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Structure of distributions generated by the scenery flow

Antti Käenmäki, Tuomas Sahlsten and Pablo Shmerkin

Abstract

We expand the ergodic theory developed by Furstenberg and Hochman on dynamical systems
that are obtained from magnifications of measures. We prove that any fractal distribution (FD)
in the sense of Hochman is generated by a USM, which provides a converse to a regularity
theorem on the structure of distributions generated by the scenery flow. We further show that
the collection of FDs is closed under the weak topology and, moreover, is a Poulsen simplex,
that is, extremal points are dense. We apply these to show that a Baire generic measure is as
far as possible from being uniformly scaling: at almost all points, it has all FDs as tangent
distributions.

1. Introduction

1.1. Historical background

A central theme in analysis over the years has been the study of ‘tangents’ of possibly
complicated objects, in order to take advantage of the regularity arising in the limiting
structures through the metamorphosis of magnification. For example, a differentiable function
looks locally like an affine map, which is more regular than, and gives information about,
the original function. In [21], Preiss introduced the more general notion of tangent measure
and employed it to solve some outstanding open problems in the theory of rectifiability.
Tangent measures are useful because, again, they are more regular than the original measure
(for example, tangent measures of rectifiable measures are flat) but one can still pass from
information about the tangent measure to the original measure. As another example of the
general idea, for certain non-conformal repellers the tangent sets and measures turn out to
have a regular product structure which is absent in the more complicated original object; see
[1, 7]. The process of taking blow-ups of a measure or a set around a point in fact induces a
natural dynamical system consisting in ‘zooming in’ around the point. This opens a door to
ergodic-theoretic methods, which were pioneered by Furstenberg [8] and then in more developed
form in [9], with a comprehensive theory developed by Hochman [11].

In turns out that for some geometric problems, notably those involving some notion of
dimension, the ‘correct’ class of tangent objects to consider is not tangent measures, but the
empirical distributions that appear by magnifying around a typical point. That is, the tangent
objects are measures on measures, which we call tangent distributions (precise definitions are
given in Section 2). The reason for this is that tangent measures are defined as weak limits
of magnifications around a point, but the sequence along which a tangent measure arises can
be very sparse, and for many problems only the behavior on a positive proportion of scales is
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significant. Tangent distributions are supported on tangent measures that reflect precisely the
structure of the original measure on a positive density set of scales.

Furstenberg’s key innovation was the introduction of a Markov process on the b-adic scaling
sceneries of a measure, which he called a conditional probability (CP) chain. Since then,
CP chains have proved to be a key tool several important problems in fractal geometry,
probability theory and ergodic theory. In [9], Furstenberg applied this technology to understand
dimension conservation of homogeneous measures. Then Hochman and Shmerkin used it to
study projections of fractal measures [13] and the behavior of measures with respect to normal
numbers [14]. Furthermore, recently Orponen [20], and Ferguson, Fraser and Sahlsten [7] found
connections to the distance set conjecture for several dynamically defined sets. However, CP
chains are defined in a discrete dyadic (or b-adic) fashion, and as a result the point that is
being zoomed in upon is not ‘in the center of the frame’ which is often a disadvantage.

An alternative approach is to consider scenery flows, in which the magnification is carried
out continuously with the point in the center of the frame. Scenery flows have been studied
(sometimes with this name and sometimes under different names) by many authors, both for
specials classes of sets and measures, and in general. We refer the reader to [11] for a historical
discussion and references. Mörters and Preiss [18] proved the surprising fact that, when dealing
with Ahlfors regular measures, the tangent distributions are Palm distributions, which are
distributions with a strong degree of symmetry and translation invariance. Hochman [11]
then showed that a similar phenomenon holds for all Radon measures: he proved that tangent
distributions for any measure are almost everywhere quasi-Palm distributions, which is a weaker
notion than Palm but still represents a strong spatial invariance. Hochman named distributions
which are scale-invariant and enjoy the quasi-Palm property as fractal distributions (FDs). He
also proved the remarkable fact that distributions of CP chains give rise to FDs in a natural
way and, reciprocally, any FD can be obtain from the distribution of a CP chain. The main
definitions and results from [11] are recalled below, in Section 2.

