New enzymatic pathways for the reduction of reactive oxygen species in *Entamoeba histolytica*

Matías S. Cabeza, Sergio A. Guerrero, Alberto A. Iglesias, Diego G. Arias *

Instituto de Agrobiotecnología del Litoral-Facultad de Bioquímica y Ciencias Biológicas (CONICET-Universidad Nacional del Litoral), Santa Fe, Argentina

A R T I C L E I N F O

Article history:
Received 15 November 2014
Received in revised form 13 February 2015
Accepted 17 February 2015
Available online 25 February 2015

Keywords:
Entamoeba
Rubredoxin
Antioxidant
Flavodiron-protein
Ferredoxin
Rubreythrin

A B S T R A C T

Background: *Entamoeba histolytica,* an intestinal parasite that is the causative agent of amoebiasis, is exposed to elevated amounts of highly toxic reactive oxygen and nitrogen species during tissue invasion. A flavodiron protein and a rubreythrin have been characterized in this human pathogen, although their physiological reductants have not been identified.

Methods: The present work deals with biochemical studies performed to reach a better understanding of the kinetic and structural properties of rubredoxin reductase and two ferredoxins from *E. histolytica.*

Results: We complemented the characterization of two different metabolic pathways for O₂ and H₂O₂ detoxification in *E. histolytica.* We characterized a novel amoebic protein with rubredoxin reductase activity that is able to catalyze the NAD(P)H-dependent reduction of heterologous rubredoxins, amoebic rubreythrin and flavodiron protein but not ferredoxins. In addition, the protein exhibited an NAD(P)H oxidase activity, which generates hydrogen peroxide from molecular oxygen. We describe how different ferredoxins were also efficient reducing substrates for both flavodiron protein and rubreythrin.

Conclusions: The enzymatic systems herein characterized could contribute to the in vivo detoxification of O₂ and H₂O₂, playing a key role for the parasite defense against reactive oxidant species.

General significance: To the best of our knowledge this is the first characterization of a eukaryotic rubredoxin reductase, including a novel kinetic study on ferredoxin-dependent reduction of flavodiron and rubreythrin proteins.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Amoebiasis is an intestinal infection widespread throughout the world caused by the human pathogen *Entamoeba histolytica* [CDC, http://www.cdc.gov/]. The parasitic disease is the third leading cause of death in almost all countries where sewage and water quality are inadequate. It causes 50 million clinical episodes of dysentery or amoebic liver abscess and ca. 100,000 deaths annually [WHO, http://www.who.int/en/]. Identification and functional characterization of molecular components are relevant matters not only for the rational design of new therapeutic drugs, but also for the overall knowledge of the parasite biology. In this regard, processes involved in redox metabolism are of particular interest in *E. histolytica* [1,2]. This pathogen has a simple life cycle that comprises an infectious cyst form and an amoeboid trophozoite stage.

E. histolytica trophozoites usually reside and multiply within the human colon, which constitutes a microaerophilic environment [3]. The energy metabolism of this pathogen is exclusively fermentative, with phosphorylation taking place only at the substrate level [4,5]; which shows a strong resemblance to that found in anaerobic bacteria from the genus *Clostridium* [6]. Despite previous studies indicating that *E. histolytica* not only “respires” but also that it has a high affinity for oxygen [7], in aerobiosis the metabolism remains purely fermentative and the transfer of electrons to molecular oxygen is unlikely used for energetic purposes [4,5,8]. In *Giardia lamblia,* another microaerophilic human gastrointestinal eukaryotic parasite, much of the oxygen consumption is due to the activity of a NADH oxidase that catalyzes, without intermediate electron carriers, a four-electron reduction of O₂ to water [9]. The exact physiological function of this enzyme is not clear, and it has been postulated that it could serve to oxidize part of the reduced cofactors produced during fermentative metabolism, thus promoting glycolysis. Also, it has been suggested that the oxygen consumption would serve to protect O₂-labile enzymes such as...
and FDP1 (which catalyzes the reduction of O2 to H2O) have been characterized as mitosome and cytoplasm residents, respectively. Their enzymatic activities were characterized in vitro as Rd-dependent proteins [19,20]. So far, no Rd encoding-genes were identified in the genome project of *E. histolytica* [1,20], thus no physiological reducing substrate has been described for Rd and FDP1 or metabolic pathway in which they participate. Herein, we analyze the properties of a protein with rubredoxin reductase activity from *E. histolytica* (EhiNROR). The capacity of EhiNROR and amoebic ferredoxins to be physiological substrates to reduce EhiRr and EhiFDP1 was characterized. Results are analyzed in terms of functionality of metabolic pathways to reduce EhiFDP1 and EhiRr in the parasite.

2. Materials and methods

2.1. Materials

Bacteriological media components were from Britania Laboratories (Argentina). All other reagents and chemicals were of the highest quality commercially available.

2.2. Data bases

The following data bases were used: NCBI GenBank Data Base (http://www.ncbi.nlm.nih.gov/genbank/) and AmoebaDB genomics resources, an EupathDB project (http://amoebadb.org/amoeba/).

2.3. Bacteria, plasmds, and protozoa

Escherichia coli top 10 cells (Invitrogen) were utilized in routine plasmid construction. *E. coli* M15 (Qiagen) and *E. coli* BL21 (DE3) (Novagen) were employed in expression experiments. The vector pGEM-T Easy (Promega) was selected for cloning and sequencing purposes. The expression vectors were pSET-A (Invitrogen), pET28c (Novagen) and pQE9 (QiAGEN). DNA manipulations, *E. coli* cultures and transformations were performed according to standard protocols [25]. Cultures of *E. histolytica* (strain HM1-IMSS) were performed under axenic conditions in Diamond’s TYI-S-33 medium at 37 °C, and sub-cultured every 72 h [26].

2.4. Molecular cloning

Genes were amplified from *E. histolytica* genomic DNA by PCR techniques. Oligonucleotide primer pairs utilized for PCR amplification were designed from reported spliced sequences (from AmoebaDB, http://amoebadb.org/amoeba/) as described in the Supplementary data — Table 1. Each PCR reaction was performed using Taq DNA polymerase (Invitrogen) and the following conditions: 94 °C for 10 min; 30 cycles of 94 °C for 1 min, 45–55 °C for 1 min, and 72 °C for 1 min; then 72 °C for 10 min. The PCR product was subsequently purified and ligated into the pGEM-T easy vector (Promega) to facilitate further works. The sequence of each gene was confirmed on both strands by sequencing.

Constructions obtained into the pGEM-T easy system and the expression vectors were digested with the respective restriction enzymes (Supplementary data — Table 1). The restricted fragments were purified and ligated to the expression vectors using T4 DNA ligase (Promega) during 16 h at 4 °C. Competent *E. coli* BL21 (DE3) cells (Novagen) were transformed with the respective construction by CaCl2 methods. Transformed cells were selected in agar plates containing Luria-Bertani broth (LB, 10 g/l NaCl; 5 g/l yeast extract; 10 g/l peptone; pH 7.4) supplemented with ampicillin (100 μg/ml) and/or kanamycin (50 μg/ml).

