshold in the center-of-mass system is ana-
lyzed together with the channel widths of the reaction, the possi-
ble contributions to the spins of the J and T states, and the
inverse (n,p)-reaction, increasing the complexity in the formula.

The simplest way to describe the differential cross section need-
ed in Eq. (8) is to use the reduced Breit–Wigner (B–W) formula
given by

dr
dXCM ðEpÞ ¼ k�2

p gðJÞ Cn=Cp

1þ Cn=Cp
� �2 ; ð14Þ

where it was assumed that jEp � Erj � C=2 and that the CM differ-
ential cross section is not directionally dependent in the proton

energy range of [Eth
p ;1:93�MeV. Here C is the sum of the proton

and neutron widths, Cp and Cn respectively, Er is the resonance
energy in CM and gðJÞ ¼ 5=8 is the statistical factor that measures
the probability that a particular compound nucleus will form
according to the total spin of the projectile and the target nucleus
[21]. The reduced de Broglie wavelength for the relative coordinate,

k
��

p, can be calculated as
Fig. 7. Double differential neutron yield for Ep ¼ 1:910 MeV incident protons with
an assumed standard deviation of r ¼ 6 keV on a natural thick lithium target.
k�2
p ¼

�h2 ðmp þmLiÞ2

2mp m2
Li

1
Ep
; ð15Þ
thus, evaluating the pre factor in Eq. (14) and considering the ener-
gy dependence of the particle channel widths as

x 	 Cn=Cp 
 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Eth

p =Ep

q
[24], the only parameter that has to be

fitted from experimental data is C. We review and analyze most
(if not all) available experimental neutron data near threshold such
as the (p,n) cross section, differential, integrated and total neutron
yields reported by different authors searching for a consistent
calibration of this parameter.

Experimental data of the (p,n) cross section near threshold as
function of proton energy in LR is shown in Fig. 8 together with
the evaluated ENDF/B-VII.1 library [33]. In the figure, the original
data points were divided by 4p to obtain the differential cross sec-
tion dr=dXCM . Although the most recent measurements of the (p,n)
cross section reaction near threshold were taken by Sekharan et al.
in 1977 [34], the older experimental data obtained between 1957
and 1959 by Newson et al. [21], Macklin et al. [22] and Gibbons
et al. [23] was used to calculate the dimensionless parameter C.
For the purpose of this work the Sekharan data was disregarded
since the authors reported that the data near threshold ‘‘is expect-
ed to be more nearly correct’’ in the older experiments because of a
weaker dependence of the neutron energy detector efficiency near
threshold.

The best fit (least-squares) of the analytical formula to the
selected data is obtained when C ¼ 3:60 � 0:25 however, this val-
ue is different from that reported by Lee and Zhou when applying
the B-W formula to Gibbons’ data [15]. In their procedure the value
C was fixed to C ¼ 6 and the pre-factor in Eq. (14), namely in their
work A, (which can be calculated a priori, given a vale of
169:72 MeV mb/sr) was adjusted. The resulting fit using the para-
meters reported by Lee (A = 164:913 MeV mb/sr and C = 6) is
acceptable in the flat region, but does not reproduce properly the
initial rise of the data. It should be pointed out that neither Lee’s
fit nor the best fit presented in this work can reproduce the correct
concavity in the reported data.

However, there exists another observable that can be used to
corroborate the prediction of Eq. (14), and eventually fit C using
our method to evaluate the 7Li(p,n)7Be reaction near threshold.
In particular combining Eq. (14) with the double differential neu-
tron yield of Eq. (8) one can compute the double differential neu-
tron yield at hn ¼ 0� with C as a fitting parameter. In our
Fig. 8. Differential (p,n) cross section data near threshold as function of proton
energy in the laboratory frame. Original experimental data points and the were
divided by 4p. The dashed line is calculated using parameters reported by Lee and
Zhou [15] and the dotted line is the best fit to the data using Eq. (14).