1.2. Summary of main results

In this work, we continue developing the theory of CP chains and FDs. We state our main
results in somewhat informal fashion; precise definitions and statements are postponed to the
later sections.

Since FDs are the cornerstone of the theory developed by Hochman [11], a natural problem
is to study the topological structure of the family of fractal distributions.

Theorem A (see Theorem 3.1). The family of FDs is closed with respect to the weak
topology.

At first sight this may appear rather surprising, since the scaling flow is not continuous, its
support is not closed and, more significantly, the quasi-Palm property is not a closed property.
Thus, this theorem is another manifestation of the general principle that, although FDs are
defined in terms of seemingly strong and discontinuous geometric properties, they are in fact
very robust. Besides its intrinsic interest, Theorem A has a number of applications in classical
problems in the realm of geometric measure theory, which we develop elsewhere; see [15].
Indeed, these applications were our initial motivation to continue developing the general theory
of FDs.

Recall that a Choquet simplex Δ in a locally convex topological vector space is a compact
convex set with the property that each x P Δ can by expressed in a unique way (up to measure
zero sets) as an integral

ş
y dP pyq for some probability distribution P on the extremal points

of Δ. It follows from Theorem A and results in [11] that the family of FDs is in fact a Choquet
simplex, so another question arises: what kind of Choquet simplex is it?
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Theorem B (see Theorem 4.1). The family of FDs is a Poulsen simplex.

A Poulsen simplex is a non-trivial Choquet simplex in which extremal points are dense. A
classical result of Lindenstrauss, Olsen and Sternfeld [16] states that there is in fact a unique
Poulsen simplex up to affine homeomorphism. In that paper, two other striking properties of
the Poulsen simplex are established: any affine homeomorphism between two proper faces of the
Poulsen simplex may be extended to a homeomorphism of the whole simplex (homogeneity),
and any metrizable simplex is affinely homeomorphic to a face of the Poulsen simplex. The
Poulsen simplex is a common object in ergodic theory, as the space of invariant measures for
many dynamical systems is Poulsen; this is often a manifestation of some kind of hyperbolic
behavior.

In our case, the set of extremal points is precisely the collection of ergodic fractal distributions
(EFDs) with respect to the scenery flow. We remark that the dense set we exhibit consists of
distributions of random self-similar measures, where the self-similarity is with respect to a
b-adic grid. This potentially allows us to prove certain statements for arbitrary measures or
distributions by reducing it to this fairly concrete and well-behaved class. The construction of
these self-similar measures is a special case of what we term the splicing of scales. Roughly
speaking, this consists in pasting together a sequence of measures along dyadic scales; see
Subsection 4.1 for more details. Splicing is often employed to construct sets or measures with a
given property based on properties of the component measures. For example, in [23], splicing
was used to investigate the dimensions of iterated sums of a Cantor set, and Hochman [11,
Section 8.3] employed it (under the name of discretization) to construct examples of uniformly
scaling measures (USMs) with non-ergodic limit geometry and bad projection properties.

Given a measure μ, we can study its geometric properties via its tangent distributions. The
situation is especially nice when at μ almost all points there is a single tangent distribution,
and even nicer when all these tangent distributions coincide. This leads us to the concepts
of USMs and generated distributions; these concepts were first defined by Gavish [10] and
investigated further by Hochman [11]; see Subsection 2.2 for more details.

USMs are geometrically much more regular than arbitrary measures, for example in the
behavior of their projections [11, 13] and the distance sets of their supports [7]. Examples of
USMs are many conformal and non-conformal constructions, both deterministic and random
[7, 10, 11], measures invariant under x Ñ px mod 1 on the circle [12] and the occupation
measure of Brownian motion in dimension d ě 3 [10].

It seems natural to ask what kind of distributions can arise as the (unique) distribution
generated by a USM. Hochman [11] proved the striking fact that generated distributions are
always FDs. We provide a converse to this.