2.5. Expression and purification

Single colonies of *E. coli* BL21 (DE3) transformed with each of the recombinant plasmid were picked to inoculate TB broth (24 g/l yeast extract; 12 g/l peptone; 5 g/l glycerol; 17 mM KH2PO4; 72 mM K2HPO4; pH 7.4) supplemented with 23 μg/ml ferric ammonium citrate, 100 μg/ml ampicillin and/or 50 μg/ml kanamycin, and grown overnight at 37 °C with shaking at 180 rpm. The overnight culture was diluted (1/100) in fresh media and grown under identical conditions to exponential phase, OD600 of ~0.6. The expression of the respective recombinant protein was induced with 0.5 mM IPTG, followed by incubation at 25 °C. After 16 h the cells were harvested and stored at ~20 °C until use. The bacterial pellet was suspended in binding buffer (20 mM Tris–HCl pH 7.5, 10 mM imidazole and 400 mM NaCl) and disrupted by sonication. The lysate was centrifuged (16000 × g, 30 min) to remove cell debris. Purification of each recombinant protein was performed under aerobic conditions using a HiTrap IMAC-Ni2+ column (1 ml, GE). The HiTrap IMAC-Ni2+ column was loaded with the prepared extract and washed with 15 volumes of binding buffer. The recombinant protein was eluted with elution buffer (20 mM Tris–HCl pH 7.5, 300 mM imidazole and 400 mM NaCl). Active fractions were pooled and stored at ~80 °C with 20% (v/v) glycerol. Under the specified storage conditions, the recombinant proteins remained fully active for one year after their purification.

Thioredoxins from *E. histolytica* (*EhTrx8* and *EhTrx41*), rubredoxin reductase from *Thermotoga maritima* (*TmaNROR*), rubredoxin from *Pyrococcus furiosus* (*PfuRD*) and rubredoxin from *Clostridium pasteurianum* (*CpaRD*) were expressed in *E. coli* BL21 (DE3) as His-tagged (N-term) recombinant proteins, and they were chromatographically purified as previously described [23,24,27–29]. Purified ferredoxin NADP reductase from *Pismum sativum* (*PsaFR*), ferredoxin from *P. sativum* (*PsaFd*) and flavodoxin from *E. coli* (EcoFld) were kindly provided by Dr. E.A. Ceccarelli (IBR — Rosario, Argentina).

2.6. Protein methods

Protein concentration was determined by the method of Bradford [30], utilizing BSA as standard. SDS-PAGE was carried out using the Bio-Rad minigel equipment, basically according to previously described methods [31].

Sera anti-EhiNROR and anti-EhiFDP1 were prepared by rabbit immunization, while anti-EhiRr prepared by mice immunization. In all cases, the purified recombinant proteins were used as an immunogen according to Vaitukaitis et al. [32]. Amoebic protein extracts were prepared suspending the parasite pellets in lysis buffer (50 mM Tris–HCl, pH 7.5, 1% SDS). Proteins in SDS-PAGE gel were blotted onto a nitrocellulose membrane. The membrane was blocked overnight at 4 °C with 5% skimmed milk in PBS, subsequently incubated with primary antibody at room temperature for 1 h, and then incubated with a HRP-conjugated anti-rabbit secondary antibody for 1 h. Bands were visualized using the ECL Western blotting detections reagents (Thermo Scientific).
2.7. Determination of the apparent molecular mass by gel filtration chromatography

Native molecular mass of proteins was determined by gel filtration chromatography in a Superdex 200 HR Tricorn column (GE). The calibration curve was constructed plotting the logarithm of the molecular mass (log Mr) vs the distribution coefficients (Kav) measured for each protein standard: thyroglobulin (669 kDa), ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (43 kDa), carbonic anhydrase (29 kDa), ribonuclease A (13.7 kDa) and aprotinin (6.5 kDa) (GE Gel Filtration Calibration Kit – GE).

2.8. Preparation of CySNO

CySNO was prepared as previously described [33] by nitrosation under acid conditions. Briefly, equal volumes of cysteine (200 mM) and sodium nitrite (200 mM) were incubated in the presence of 10 mM HCl on ice for 30 min. Freshly prepared CySNO was stabilized by the addition of 1 mM EDTA at pH 7.0 and stored on ice in the dark until use. The concentration of CySNO was estimated by measuring absorbance at 332 nm, using a molar absorption coefficient of 0.75 mM⁻¹ cm⁻¹ [33].

2.9. Flavin and iron determination

Purified EhiNROR or EhiFDP1 was boiled in the dark for 10 min and centrifuged to remove the denatured protein. The cofactor in the respective protein was visualized after resolving the supernatant (at room temperature and in the dark) by thin layer chromatography (TLC) on silica sheets 25 TLC ALUMINIUM plates (Merck). The mobile phase was a solution of butanol:acetic acid:water (12:3:5). The chromatogram was analyzed by fluorescence with the Typhoon scanner (GE Healthcare). A solution of commercial FAD or FMN was used as a standard. After identification of the flavin, its concentration was quantified spectrophotometrically using the molar extinction coefficient at 450 nm of 11.3 mM⁻¹ cm⁻¹ [34].

Iron quantification was performed using the ferric thiocyanate method [10]. Briefly, a sample protein (25 μl) plus TCA 4% and 10 μl of 2.5 M KSCN. The absorbance at 1 cm (Kav) measured for each sample is plotted.

2.10. Enzymatic assays and kinetic analysis

All enzymatic assays were performed spectrophotometrically at 30 °C using a Multiskan Ascent one-channel vertical light path filter photometer (Thermo Electron Co.). In all the cases the final volume was of 50 μl (with a light path of 0.5 cm), in degassed (unless otherwise stated) 100 mM potassium phosphate buffer pH 7.0.

Rubredoxin reductase activity of EhiNROR was measured in microaerobic conditions by monitoring Rub red reduction at 492 nm with 2 mM Gc, 10 μM NADG, 20 μM catalase (CAT), 10 μM superoxide dismutase (SOD), 0.3 mM NAD[P]H, 0.1–100 μM PufRd or CopRd, and 0.005–0.1 mM EhiNROR. For steady-state kinetic analysis, assays were performed using 10 nM EhiNROR.

Thioredoxin reductase activity of EhiNROR was measured in microaerobic conditions by monitoring NADPH oxidation at 340 nm with 2 mM Gc, 10 μM NADG, 20 μM catalase, 10 μM SOD, 0.3 mM NAD[P]H, 0.13 mM bovine insulin, 0.15–30 nM EhiTrxs, and 0.1–1 μM EhiNROR.

Activity for 5,5′-dithiobis(2-nitrobenzoic acid) (DTNB) reductase of EhiNROR was measured by monitoring the production of thionitrobenzoate at 405 nm (ε = 14.5 mM⁻¹ cm⁻¹ [35]) with 2 mM Gc, 10 U/ml glucose oxidase (GOD), 20 U/ml CAT, 10 U/ml SOD, 0.3 mM NADPH, 0.078–10 mM DTNB, and 0.1–1 μM EhiNROR. For steady-state kinetic analysis, assays were performed using 0.1 μM EhiNROR.