Fig. 10. Experimental values of total neutron yields for protons on natural lithium
metal reported by different authors. Computed neutron yields using different sets
of data for the theoretical cross section are also shown.
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implementation each quantity was coded into an independent
function, thus it results easy to use the code to obtain a least
squares fit of the 0� data to estimate the value. Measurements by
Kononov et al. in 1977 [31] are a good test for the analytical model.
For the purpose of computing the differential neutron yield, the
stopping power values of protons on lithium from SRIM [35] were
used. In this analysis we distinguish two different data sets, S1 and
S2. S1 corresponds to all experimental data points shown in Fig. 9,
while S2 contains a subset of S1, without measurements in the
neutron energy interval [25.75, 44] keV. The set S2 is generated
to avoid any possible deviation to smaller values near threshold
due to the proton energy spread, and to compare the sensitivity
of the fit to those data-points. Using these sets the values obtained
for C by least squares fit were CS1 ¼ ð5:82 � 0:05Þ and
CS2 ¼ ð6:00 � 0:05Þ, assuming an independent gaussian noise for
the deviations. Both estimations and, moreover, the curve comput-
ed with Lee’s program represent fairly well the differential yield
data of Kononov. It should be noted that the experimental data
shown in Fig. 9 is not compatible with that shown in Fig. 8, because
the best fit to Newson’s and Macklin & Gibbons’ data generates a
differential neutron yield at zero degree (Fig. 9) that is far below
Kononov’s findings (and viceversa, using the best fit with the Kono-
nov’s data, the cross section is almost the same as the curve shown
in Fig. 8 with Lee’s parameters).

The deviations associated to the best fit of Newson-Gibbons
data are also seen in the total neutron yield reported by other pub-
lications. The total neutron yields have been measured by different
authors in the range [Eth, 1.93] MeV [5,15,36,37]. Both ours and
Lee’s calculations are compatible with the deviations reported in
the experimental data, however, important differences between
curves using Kononov’s or Newson’s and Macklin & Gibbons’ data
are found (Fig. 10). Since the values published by Yu et al. [36] are
two times lower than those obtained by other authors and no rea-
sons causing this difference were reported, these data was disre-
garded in Fig. 10. Moreover, analyzing different observables such
as the double differential neutron yield, neutron energy spectrum
and angular distributions it was found that the zero-angle double
differential neutron yield is the observable with maximum sensi-
tivity to the parameter C. Thus Kononov’s measurement impose
stringent conditions on this variable. Taking into account the latter
observation and the fact that these measurements are compatible
with other quantities measured by many other authors, we find
Fig. 9. Double differential neutron yield at zero degree as a function of neutron
energy in the laboratory system (Kononov et al. [31]). Solid lines are best fits to Eq.
(14) using this data (see the text for the meaning of S1 and S2). The differential
neutron yield calculation reported by Lee and Zhou (dashed line) and calculated
using Newson’s and Macklin & Gibbons’ data (dotted line) are also shown.
Kononov data to be the most appropriate for a calibration of the
analytical formula near threshold.

Neutron spectrum at different angles and neutron energy spec-
tra measurements were published by Feinberg et al. [38] and Led-
erer et al. [39] in 2012. Neutrons produced by the 7Li(p,n)7Be
reaction at the mentioned proton energy were used for nuclear
astrophysics to study the quasistellar neutron spectrum for a ther-
mal energy of around 25–30 keV [39–41]. Since the reported data
was given in arbitrary units we used these measurements to test
the spectrum shape. In particular, Fig. 11 depicts the neutron spec-
trum at 0� 2:9� obtained with a proton energy of 1912� 1:5 keV.
Calculations were compare to the experimental results of Feinberg
et al. considering a standard deviation of r ¼ 1:5 keV and using
both C ¼ 3:6 and C ¼ 6 parameters derived from the different data
sets (Gibbons and Kononov, respectively). The first value of C was
derived adjusting the differential cross section model described
in Section 4 to Gibbons’ data. The second value was obtained
adjusting the double differential neutron yield Eq. (8) to Kononov’s
data with C as a fitting parameter. When the model with C ¼ 3:6 is
used, the calculation cannot reproduce Feinberg data. This could
imply that either the model or the data (or both) are not correct.
However when the model is used with the parameter C ¼ 6, the
data is fitted reasonably well. Since the experimental neutron
Fig. 11. Neutron spectrum at 0� 2:9� at incident proton energy of 1912� 1:5 keV
(Feinberg et al.) [38]. Theoretical curves with a standard deviation of r ¼ 1:5 keV
were calculated using two values of parameter C, derived from the different data
sets (Newson + Macklin & Gibbons and Kononov (1957), respectively).



Fig. 12. Neutron energy spectrum as a function of measured neutron energy in the
laboratory system (Feinberg et al.) [38]. Theoretical curves without proton energy
spread and with a standard deviation of r ¼ 6 keV are also shown. Both calculated
spectrums were derived from Kononov’s best fit using the S2 data set (C ¼ 6).
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emission angle published by Feinberg is 0� 2:9� we calculated
both angles, considering the reported energy spread of 1.5 keV.
These behaviors (the wrong and good fits for 3.6 and 6, respective-
ly) were obtained not only at zero degree but also in al experimen-
tal angles reported by Feinberg (10;20;30�, . . .). Our conclusion is
that he differential cross section model in CM with C ¼ 6 can be
used in the calculation of the double differential neutron yield
for the purposes of obtain an accelerator-based neutron source.