Theorem C (see Theorem 5.1). Every FD is generated by some uniformly scaling measure.

Again, our motivation for this result arose from our applications to problems in geometric
measure theory; see [15]. Roughly speaking, our approach there is to study families of measures
(for example, measures satisfying a certain porosity condition) through the family of tangent
distributions to those measures at typical points. A key last step is then to pass from
the information gleaned on the FD side back to information about measures; this is where
Theorem C comes in.

Recall that a property is Baire generic if it is satisfied everywhere except possibly in a set of
first category, that is, a countable union of sets whose closure has empty interior. A recurrent
topic in geometric measure theory and analysis is the behavior of Baire generic objects, such
as sets, measures or functions. For example, in recent years many authors have explored the
fractal and multifractal behavior of generic Borel measures; see, for example, [2, 3, 5, 22] and
references therein. In this context, it seems very natural to study the tangent structures of
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generic measures. O’Neil [19] and Sahlsten [22] proved that a Baire generic measure has all
Borel measures as tangent measures at almost every point. Even though Theorem C concerns
measures which have a single tangent distribution at typical points, perhaps surprisingly, it
gives us an application which shows that the exact opposite holds for a generic measure.

Theorem D (see Theorem 6.1). For a Baire generic Radon measure μ on R
d, the set of

tangent distributions is the set of all FDs at μ almost every x.

We also obtain an analogous result for CP distributions (CPDs); see Proposition 6.2. These
results are in some sense expected, since there is a heuristic principle that says that Baire
generic objects behave ‘as wildly as possible’.

The rest of the paper is organized as follows. In Section 2, we recall the main elements
and results of Hochman’s theory. Precise versions of Theorems A–D are stated and proved in
Sections 3–6, respectively. In the appendix, we discuss the independence of our results from
the chosen norm.

2. Scenery flow, FDs and CPDs

In this section, we recall the main definitions and results from Hochman’s work [11], and provide
some minor extensions to the theory developed there. We use much of Hochman’s notation but
we also introduce some new terms, such as tangent distribution and micromeasure distribution.

Notation 2.1. Equip R
d with the norm }x} “ maxi |xi| and the induced metric. The

closed ball centered at x with radius r ą 0 is denoted by Bpx, rq. In particular, we write
B1 “ Bp0, 1q “ r´1, 1sd. Given a metric space X, we denote the family of all Borel probability
measures on X by PpXq, and the family of all Radon measures on X by MpXq. When X is
locally compact, MpXq and PpXq are endowed with the weak topology. Recall that μn Ñ μ
weakly if

ş
f dμn Ñ ş

f dμ for all continuous functions f : X Ñ R of compact support.
Whenever we consider convergence in a space of probability measures, it is implicitly

understood that we are considering the weak convergence. When X “ R
d, we write M “

MpRdq. The space M is metrizable, complete and separable. If X is compact, then also PpXq
is compact.

Following terminology from [11], we refer to elements of Ppr´1, 1sdq or M as measures, and
to elements of PpPpr´1, 1sdqq and PpMq as distributions. Measures are denoted by lowercase
Greek letters μ, ν, etc. and distributions by capital letters P,Q, etc. We use the notation x „ μ
if a point x is chosen randomly according to a measure μ. Moreover, write μ „ ν if the measures
μ and ν are equivalent, that is, they have the same null-sets. If X and Y are metric spaces,
μ P PpXq and f : X Ñ Y is a Borel map, then the push-down fμ is the measure defined via
fμpAq “ μpf´1Aq.

2.1. Ergodic-theoretic preliminaries

In this article, we make use of many standard definitions and facts from ergodic theory which
we briefly recall here for the reader’s convenience. Good general references are the books of
Einsiedler and Ward [6] and Walters [24].