The capacity of EhiNROR for cysteine or CySNO reduction was measured by monitoring the oxidation of NAD[P]H at 340 nm in the presence of 0.3 mM NAD[P]H, 0.1–1 μM EhiNROR and 15–1000 μM cystine or CySNO. For steady-state kinetic analysis, assays were performed using 0.1 μM EhiNROR.

Diaphorase activity of EhiNROR was measured by monitoring the oxidation of NAD(P)H at 340 nm in the presence of 0.3 mM NAD(P)H, 0.1–1 μM EhiNROR and 15–1000 μM NaNO₂ or NH₂OH.

Flavodiiron protein reduction was evaluated by the measurement of peroxide anion (O₂⁻) production due to NAD(P)H oxidase activity of EhiNROR. For steady-state kinetic analysis, assays were performed using 50 nM EhiNROR.

The NAD(P)H-dependent nitrite or hydroxylamine reductase activity of EhiNROR was measured by monitoring the oxidation of NAD(P)H at 340 nm in the presence of 0.3 mM NAD(P)H, 0.1–1 μM EhiNROR and 15–1000 μM Fe(CN)₆³⁻ or methylene blue (MB). For steady-state kinetic analysis, assays were performed using 50 nM EhiNROR.

NAD(P)H-dependent nitrite or hydroxylamine reductase activity of EhiNROR was measured by monitoring the NADPH-dependent O₂-reduction by EhiNROR. For steady-state kinetic analysis of EhiNROR, assays were performed using 0.1 μM EhiNROR.

The NADPH-dependent O₂-reduction by EhiNROR was performed at pH 7.0 and 30 °C under anaerobic conditions (in N₂-saturated reaction mixtures) with 0.3 mM NADPH, 0.1 μM EhiNROR, and different concentrations of O₂. Molecular oxygen pulses were generated enzymatically by CAT and different concentrations of H₂O₂. The O₂ reduction was followed by monitoring of NADPH oxidation at 340 nm.

Rubrerythrin reduction was evaluated by the measurement of peroxide activity of EhiRr using different redox proteins as donor substrates. Assays were performed monitoring the reduction of NAD(P)H at 340 nm with 2 mM Gc, 10 U/ml GOD, 20 U/ml catalase (CAT), 10 μM rubredoxin (Rr), and different donors (and their enzymatic system): 1) 0.3 mM NADPH, 1 μM PsfFNR and 0.1–10 μM EcoFp, PsfFd, EhiFd1 or EhiFd2. 2) 0.3 mM NADH, 1 μM TrmAOR and 0.1–10 μM PufRd. 3) 0.3 mM NAD(P)H and 0.1–1 μM EhiNROR. For steady-state kinetic analysis of EhiRr-reduction by EhiNROR, assays were performed using 0.1 μM EhiNROR.

Superoxide dismutase activity of EhiRr was detected monitoring the inhibition of NBT reduction by O₂ [39,40]. The assays were performed monitoring the reduction of NBT at 540 nm under aerobic conditions with 2 mM Gc, 1 U/ml GOD, 20 U/ml CAT and 5–20 μM EhiRr. One unit of superoxide dismutase is defined as the amount of protein that caused 50% inhibition of the rate of NBT reduction.

Flavodiiron protein reduction was evaluated by the measurement of the molecular oxygen (O₂) or nitric oxide (NO) reductase activity of EhiFDP1 using different redox proteins as donor substrates in aerobic or microaerobic conditions, respectively. The assays were performed monitoring the NAD(P)H oxidation at 340 nm in oxygenated (for O₂
reductase activity) or degassed (for NO reductase activity) conditions with 0.05–5 μM EhiFDP1 and different donor substrates (and their enzymatic system): 1) 0.3 mM NADPH, 1 μM PsoFRN and 0.1–10 μM EcoFdh, PsoFrd, EhiFdh1 or EhiFdh2. 2) 0.3 mM NADH, 1 μM TmaNROR and 0.1–10 μM PfuRd. 3) 0.3 mM NAD[P]H and 0.1–1 μM EhiNROR. Under microaerophilic conditions, it was added to reaction media 2 mM Glc, 10 U/ml GOD, 20 U/ml CAT, 10 U/ml SOD and 1 mM MAHMA NONOate (as NO donor for NO reductase activity of EhiFDP1). For steady-state kinetic analysis of EhiFDP1-reduction by EhiNROR, assays were performed using 50 nM EhiNROR.

All kinetic data were plotted as initial velocity (μM·min⁻¹) versus substrate concentration. The kinetic parameters were acquired by fitting the data with a nonlinear least-squares formula and the Michaelis–Menten equation using the program Origin. Kinetic constants are the mean of at least three independent sets of data, and they were reproducible within ±10%. IC₅₀ refers to the concentration of the inhibitor giving 50% of the initial activity.

2.11. Immunolocalization by confocal microscopy

Trophozoites of *E. histolytica* (strain HM1–IMSS) obtained from axenic cultures were washed twice for 15 min at room temperature in a phosphate buffered saline solution (PBS; 8 g/l NaCl, 0.2 g/l KCl, 1.44 g/l Na₂HPO₄, 0.24 g/l KH₂PO₄, pH 7.4) and concentrated in a medium containing PBS plus the addition of 0.1% (v/v) formaldehyde. After washing they were permeabilized and blocked during 30 min in a medium containing 2.1% (w/v) BSA. Fixed samples were incubated with FITC-conjugated goat anti-rabbit antibody and TRITC-conjugated goat anti-mouse antibody (both 1:1000 dilution). Incubation with the primary and secondary antibodies was performed at 25 °C during 1 h. After washing, the slides were finally mounted with antifade mounting solution plus DAPI and visualized under a confocal microscope (DIC/Nomarski, Eclipse TE-2000-E2 — Nikon, Facility).

3. Results

3.1. Identification, molecular cloning and recombinant expression of ehnror, ehiFD2, ehiRr and ehiFDP1 genes from *E. histolytica*