The second comparison was made considering the neutron
energy spectra (dN=dEn) with a narrow energy-spread of r ¼ 6 keV.
As can be seen in Fig. 12 the shape of the neutron spectrum
obtained in our numerical calculation is within the experimental
errors of the measurements in all cases but when the proton ener-
gy spread is included the shape of the spectrum is improved in par-
ticular in the region of higher energies. All calculated neutron
spectra were generated using the best fit to Kononov-S2 data to
compute C (that is C ¼ 6) and a least squares fit to fix the ampli-
tude in the range [0, 90] keV (data above 90 keV was not included
in the fit because of its large uncertainties). These recent
experimental results do also agree with the previous analysis,
however as was the case for the total yield this observable is not
so sensitive to the parameter C.
5. Summary and conclusions

In this work we have presented a new method based on center-
of-mass and relative coordinates to describe the 7Li(p,n)7Be reac-
tion near threshold. The resulting numerical scheme is implement-
ed in a C++ code that allows the calculation of any kinematical
quantity in the process by simple function calls. Using this method
we analyze most (if not all) available measurements to obtain a
consistent description of the double differential neutron yield for
accelerator-based neutron sources. This approach provides new
insight on the sensitivity of neutron production to the parameters
in the nuclear reaction model, giving also an efficient tool to fit
numerical predictions to experimental data sets. In particular we
have shown that the differential yield of neutrons reported by
Kononov et al. [31] is the most sensitive curve when a Breit–Wign-
er formula is assumed to describe the threshold process in the pro-

ton energy range of [Eth
p ;1:93�MeV. The best fit to this data was

compared with integrated and total neutron yields showing a good
agreement with other authors.

When proton energies are above 1.93 MeV, corrections to the
differential cross section that account for non-isotropy become
progressively important. Liskien and Paulsen [18] have measured
the coefficients of the Legendre-polynomial expansion which give
moderate corrections in the Ep 2 ½1:93; 2�MeV range. Measure-
ments in this range are not so abundant as the data sets discussed
in the latter section and do only include two points per polynomial
coefficient, which are used here (via interpolation) to account for
deviations of the isotropic cross section in the CM frame. Again
these modifications can be included in the calculation by simply
adding terms in the CM cross section function, which is decoupled
and easily accessible in our code. As was shown in this work the
present code is a flexible approach that allows one to incorporate
different data-sets and test the associated predictions. Since the
code was written in a few lines using only independent functions
both kinematical calculations and neutron yield production includ-
ing the proton energy spread effects can be derived within the
same program.
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Appendix A. Inversion of mapping ðEp;HnÞ ! ðEn; hnÞ

To invert the relation ðEp;HnÞ ! ðEn; hnÞ note that

vn;x ¼ vn cos hnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mpEp

Mf

s
þmBe

Mf
mf ðEpÞ cos Hnð Þ ðA:1Þ
vn;y ¼ vn sin hnð Þ ¼
mBe

Mf
mf ðEpÞ sin Hnð Þ; ðA:2Þ

where vn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En=mn

p
and

mf ðEpÞ ¼
ffiffiffiffiffiffiffiffi
2li

lf

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep

mp
þ

mp Mf �Mi
� �
liMiMf

Ep �
jQ j
li

s
: ðA:3Þ

Thus it is straightforward to obtain a quadratic equation for
ffiffiffiffiffi
Ep

p
of

the form

aEp þ b
ffiffiffiffiffi
Ep

q
þ c ¼ 0; ðA:4Þ

where the coefficients a; b and c are given by

a ¼ 2 mBe
Mf


 �2 li
lf mp

1þ m2
p

Mi li
1� Mi

Mf


 �
 �
� 2 mp

M2
f

b ¼ 2vn;x

ffiffiffiffiffiffiffi
2 mp
p

Mf

c ¼ � v2
n;x þ v2

n;y þ
mBe
Mf


 �2
2 jQ j
lf

� 	
:

8>>>>>><
>>>>>>:

ðA:5Þ

It is easy to show that there exists only one positive root which
defines unambiguously EpðEn; hnÞ. Using this expression in Eqs.
(A.1) and (A.2) one can find a unique HpðEn; hnÞ 2 ½0;p� solving
simultaneously for cos Hnð Þ and sin Hnð Þ, which completes the
inverse mapping ðEn; hnÞ ! ðEp;HnÞ.
Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.nimb.2015.01.
080.
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