Let pX,B, μq be a probability space. We say that a transformation T : X Ñ X preserves μ
if it is B-measurable and Tμ “ μ; the set of all such transformations is a semigroup under
composition. A measure-preserving system (m.p.s.) is a tuple pX,B, μ, T q, where pX,B, μq is a
probability space and T is an action of a semigroup by transformations that preserve μ. That
is, there is a semigroup S and for each s P S there is a map Ts : X Ñ X that preserves μ,
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such that Ts`s1 “ Ts ˝ Ts1 . In this article, the underlying semigroup is always one of N, Z (in
which case, we speak of measure-preserving maps, since the action is determined by T :“ T1)
or R

`, R (in which case, we speak of flows). Moreover, for us X is always a metric space and
B is the Borel σ-algebra on X (thus no explicit reference is made to it). In the following, we
always assume that we are in this setting to avoid unnecessarily technical assumptions.

An m.p.s. is ergodic if any set A P B with μpT ´1
s A�Aq “ 0 for all s has either zero of full

μ-measure. For a given action T on a space X, ergodic measures are the extremal points of
the convex set of all probability measures which are preserved by T . The ergodic theorem for
discrete actions says that if f P L1pμq and the system is ergodic, then

lim
nÑ8

1
n

n´1ÿ
i“0

fpT ixq “
ż

f dμ for μ almost all x.

For flows, the same holds replacing the left-hand side by limtÑ8p1{tq şt

0
f ˝ Ts ds.

Given two measure-preserving systems pX,μ, T q and pX 1, μ1, T 1q, a map π : X Ñ X 1 is called
a factor map if the underlying semigroups coincide, πμ “ μ1 and π intertwines the actions of the
semigroups: πTs “ T 1

sπ for all s. In this case, we also say that pX 1, μ1, T 1q is a factor of pX,μ, T q.
The factor of an ergodic system is ergodic. When π is a measure-theoretical isomorphism, we
say that the systems pX,μ, T q and pX 1, μ1, T 1q are isomorphic.

Let pX,μq be a metric probability space, and consider the product spaces pXN, μNq and
pXZ, μZq. The shift map T defined by T ppxiqiq “ pxi`1qi acts on both spaces. This map
preserves the product measure and the resulting system is always ergodic. In general, there
may be many other measures on XN or XZ that are preserved by the shift. If pXN, μ, T q is
an m.p.s., then there is always an m.p.s. pXZ, pμ, T q such that the former is a factor of the
latter under the natural projection map (on the natural extension the σ-algebra is not the
Borel σ-algebra but the smallest σ-algebra that makes the projection x ÞÑ x0 measurable, but
this exception to our convention causes no trouble). This is called the two-sided extension or
natural extension for shift spaces. The two-sided extension is ergodic if and only if the one-sided
version is ergodic. Furthermore, any discrete m.p.s. pX,μ, T q can always be represented as a
shift space via the identification x Ñ pT ixq8

i“0 (that is, the measure on XN is the push-down
of μ under this map).

A general m.p.s. pX,B, μ, T q can be decomposed into (possibly uncountably many) ergodic
parts according to the ergodic decomposition theorem: there exists a Borel map x Ñ μx from
X to PpXq such that for μ almost all x it holds that each pX,B, μx, T q is measure-preserving
and ergodic, and μ “ ş

μx dμpxq. Moreover, this map is unique up to sets of zero μ-measure.
The measures μx are called the ergodic components of μ.

A standard way to build measure-preserving flows from discrete systems is via suspensions;
we only consider the case of a constant roof function. Let pX,μ, T q be a discrete m.p.s. (the
base) and let r ą 0 (the height). Write pX “ X ˆ r0, rq, pμ “ μ ˆ L, where L is normalized
Lebesgue measure on r0, rq, and set pTtpx, sq “ px, s ` tq if s ` t ă r and pTtpx, r ´ tq “ pTx, 0q.
By iterating, this defines a flow (called suspension flow) for all t ą 0, which indeed pre-
serves the measure pμ. Moreover, the m.p.s. pX,μ, T q is ergodic if and only if p pX, pμ, pT q is
ergodic.