Based on the information available in the data base of the *E. histolytica* genome project (http://amoebadb.org/amoeba/), we identified and amplified by PCR the gene coding for a putative rubredoxin reductase (previously identified as NADH oxidase, EHI_153000) from genomic DNA. The amplified sequence was cloned into pGEM-T easy and its identity was confirmed by full sequencing. The gene (1344 bp in length) is predicted to encode a 437-amino acid protein (*EhiNROR*) with a molecular mass of 49.7 kDa and a calculated pI of 8.2. Domain analysis with the servers NCBI CD-Search (http://www.ncbi.nlm.nih.gov), Pfam (http://pfam.sanger.ac.uk/) and Prosite (http://prosite.expasy.org/) revealed that the protein belongs to the FAD-dependent pyridine nucleotide reductases family. This family includes a number of related enzymes such as glutathione reductase, thioredoxin reductase, rubredoxin reductase, ferredoxin:NAD⁺ reductase, nitrite reductase, glutamate synthase, and NADH oxidase [41]. Analysis of EhiNROR primary sequence allowed us to identify a FAD-binding motif (4οEVIIIGGIALSVIRCL[47]) and a NAD[P]H-binding domain (10θQIAIGGLSIGEISNLAR125) (Supplementary data — Fig. 1). BLAST search revealed homologous proteins distributed among *Clostridium* species with an identity of ~29%. Several of these proteins are putative rubredoxin reductases. The closest bacterial homologue is a putative NADH-dependent rubredoxin reductase from *Clostridium tetani* (NCBI: NP_783044.1). An amino acid sequence alignment between *EhiNROR* and rubredoxin reductases already characterized shows a limited sequence identity (lower than 22%) and the presence in the former of an N-terminal extension (Supplementary data — Fig. 1). Two potential pairs of metal chelating Cys are present in the *EhiNROR* N-terminal extension, being the separation among them shorter (in primary sequence) than for other rubredoxin-like domain (Supplementary data — Fig. 2). This extension is also present in the *C. tetani* homologue which harbors a rubredoxin-like domain. To characterize the functionality of this putative *EhiNROR*, the protein was expressed in *E. coli* M15 as a protein fused to an N-terminal His-tag, using the pQE-9 vector. *EhiNROR* was produced in a soluble form and conveniently purified by a single Ni²⁺ affinity chromatography step. The molecular mass revealed for the recombinant protein (~50 kDa) by SDS-PAGE agrees with the size deduced from their respective DNA-derived amino acid sequence (Supplementary data — Fig. 2-A).

Five encoding genes for putative [4Fe–4S] ferredoxins (EHI5A_055540, EHI5A_067050, EHI5A_003410; EHI_099860 and KM1_013210) were also identified in the *E. histolytica* genome project data base. We amplified ehiFdh1 (EHI5A_055540, 180 bp) and ehiFdh2 (EHI5A_067050, 210 bp) from genomic DNA of *E. histolytica* by PCR and cloned into the pGEM-T Easy vector for analysis. ehiFdh1 (180 bp) and ehiFdh2 (210 bp) encode two proteins with a theoretical molecular mass of 6.05 kDa (pl of 4.12) and 7.37 kDa (pl of 4.40), respectively. Based on bioinformatic tools, we performed amino acid sequence alignment of these proteins and also a domain prediction analysis (using Prosite servers). The study revealed a high sequence identity between *Ehi*Fs and [4Fe4S]Fs, including the four key Cys residues for iron–sulfur cluster binding (Supplementary data — Fig. 3). Genes encoding EhiFdh1 and EhiFdh2 were cloned into pET28c and expressed in *E. coli* BL21 (DE3) cells as recombinant proteins with a His-tag in their respective N-terms. Soluble fractions were purified chromatographically, to obtain amoebic Fds with purity higher than 98%, as judged by SDS-PAGE (Fig. 1-A). The molecular mass determined for each protein was of ~10 kDa, which agrees with the expected size deduced from their DNA-derived amino acid sequence, plus ~2 kDa of the N-term His-tag.

Ruberythrin has a rubredoxin-like FeS4 center and a hemerythrin-like binuclear iron cluster and presents H₂O₂-peroxidase activity [19, 28, 42]. Previously, Maralikova et al. [19] showed that the amino acid sequence of *EhiRr* contains all residues involved in chelating iron atoms in highly conserved form and also that the protein exhibits a peroxidase activity (with a heterologous electron donor system). Furthermore, they showed that the enzyme localized in mitosomes. Herein, the gene coding for *EhiRr* (EHI_134810) was amplified by PCR from genomic DNA, and its identity was confirmed by DNA sequencing. *EhiRr* is a predicted protein with 189 amino acid residues, with a molecular mass of 21.2 kDa and a theoretical pl of 6.36. The protein shares sequence identity with characterized orthologous Rrs from *Desulfovibrio vulgaris* (GI: 238472; 35%) and *F. jumaeus* (GI: 18893381; 31%). Pure recombinant protein migrated as a single band of ~25 kDa in reducing SDS-PAGE (Supplementary data — Fig. 2-A), presumably because of additional N-terminal residues that incorporate the His-tag.

Recently Vicente et al. [20] reported the characterization of a flavodiiron protein from *E. histolytica* (*EhiFDP1*) which is a bacterial-type oxygen/nitric oxide reductase. The authors demonstrated the protein functionality using an in vitro electronic transfer chain consisting of *E. coli* flavou redoxin oxidoreductase and the isolated rubredoxin domain from *E. coli* flavour redoxin. To this point, no putative physiological redox partners for *EhiFDP1* have been identified in the entamoeba cell. In order to evaluate the capacity of amoebic Fds as possible physiological partners of *EhiFDP1*, we cloned the gene coding for *EhiFDP1* (EHI5A_235560) into the pET28c vector and expressed it in *E. coli*, to produce the recombinant protein. After IMAC, *EhiFDP1* migrated as a single band of 49 kDa in reducing SDS-PAGE (Supplementary data — Fig. 2-A).

3.2. Biophysical properties of recombinant *EhiNROR*, *EhiRr* and *EhiFDP1*

Purified *EhiNROR* showed no difference in its electrophoretic migration when it was analyzed by non-reducing SDS-PAGE (data not
The recombinant EhiNROR was eluted as a native dimer protein (Mr ~ 100 kDa) when analyzed by gel filtration chromatography (Supplementary data – Fig. 2-B). The iron content of the purified protein was determined in 2.3 ± 0.2 mol Fe/mol of protein (full occupancy). Prosthetic group analysis by thin-layer chromatography indicated that EhiFDP1 contains the cofactor FMN (Fig. 1-B), in a ratio of 1.1 ± 0.1 mol FMN/mol of protein. The absorption spectrum of oxidized and reduced (with dithionite) EhiFDP1 is show in the Supplementary data – Fig. 4-B.

3.3. EhiNROR has NAD(P)H dependent H2O2 and O2− generating oxidase activity

Under aerobic conditions, EhiNROR showed an NAD(P)H oxidase activity using molecular oxygen as the final acceptor (Fig. 2-A). As experimental control, in the absence of O2 (by saturating the reaction buffer with N2) no NAD(P)H oxidase activity was observed (data not shown). In addition, we evaluated the putative production of H2O2 by EhiNROR by the measurement of the hydrogen peroxide using the ferricyanide method. EhiNROR produced H2O2 by partial reduction of dissolved O2 in the reaction mixture, with rates comparable to those determined for NADPH or NADH oxidation (Fig. 2-B). We also evaluated the enzyme-dependent O2 production using the NBT reduction assay. As shown in Fig. 2-C, when the reaction mixtures containing NADPH and NBT (under aerobic conditions) were supplemented with diverse concentrations of EhiNROR, the rates of NBT reduction were increased proportionally. Furthermore, the aerobic NBT reduction by EhiNROR was stimulated or inhibited by the presence of CAT or SOD, respectively (see Fig. 2-C). These results indicate that EhiNROR generates O2− as a sub-product associate to O2 reduction.

In order to characterize the chemical groups and putative cofactors involved in the oxidase activity of EhiNROR, we evaluated the inhibition profile of different compounds (Fig. 2-D). The NADPH oxidase activity of EhiNROR was significantly sensible to Cu2+ (IC50 = 0.4 μM), Hg2+ (IC50 = 1.4 μM) and Zn2+ (IC50 = 4 μM). No effect was observed with other bivalent cations, such as Ca2+, Mg2+, Mn2+, Co2+ or Ni2+ (data not shown). Fig. 2-D illustrates about inhibition exerted by iodoacetamide (an alkylating agent) and oxidized coenzymes (NADP+ and NAD+*) on this enzymatic activity. The latter is analyzed in more details below. Neither EDTA nor azide (agents that modify protein metal centers) produced enzyme inhibition. These results support the participation of Cys residues in the active site for NAD(P)H oxidase activity of this enzyme. In addition, diphenylidodium chloride (a specific flavo-protein inhibitor [46]) acted as a strong inhibitor of NAD(P)H oxidase activity of EhiNROR (Fig. 2-D), regardless of coenzyme evaluated (IC50 = 4.4 μM). This result supports the idea that the NAD(P)H oxidase activity is dependent on the presence of FAD in the protein.

The NAD(P)H oxidase activity of EhiNROR exhibited hyperbolic kinetics for NAD(P)H oxidation and O2 reduction (Fig. 3). Table 1 shows the kinetic parameters for oxygen-dependent oxidation of NAD(P)H.
and O_2-reduction by EhiNROR. The enzyme exhibited high affinity for O_2 and the catalytic efficiency exhibited by this enzyme for NADPH is higher than for NADH. The latter is a remarkable difference with respect to other NRORs, exhibiting a high specificity toward NADH [9,29,41].

3.4. Reductase activity of EhiNROR with low molecular mass substrates

We evaluated the capacity of EhiNROR to reduce low molecular mass substrates. The activity was measured by means of NADPH-dependent
Michaelis served with DTNB as a substrate, which reduction followed with lipoamide, glutathione disulfide was detected at high Fe(CN)₆³⁻ acceptor substrates of CDNB by NROR (Supplementary data).

Kcat rather than the Kcat/Km values for the reduction of Rd (Table 1). These results suggest that the enzyme has activities of NAD[P]⁺-dependent ferric-reductase and nitroreductase exhibiting an enzymatic behavior and kinetic parameters similar to those previously reported for other NRORs [28,43,47]. For NADPH-dependent ferric-reductase activity of EhiNROR, enzyme inhibition was detected at high Fe(CN)₆³⁻ concentrations (higher than 300 μM), which followed a substrate inhibition kinetic (Kₗ = 393 ± 80 μM at 30 °C and pH 7.0) (Supplementary data — Fig. 5), whereas no enzyme inhibition was observed when NADH was used as a reducing substrate (Supplementary data — Fig. 5). On the other hand, reduction of CDNB by EhiNROR was more efficient with NADPH than with NADH (Supplementary data — Fig. 6).

Different low molecular mass disulfides were evaluated as possible acceptor substrates of EhiNROR. In our hands, no activity was detected with lipamide, glutathione disulfide or cystine as substrates (up to 1 mM, data not shown). A slight disulfide reductase activity was observed with DTNB as a substrate, which reduction followed the Michaelis– Menten kinetics (Table 1) with low catalytic efficiency. On the other hand, we investigated the capacity of EhiNROR to reduce S-nitrosothiols, such as CySNO. Under microaerophilic conditions, EhiNROR exhibited NADPH-dependent reduction of CySNO following the Michaelis– Menten kinetics (Table 1). Catalytic efficiency value for CySNO reduction is comparable with that reported for the E. histolytica thioredoxin reductase [10].

3.5. EhiNROR presents a non-specific rubredoxin reductase activity

The enzyme showed activity as NAD[P]⁺-dependent rubredoxin reductase (Fig. 4), using bacterial Rd (from C. pasteurianum and P. furiosus) as final substrates. This activity exhibited a maximum at pH 7.0 (at 30 °C — data not shown). The catalytic efficiency for Rd reduction using NADH is higher than for NADPH (in equivalent concentration). An analysis of the obtained kinetic parameters indicated that the difference in the catalytic efficiency is due to changes in the kcat rather than the Km values for the reduction of Rd (Table 1).

Additionally, no substrate inhibition was observed at high NAD(P)H (up to 300 μM, data not shown). Results in Table 1 indicate that EhiNROR exhibited high affinity values toward heterologous Rds (Table 1) and high catalytic efficiencies for Rd reduction (Table 1), being similar to those parameters determined for NRORs from other species [43,47].

Genes for rubredoxin are absent in the genome of E. histolytica [1,20], so the putative physiological substrate of EhiNROR is unknown. We first inconsidered that the enzyme could be transferring reduction equivalents from NAD(P)H to Fd or Trx, which are abundant in this parasite [11,24,48,49]. No reductase activity was detected when Rd was replaced with Fd1, Fd2 or PsoFd (for ferredoxin reductase activity); Efd0 (flavodoxin reductase activity); and EhiTrx8 or EhiTrx41 (for Trx reductase activity). These results encouraged us to in-depth investigate the physiological role of EhiNROR and its cellular substrates. It presents an Rd-like redox active domain [19,42], as discussed below.

3.6. EhiRr and EhiFDP1-reductions are efficiently mediated by amoebic Fds

As a first approach, we observed that the purified recombinant EhiRr showed a redox-dependent peroxidase activity. The activity was determined by coupled NAD[P]⁺-dependent assays, using H₂O₂ as a peroxide substrate in combination with Rd (from P. furiosus), Fd (from E. coli) or [2Fe2S]Fd (from P. sativum) as reduction substrates. The apparent kcat values calculated for these substrates (at pH 7.0 and 30 °C) were 100.3 min⁻¹, 17.5 min⁻¹ and 26.3 min⁻¹, respectively. No peroxidase activity was detected when amoebic Trxs were used as a reductant for EhiRr (data not shown). These results suggest that not only Rd can be used as a reducing substrate, as described in bacteria [28]. Other redox proteins that have a different type of redox center, such as iron–sulfur cluster (Fd) or flavin (Fd or other flavoprotein) exhibited redox activity with EhiRr. In view of these results, we evaluated the ability of amoebic Fds (Efd1 and Efd2) to transfer reduction equivalents to EhiRr, following NADPH oxidation in the presence of FNR from P. sativum (for Fd regeneration). The amoebic Fds were able to transfer reduction equivalents to EhiRr with an enzymatic efficiency similar than Fd1 (in the presence of TrmaNROR for Rd regeneration). The reduction of EhiRr by amoebic Fd or Rd followed hyperbolic kinetics, with parameters detailed in Table 2.