2.2. Normalizations and the scenery flow

If μ P M and μpAq ą 0, then μ|A is the restriction of μ to A and, provided also μpAq ă 8, we
denote by μA the restriction normalized to be a probability measure, that is

μApBq “ 1
μpAqμpA X Bq.
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For any μ P M for which μpB1q ą 0 we define the normalization operations ˚, ˝ in M by

μ˚ :“ 1
μpB1qμ,

μ˝ :“ μB1 “ μ˚|B1 .

We define the translation and scaling actions on measures by

TxμpAq “ μpA ´ xq,
StμpAq “ μpe´tAq.

The reason for the exponential scaling is to make St into a partial action of R into M.
Whenever R is an operator on M, we write R˚, R˝ for the corresponding operator obtained by
postcomposition with the respective normalizations. So, for example, T ˝

xμ “ pTxμq˝. We also
write

M˚ “ tμ P M : 0 P spt μu
and M˝ “ PpB1q.

We note that the actions St̊ and S˝

t are discontinuous and fully defined only on the (Borel
but not closed) set M˚. Nevertheless, the philosophy behind many of the results in [11] is
that in practice they behave in a very similar way to a continuous action on a complete metric
space (compact in the case of S˝

t ).

Definition 2.2 (Scenery flow and tangent measures). We call the flow S˝

t acting on M˚
the scenery flow at 0. Given μ P M and x P spt μ, we consider the one-parameter family

μx,t :“ μ˝

x,t “ S˝

t pTxμq
generated by the action of S˝

t on Txμ and call it the scenery of μ at x. Accumulation points of
this scenery are called tangent measures of μ at x, and the family of tangent measures of μ at
x is denoted by Tanpμ, xq.

Remark 2.3. We deviate slightly from the usual definition of tangent measures, which
corresponds to taking weak limits of St̊ pTxμq instead, that is, without restricting the measures.

One of the main ideas of [11], which we further pursue in [15], is that, as far as certain
properties of a measure are concerned (including their dimensions), the ‘correct’ tangent
structure to consider is not a single limit of μx,tk

along some subsequence, but the whole
statistics of the scenery μx,t as t Ñ 8.

Definition 2.4 (Scenery and tangent distributions). The scenery distribution of μ up to
time T at x is defined by

xμyx,T :“ 1
T

ż T

0

δμx,t
dt

for all 0 ď T ă 8. Any weak limit of xμyx,T in PpM˝q for T Ñ 8 is called a tangent distribution
of μ at x. The family of tangent distributions of μ at x is denoted T Dpμ, xq.

Here the integration makes sense since we are on a convex subset of a topological linear
space. Since the space of distributions PpM˝q is compact, T Dpμ, xq is always a non-empty
compact set at x P spt μ. Note also that every P P T Dpμ, xq is supported on Tanpμ, xq.

Definition 2.5 (Generated distributions and USMs). We say that a measure μ generates
a distribution P P PpM˝q at x if

T Dpμ, xq “ tP u.
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Furthermore, μ generates P if it generates P at μ almost every point. In this case, we say that
μ is a uniformly scaling measure (USM).

If μ is a USM, then, intuitively, it means that the collection of views μx,t have well-defined
statistics as we zoom-in upon smaller and smaller neighborhoods of x.

2.3. Fractal distributions

It has been observed in various forms that tangent measures and distributions have some kind
of additional spatial invariance (the simplest form of this is perhaps the well-known fact that
‘tangent measures to tangent measures are tangent measures’; see [17, Theorem 14.16]). A
very sharp and powerful formulation of this principle was obtained in [11]. In order to state
it, we need some additional definitions.

Definition 2.6 (Fractal distributions). Let P P PpMq. We say that the distribution P
has the following properties.

(i) The distribution P is scale-invariant if it is supported on M˚, and is invariant under
the action of the semigroup St̊ , that is,

P ppSt̊ q´1Aq “ P pAq
for all Borel sets A Ă PpM˚q and all t ą 0.

(ii) The distribution P is quasi-Palm if a Borel set A Ă M satisfies P pAq “ 1 if and only
if P almost every ν satisfies Tz̊ ν P A for ν almost every z.

(iii) The distribution P is a fractal distribution (FD) if it is scale-invariant and quasi-Palm.
(iv) The distribution P is an ergodic fractal distribution (EFD) if it is an FD and it is

ergodic under the action of St̊ .

Write FD and EFD for the family of all FDs and EFDs, respectively.

Remark 2.7. (i) Hochman [11] used an alternative definition for the quasi-Palm property.
The requirement was that any bounded open set U containing the origin satisfies

P „
ż ż

U

δTx̊ μ dμpxq dP pμq.
Both definitions are easily seen to agree, since two distributions are equivalent if and only if
they have the same sets of full measure.

(ii) A distribution P is called Palm if for any open set U containing the origin, we have

P “
ż ż

U

δTxμ dμpxq dP pμq
with finite intensity, ż

μpB1q dP pμq ă 8.

Note that in the above definitions P is a distribution on PpMq, that is, on measures with
unbounded support. Most of the time we need to deal with distributions supported on PpB1q
instead (the main advantage being that this is a compact metrizable space).

Notation 2.8 (Restricted distributions). Given P , we write P ˝ as the push-down of P
under μ Ñ μ˝. Slightly abusing notation, whenever P is an FD/EFD, we also refer to P ˝ as an
FD/EFD. Note that in this case P ˝ is S˝-invariant, but the quasi-Palm is not properly defined
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for P ˝. When we want to emphasize whether we are talking about P or P ˝, we call the former
the extended version of P and the latter the restricted version of P .

This abuse of notation is justified by the following result; see [11, Lemma 3.1].

Lemma 2.9. The action P Ñ P ˝ induces a 1–1 correspondence between S˚-invariant and
S˝-invariant distributions.

We can now state the key result of Hochman [11, Theorem 1.7] asserting the additional
spatial invariance enjoyed by typical tangent distributions.

Theorem 2.10. For any μ P M and μ almost every x, all tangent distributions of μ at x
are FDs.

Given an FD P , as an invariant measure for dynamical systems defined by the flow St̊ we
can consider the ergodic decomposition tPαu of P with respect to St̊ :

P “
ż

Pα dP pαq.
Hochman [11, Theorem 1.3] also proved that the quasi-Palm property is also preserved when
passing to the ergodic components.

Theorem 2.11. Almost all ergodic components of an FD are EFDs.

To conclude our discussion of FDs, we note the following consequence of the Besicovitch
Density Point Theorem. A particular case of this is [11, Proposition 3.7]; the proof is the same,
so is omitted.

Proposition 2.12. If μ P M and μpAq ą 0, then, for μ almost all x P A, we have

T Dpμ, xq “ T DpμA, xq.
2.4. CP distributions

CP processes, introduced by Furstenberg [9] (though in embryonic form go back to [8]), are
analogous to FDs, except that the zooming in is done through b-adic cubes rather than cubes
centered at the reference point.

Notation 2.13 (Dyadic systems). For simplicity, we restrict ourselves to dyadic CP
processes. Let D be the partition of B1 into 2d cubes of the form I1 ˆ ¨ ¨ ¨ ˆ Id, where
Ii P tr´1, 0q, r0, 1su. Given x P B1, let Dpxq be the only element of D containing it. More
generally, for k ě 1, we let Dk be the collection of cubes of the form I1 ˆ ¨ ¨ ¨ ˆ Id, where

Ii P tr´1, ´1 ` 21´kq, . . . , r1 ´ 2 ¨ 21´k, 1 ´ 21´kq, r1 ´ 21´k, 1su.
We refer to elements of Dk as dyadic cubes of step k (or size 21´k). Further, if D is any cube,
then write TD for the orientation-preserving homothety mapping from D onto B1.

Definition 2.14 (CP magnification operator). With this notation, we define the (dyadic)
CP magnification operator M on PpB1q ˆ B1 by

Mpμ, xq “ M˝pμ, xq :“ pT ˝

Dpxqμ, TDpxqpxqq.
This is defined whenever μpDpxqq ą 0.