We further characterized EhiRr evaluating its ability to reduce H₂O₂ using Fd1 and Efd1s as substrates. EhiRr showed a high catalytic efficiency for H₂O₂ reduction (Table 2) independently of the reducer utilized (Supplementary data — Fig. 7-A). This catalytic efficiency might indicate that in vivo EhiRr would be an efficient mitosomal peroxidase. In addition, this value is similar to that calculated for amoebic peroxiredoxin [24]. High H₂O₂ concentrations (higher than 25 μM)

Table 1

<table>
<thead>
<tr>
<th>Cosubstrate</th>
<th>Substrate</th>
<th>Km (μM)</th>
<th>kcat(min⁻¹)</th>
<th>kcat-Km⁻¹ (M⁻¹·s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O₂ ~ 200 μM</td>
<td>NADPH</td>
<td>36 ± 3</td>
<td>182 ± 5</td>
<td>8.4·10⁴</td>
</tr>
<tr>
<td></td>
<td>NADH</td>
<td>183 ± 15</td>
<td>176 ± 9</td>
<td>1.6·10⁴</td>
</tr>
<tr>
<td>NADPH</td>
<td>DTNB</td>
<td>243 ± 22</td>
<td>116 ± 4</td>
<td>8.0·10³</td>
</tr>
<tr>
<td>300 μM</td>
<td>Fe(CN)₆³⁻</td>
<td>468 ± 32</td>
<td>8.7 ± 0.2</td>
<td>3.1·10²</td>
</tr>
<tr>
<td></td>
<td>MV</td>
<td>183 ± 28</td>
<td>2879 ± 320</td>
<td>2.6·10⁰</td>
</tr>
<tr>
<td></td>
<td>CDNB</td>
<td>110 ± 11</td>
<td>1080 ± 36</td>
<td>1.6·10⁵</td>
</tr>
<tr>
<td></td>
<td>FdRd</td>
<td>3.2 ± 0.2</td>
<td>574 ± 13</td>
<td>3.0·10⁶</td>
</tr>
<tr>
<td></td>
<td>CpRd</td>
<td>2.8 ± 0.5</td>
<td>832 ± 63</td>
<td>5.0·10⁶</td>
</tr>
<tr>
<td></td>
<td>EhiRr</td>
<td>0.45 ± 0.03</td>
<td>264 ± 23</td>
<td>9.8·10⁻⁴</td>
</tr>
<tr>
<td></td>
<td>EhiRrΔ47N</td>
<td>0.46 ± 0.04</td>
<td>99 ± 2</td>
<td>3.6·10⁶</td>
</tr>
<tr>
<td></td>
<td>EhiFDLP1</td>
<td>0.39 ± 0.03</td>
<td>51 ± 1</td>
<td>2.2·10⁶</td>
</tr>
<tr>
<td></td>
<td>EhiFDLP1Δ47N</td>
<td>0.44 ± 0.03</td>
<td>28 ± 2</td>
<td>1.1·10⁶</td>
</tr>
<tr>
<td>NADH</td>
<td>Fe(CN)₆³⁻</td>
<td>6 ± 2</td>
<td>187 ± 21</td>
<td>5.2·10⁴</td>
</tr>
<tr>
<td>300 μM</td>
<td>CDNB</td>
<td>105 ± 15</td>
<td>87 ± 6</td>
<td>1.4·10⁴</td>
</tr>
<tr>
<td></td>
<td>FdRd</td>
<td>5.2 ± 0.7</td>
<td>4166 ± 274</td>
<td>1.3·10⁻⁷</td>
</tr>
<tr>
<td></td>
<td>CpRd</td>
<td>4.3 ± 0.6</td>
<td>2158 ± 129</td>
<td>8.4·10⁻⁵</td>
</tr>
<tr>
<td></td>
<td>EhiRr</td>
<td>0.50 ± 0.02</td>
<td>262 ± 21</td>
<td>8.7·10⁻⁶</td>
</tr>
<tr>
<td></td>
<td>EhiFDLP1</td>
<td>0.40 ± 0.06</td>
<td>42 ± 2</td>
<td>1.7·10⁻⁶</td>
</tr>
</tbody>
</table>
inhibited the catalytic activity of EhiRr with a $K_m = 167 \pm 26 \mu M$ at 30 °C and pH 7.0 (Supplementary data—Fig. 7-A). The obtained data showed a linear behavior up to 25 μM H$_2$O$_2$ ($R^2 = 0.95$). Due to this linear behavior, it was not possible to fit the data to a Michaelis–Menten model and therefore determine a K_m value. In view of the linear increase of the reaction rate with the concentration of H$_2$O$_2$ up to 25 μM, it is possible to assume that the K_m must be greater than this value. In addition, we determined that EhiRr has a superoxide dismutase (SOD) activity when assayed with the standard method of inhibition of NBT reduction. Oxidized EhiRr exhibited SOD activity, being able to inhibit the reduction of NBT by dissmutation of superoxide with a specific activity of 96 U·mg$^{-1}$·h$^{-1}$ at pH 7.0 and 30 °C (Supplementary data—Fig. 7-B), a value similar to that previously reported for Rr from Cladostium perfinigenus [50]. In addition, a slight superoxide reductase activity (in the presence of CAT) was detected when Rd from P. furiosus was used as an electron donor (apparent $k_{cat} = 1.8 \pm 0.1$ min$^{-1}$ at pH 7.0 and 30 °C).

As mentioned previously, no putative physiological redox partner for EhiFDP1 has been identified in the entamoebic cell. In order to evaluate the capacity of amoebic Fds (EhiFdl and EhiFrd) to transfer electron reducing equivalents to EhiFDP1 (as possible physiological partners), we evaluated the oxygen reductase activity (under aerobic conditions) of EhiFDP1 using an NAD(P)H-dependent coupled assay in the presence of FNR from P. sativum (for Rd regeneration). Fig. 5 shows that amoebic Fds were able to transfer reduction equivalents to EhiFDP1 more efficiently than PfRd (in the presence of TmaNROR for Rd regeneration). The reduction of EhiFDP1 for amoebic Fds followed hyperbolic kinetics. In contrast, the reduction of the protein by PfRd exhibited no saturation kinetic (Fig. 5). Table 2 reports the kinetic parameters calculated for EhiFDP1 reduction. Interestingly, we observed that [2Fe25]Fd from P. sativum and both amoebic Fds exhibited similar reduction capacity (data not shown).

3.7. EhiNROR is an alternative reductant for EhiRr and EhiFDP1 under microaerophilic conditions

To evaluate the transfer of electrons from EhiNROR to EhiRr, we measured the peroxidase activity of EhiRr using EhiNROR as the reducing substrate. On the other hand, to evaluate the reduction of EhiFDP1 by EhiNROR, we measured the nitric oxide reductase activity of EhiFDP1 [20] (because EhiNROR presents an intrinsic oxygen reductase activity that interferes with the determination of the same activity in EhiFDP1) using MAHMA NONOate as an NO donor in the reaction medium. Under microaerophilic conditions, in the absence of redoxins as a mediator, EhiRr or EhiFDP1 reduction by EhiNROR followed Michaelis–Menten kinetics with similar catalytic efficiencies (Table 1). Conversely, under aerobic conditions, no activity of EhiNROR was detected for EhiRr or EhiFDP1 reduction (data not shown). The reduction of both EhiRr and EhiFDP1 by EhiNROR did not show differences in their kinetic parameters when NADPH or NADH was used as reduction equivalent sources (Table 1). In addition, no activity was evident when one of the components was omitted in the reaction media.