Note that, unlike FDs, here it is important to keep track of the orbit of the point that is
being zoomed in upon. Note also that M acts on Ξ :“ PpB1q ˆ B1.
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Remark 2.15. In Hochman’s work, CP processes are defined via dyadic partitions of the
half-open cube r´1, 1qd. This creates some technical issues with measures which give positive
mass to the set tpx1, . . . , xnq : xi “ 1 for some iu. Here we have followed Furstenberg’s original
definition from [9]. Because ultimately we deal only with measures which give zero mass to the
boundaries of cubes, this is just a matter of convenience.

The analogue of the quasi-Palm in this context is the adaptedness of distributions.

Definition 2.16 (CPDs). A distribution Q on Ξ is adapted if there is a disintegrationż
fpν, xq dQpν, xq “

ż ż
fpν, xq dνpxq dQpνq for all f P CpΞq, (2.1)

where Q is the projection of Q onto the measure component. Given a distribution Q on Ξ, its
intensity measure is given by

rQspAq :“
ż

μpAq dQpμq, A Ă B1.

A distribution on Ξ is a CPD if it is M -invariant (that is, MQ “ Q), adapted, and its intensity
measure is normalized Lebesgue measure on B1, which we denote by L. The family of all CPDs
is denoted by CPD, and the ergodic ones by ECPD.

Note that adaptedness can be interpreted in the following way: in order to sample a pair
pμ, xq from the distribution Q, we have to first sample a measure μ according to Q, and then
sample a point x using the chosen distribution μ. This interpretation highlights the connection
with the quasi-Palm property.

Remark 2.17. The condition that rQs is Lebesgue is not part of the definition of a CP
process given in [9, 11], and indeed there are important examples of adapted, M -invariant
distributions with non-Lebesgue intensity. However, all distributions we consider do have this
property, which is required repeatedly in the proofs. As a first useful consequence, note that
if rQs “ L, then for any fixed cube Bpx, rq, Q almost all measures give zero mass to the
boundary of Bpx, rq. In particular, Q almost every measure gives zero mass to the boundary
of the elements of D. This helps us in dealing with the discontinuities inherent to the dyadic
partition.

The usefulness of this condition was already implicit in Hochman’s work [11], where a random
translation is often applied to ensure that the resulting CP processes have Lebesgue intensity.
We also remark that, for us, CP processes are a tool towards the study of the scenery flow and
FDs, so we have adopted the definition that happens to be most useful with this goal in mind.

We can define concepts similar to the scenery and tangent distributions (Definition 2.4) for
CP processes.

Definition 2.18 (CP scenery and micromeasure distributions). Given a measure μ P M˝,
x P B1 and N P N, we define the CP scenery distribution of μ at x along the scales 1, . . . , N by

xμ, xyN :“ 1
N

N´1ÿ
k“0

δMkpμ,xq.

Any accumulation point of xμ, xyN in PpΞq, as N Ñ 8, is called a micromeasure distribution,
and the set of them is denoted by MDpμ, xq. We say that a measure μ P M CP-generates Q if

xμ, xyN ÝÑ Q, as N ÝÑ 8,
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that is, MDpμ, xq “ tQu, at μ almost every x.

Remark 2.19. By compactness of PpΞq, the set MDpμ, xq is always non-empty and
compact.

Again similarly as in Proposition 2.12, a consequence of the Besicovitch Density Point
Theorem (in its version for dyadic cubes, which is simpler and can be seen from a martingale
argument) yields the following proposition.

Proposition 2.20. If μ P M˝ and μpAq ą 0, then, for μ almost all x P A, we have

MDpμ, xq “ MDpμA, xq.

Just as tangent distributions at typical points are FDs (Theorem 2.10), micromeasure distri-
butions at typical points are CPDs, but only after we randomly translate the measure. However,
the only role of the random translation is to ensure that all micromeasure distributions have
Lebesgue intensity.