As mentioned above, EhiNROR presents an N-terminal extension that resembles an Rd-like domain. This domain retains the four putative cysteine residues when NADPH or NADH was used as reduction equivalent sources. Table 2 reports the kinetic parameters calculated for EhiFDP1 reduction. The apparent $k_{cat·M}$ for EhiNROR was calculated using the EhiNROR:Rd ratio protein:EDTA of 1:100) did not affect its ability to transfer reducing equivalents to EhiRr (data not shown). To understand the role of the N-terminal extension in the electron transfer cascade, we decided to construct a truncated version of EhiNROR (EhiNRORΔ47N) in which the first 47 amino acids were eliminated. The NADPH oxidase activity of EhiNRORΔ47N (130 ± 5 min$^{-1}$ at pH 7.0 and 30 °C) was not affected, with respect to that measured for EhiNROR (120 ± 3 min$^{-1}$ at pH 7.0 and 30 °C), however, the truncated protein exhibited an impaired ability to transfer electrons to EhiFDP1 (Fig. 6-A) or EhiRr (Fig. 6-B). The calculated k_{cat} parameter was 2-fold lower for the truncated enzyme, remaining the K_m values without modifications in both cases (Table 1). For EhiRr reduction (Fig. 6-C), a complementation between EhiNRORΔ47N and PfRd (in 1:1 ratio) let them to reach an activity value equivalent to that obtained with EhiNROR (in the absence of PfRd). Thus, despite the N-terminus is not directly involved in the electron transfer due to the absence of iron (or other metal ion) as a cofactor, it appears to fulfill a role in protein interactions.

3.8. NADPH oxidase but not ferric-reductase activity of EhiNROR is strongly inhibited by NAD$^+$

We evaluated the inhibitory capacity of NADP$^+$ or NAD$^+$ on the NAD(P)H oxidase activity (under aerobic conditions) exhibited by EhiNROR by means of titration at a fixed concentration of NAD(P)H (2.5-fold Km). The titration profile indicated that NADP$^+$ acted as a poor inhibitor with respect to NADH, with an $IC_{50} \gg 1000 \mu M$, whereas in NAD$^+$, the IC_{50} was 1050 μM. On the other hand, NAD$^+$ showed a mild effect inhibitor with respect to NADPH ([IC$_{50}$ of 430 μM) being NAD$^+$ a notably better inhibitor with respect to NADPH ([IC$_{50}$ of 0.5 μM). As experimental control, using 5-NAD$^+$ (instead of NAD$^+$ in order to detect its reduction at 405 nm) we found that the inhibitory

Table 2

<table>
<thead>
<tr>
<th>Protein</th>
<th>Cosubstrate</th>
<th>Substrate</th>
<th>K_m (μM)</th>
<th>k_{cat} (min$^{-1}$)</th>
<th>$K_m·K_m$ (M$^{-1}$·s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EhiRr</td>
<td>H$_2$O$_2$</td>
<td>25 μM</td>
<td>EhiFdl</td>
<td>2.7 ± 0.4</td>
<td>432 ± 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EhiFdl</td>
<td>1.3 ± 0.2</td>
<td>465 ± 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PfRd</td>
<td>3.7 ± 0.5</td>
<td>620 ± 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EhiFdl 10 μM</td>
<td>>25 μM</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EhiFdl 10 μM</td>
<td>>25 μM</td>
<td>N.D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PfRd 10 μM</td>
<td>>25 μM</td>
<td>N.D.</td>
</tr>
<tr>
<td>EhiFDP1</td>
<td>O$_2$ - 200 μM</td>
<td>EhiFdl</td>
<td>2.3 ± 0.2</td>
<td>716 ± 30</td>
<td>5.2 · 106</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PfRd</td>
<td>3.0 ± 0.3</td>
<td>852 ± 42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PfRd</td>
<td>10 μM</td>
<td>17.2 ± 0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PfRd 10 μM</td>
<td>>10 μM</td>
<td>2.8 · 104</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O$_2$ - 200 μM</td>
<td>102 ± 12</td>
<td>1.1 ± 0.6</td>
</tr>
</tbody>
</table>

Generated with MAHMA NONOate.

Fig. 5. Reduction of EhiFDP1 by amoebic Fds and PfRd. EhiFDP1 reduction was evaluated by the measurement of O_2 reductase activity of EhiFDP1 using different redox proteins as donor substrates under aerobic conditions. The assays were performed monitoring the NAD(P)H oxidation at 340 nm in oxygenated 100 mM potassium phosphate buffer, pH 7.0 and 30 °C with 0.05 μM EhiFDP1 and different donor substrates (and their enzymatic system): 0.3 mM NADPH, 1 μM PsaFNR and 0.1–10 μM EhiFdl (), 0.3 mM NADPH, 1 μM PsaFNR and 0.1–10 μM EhiFdl () or 0.3 mM NADH, 1 μM TmaNROR and 0.1–10 μM PfRd ().
behavior was not an artifact due to a possible transhydrogenase activity of EhiNROR, which was not detected. We re-evaluated the effect of NAD\(^+\) on the NADPH oxidase activity exhibited by EhiNROR at different NADPH concentrations. As shown in the Supplementary data — Fig. 8, inhibition profiles were similar and, apparently, NADPH concentration-independent (resembling noncompetitive inhibition). These assays yielded an average IC\(_{50}\) of 0.23 ± 0.03 μM, a value very close to the enzyme concentration used in the assay (~0.1 μM). This would indicate that for NADPH oxidase activity, NAD\(^+\) could act as a tight-binding inhibitor (interacting very strongly with EhiNROR). However, ferric-reductase activity of EhiNROR (with ferricyanide, PfuRd or EhiRr) was not significantly inhibited by NAD\(^+\) (IC\(_{50}\) ~ 50 μM, Fig. 7).

3.9. EhiNROR is expressed in trophozoites and co-localizes with EhiRr in mitosone

The occurrence of EhiNROR in E. histolytica was confirmed by western blotting utilizing specific polyclonal antibodies, as shown in the Supplementary data — Fig. 9. The antibodies were also useful to study the subcellular localization of the protein by confocal immunofluorescence, with results illustrated by Fig. 8. Despite the fact that the amino acid sequence of EhiNROR lacks predictable signal peptide regions, the microscopy images revealed recognition signals distributed in the whole parasite cell with a punctuated fluorescence patterns, co-localizing with EhiRr (a mitosomal protein [19, Fig. 8]). This would indicate that EhiNROR has mitosomal localization and could be an alternative reducing substrate of EhiRr in vivo. On the other hand, EhiFDP1 was detected adjacent to the cell periphery when views were taken at different depths of the cell structure (a detection pattern different to EhiRr, Fig. 8), as had been previously described [20]. Indeed, EhiFDP1 and EhiNROR seem to be in different sub-cellular compartments. This result supports the importance of Fds, which have already been described as cytoplasmic proteins [20,48], as potential reducing substrates for EhiFDP1 in vivo.

4. Discussion and conclusion

The enteric unicellular parasite E. histolytica is the causative agent of amoebiasis, a disease that is surpassed only by malaria and schistosomiasis for death caused by a parasitic infection [WHO, http://www.who.int/en/] [51]. A critical virulence factor of the microorganism is determined by its ability to cope with conditions of increasing oxygen pressures and high ROS and RNS levels [2]. We have recently demonstrated the occurrence of TRX systems in E. histolytica [23,24], which functionally expands the understanding about redox metabolism in this parasite. The redox metabolic scenario operating in E. histolytica includes the involvement of antioxidant systems that plays a critical role in the maintenance of redox balance in the parasite. A flavidion protein and a rubrerythrin (two antioxidant proteins) have been characterized in this human pathogen, although their physiological reductants have not been identified [19,20,52,53]. In view of this, we analyzed the functionality of two redox components of different metabolic pathways to reduce EhiFDP1 and EhiRr in the parasite.

Herein we performed the molecular cloning of the gene coding for a putative EhiNROR, followed by its expression to produce the recombinant protein with a high purity degree. Physiologically, the NAD(P)H oxidase activity in E. histolytica would act as a first stage in the O\(_2\) elimination route leading to its partial reduction to H\(_2\)O\(_2\), thus generating ROS. It would follow neutralization of the latter compounds by reduction to H\(_2\)O toward antioxidant systems (for example, peroxidases or cysteine) to avoid cellular damages [23,24]. All the results herein presented support the fact that EhiNROR is a true Rd reductase that is able to transfer electrons to Rds from bacterial origin, as well to iron-dependent ROS detoxifying enzymes such as EhiRr and EhiFDP1 (with similar catalytic efficiency). The enzyme can utilize either NADPH or NADH as reducing equivalent donors for the reductase or oxidase activity, although the Rd reductase activity with NADH was higher than for NADPH. The activity exhibited by EhiNROR with NADPH is noteworthy, especially if compared with NRORs exhibiting a preference toward NADH over NADPH (between two and three orders of magnitude) [43,47,53]. Surprisingly, NADPH oxidase activity of the amoebic enzyme...
presented a strong inhibition by NAD+, with results indicating that the latter could act as a non-competitive tight-binding inhibitor. In vivo, this inhibitory behavior may act as a mechanism regulating oxidase activity and it supports a role for the enzyme other than as a direct oxygen scavenger in the parasite. Conversely, the ability to transfer electrons to other Rd-like proteins [or iron-complex, such as Fe(CN)\textsubscript{6}3−] was not inhibited by NAD+. The fact that EhiNROR transfers reducing equivalents to EhiRr or EhiFDP\textsubscript{1} independently of an intermediary protein is highly relevant because E. histolytica lacks Rds. Recently, the importance of Rd as an intermediary in such system has been questioned. For example, a P. furiosus mutant strain lacking Rd had unchanged its oxygen consumption capacity (via its FDP) \cite{54}. So, it is evident that there are other proteins able to functionally replace Rd (likely Fd). Also, it was observed that NROR from Clostridium acetobutylicum was able to efficiently transfer electrons directly to Rr\textsubscript{25}. After these data it is tempting to speculate that these electronic transfer systems characteristic of anaerobic organisms do not necessarily operate in a linear step by step way, but they may act with marked plasticity with respect to reactions sequence.

Early reports showed that E. histolytica can present two different metabolic scenarios (anaerobic and aerobic) mainly depending on the oxygen partial tension in the environment \cite{4,5,8}. Ethanol and CO\textsubscript{2} are the major endproducts of anaerobic carbohydrate metabolism. Pyruvate originated in glycolysis is converted to acetyl-CoA and CO\textsubscript{2} by EhiPFOR, yielding electrons that are accepted by Fds. Acetyl-CoA is converted to enzyme-bound thiohemiacetal and then is further reduced to ethanol. These last two steps are catalyzed by a NAD+-dependent bifunctional aldehyde-alcohol dehydrogenase (ADH\textsubscript{2}). Alternatively, part of the enzyme-bound thiohemiacetal hydrolyzes to free acetaldehyde, which is reduced by a distinct NADP+-dependent alcohol dehydrogenase (ADH\textsubscript{1}) \cite{4,5,8}. Under anaerobic conditions the unsolved feature is the pathway by which electrons released at the pyruvate oxidation step (reduced Fd) are transferred to NAD+. It should be stated that in E. histolytica the conversion of phosphoenolpyruvate to pyruvate can course by two pathways. One involves the single reaction catalyzed by pyruvate phosphate dikinase, whereas the alternative is the sequential action of phosphoenolpyruvate carboxylase, malate dehydrogenase
and malic enzyme. The net effect of these alternative routes together with the presence of a transhydrogenase is a direct interexchange between NADH and NADPH in the parasite [58].

In hydrogenosome-containing organisms, under anaerobic conditions, a major means of re d-oxidation is via the generation of H₂. This reaction is catalyzed by hydrogenase through the transfer of electrons to protons [4, 5, 58]. *E. histolytica* lacks hydrogenosomes and unable to produce H₂ axenically [55]. One possible solution may be the recently characterized NAPDH oxido-reductase 1 (*EhNOR1*) [11]. This enzyme could function as an NAPDH reductase, being involved in the generation of NADPH and oxidized Fd [11]. Under aerobic conditions a small fraction of acetyl-CoA is converted to acetate by an acetyl-CoA synthetase. Then acetate is excreted to the extracellular medium. This indicates that part of the total reducing power generated in metabolism is transferred to O₂; however, much of reoxidation of reduced carriers still occurs via the reduction of acetyl-CoA to ethanol [4, 5, 58, 55].

The route by which electrons from reduced equivalents are transferred to O₂ without the production of ROS in *E. histolytica* is also an unsolved matter. To date the only enzyme with the ability to reduce O₂ (or ROS) would be a peroxidase protein. In this way, across both pathways the transfer of electrons from reducing equivalents to O₂ (or ROS) would be completely coupled. Then acetate is excreted to the extracellular medium. This indicates that part of the total reducing power generated in metabolism is transferred to O₂; however, much of reoxidation of reduced carriers still occurs via the reduction of acetyl-CoA to ethanol [4, 5, 58, 55].

Acknowledgements

We thank Dr. Donald M. Kurtz (University of Texas at San Antonio) for providing the plasmid containing the *Thermotoga maritima* rubredoxin reductase, Dr. Michael W. W. Adams (University of Georgia) for *Pyrococcus furiosus* rubredoxin expression plasmid and Dr. Jean-Marc Moulis (Université J. Fourier) for providing us with a peroxidase-dependent oxidoreductase from the hyperthermophile archaeon *Pyrococcus furiosus* and a rubredoxin-dependent, iron-containing peroxidase, *J. Bacteriol. 186* (2004) 7895.

References

Appendix A. Supplementary data

This article can be found at http://dx.doi.org/10.1016/j.bbagen.2015.02.010.