Theorem 2.21. Let μ P M. The following holds for μ almost all x.

(i) All distributions in MDpμ, xq are adapted.
(ii) If Q P MDpμ, xq has Lebesgue intensity, then Q is a CPD.
(iii) For Lebesgue almost all ω P Bp0, 1

2 q, all distributions in MDpμ ` ω, x ` ωq are CPDs.

Proof. The first claim is [11, Proposition 5.4]. The second follows from the proof of [11,
Proposition 5.5(2)]: although [11, Proposition 5.5] is stated for random translations of a fixed
measure, the second part uses only the fact that the intensity measure of Q gives zero mass
to all the boundaries of dyadic cubes. Finally, the last claim is precisely the content of [11,
Proposition 5.5], except that there μ is assumed to be supported on Bp0, 1

2 q, but after rescaling
the measure we can extend the result to arbitrary μ P M.

Just as the ergodic components of FDs are again FDs, ergodic components of CPDs are
again CPDs.

Proposition 2.22. Let Q be a CPD.

(i) For Q almost all μ and μ almost all x, we have MDpμ, xq “ tQpμ,xqu, where Qpμ,xq is
the ergodic component of pμ, xq.

(ii) Almost all ergodic components of Q are CPDs.

Proof. Let Q “ ş
Qα dQpαq be the ergodic decomposition of Q. By the ergodic theorem, for

a fixed f P CpΞq and Qα almost all pμ, xq,
lim

nÑ8

ż
f dxμ, xyn “

ż
f dQα.

Hence the same holds simultaneously for all f in a uniformly dense countable subset of CpΞq,
and therefore for all f P CpΞq. This yields the first claim.

For the second claim, note that from the first part of Theorem 2.21 and adaptedness of Q,
it follows that for Q almost all pμ, xq, all the elements of MDpμ, xq are adapted distributions.
Thus, by the first part, Qα is adapted for Q almost all α.

It remains to show rQαs “ L for Q almost all α. For this, we use some well-known facts on
measure-theoretical entropy; [24, Chapters 4 and 8] contains all the definitions and facts we
need.
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Let Φ: B1 Ñ B1 be equal to T ´1
D on D for each dyadic cube D P D. Let Δ be the union of

the boundaries of dyadic cubes of first level. Note that, since Q is adapted, rQαspΔq “ 0 for Q
almost all α. Also, ż ż

fpΦpxqq dμpxq dQαpμq “
ż ż

fpxq dμpxq dQαpμq.

Thus each rQαs is Φ-invariant. The map Φ on B1zΔ is naturally conjugated to the full shift on
2d symbols. It follows that the system pB1, rQαs,Φq is measure-theoretically isomorphic to an
m.p.s. on the full shift on 2d symbols, and the invariant measure on the latter is the measure of
maximal entropy if and only if rQαs “ L. In particular, denoting measure-theoretical entropy
by hνpΦq, we have hrQαspΦq ď d log 2, with equality if and only if rQαs “ L. On the other hand,
by the affinity of entropy,

hrQspΦq “
ż

hrQαspΦq dQpαq.

We conclude that rQαs “ L for Q almost all α, as claimed.

Lemma 2.23. The family CPD is a convex subset of PpΞq, and the set of extremal points
is exactly ECPD.

Proof. The properties of adaptedness and having Lebesgue intensity are checked from
definitions to be convex, so CPD is indeed a convex set. Ergodic CPDs are extremal points of
CPD since they are extremal points for the larger set of M˝-invariant measures, and conversely,
since we know from Proposition 2.22 that the ergodic components of CPDs are CPDs.

2.5. Extended CPDs

The operator M has an extended version M˚, defined on M ˆ B1 via

M˚pμ, xq “ pT ˚
Dpxqμ, TDpxqxq.

We have the following analogue of Lemma 2.9.

Lemma 2.24. Given a CPD Q, there is an M˚-invariant distribution pQ on M˚ ˆ B1 such
that pQ˝ “ Q, where pQ˝ is the push-down of pQ under pμ, xq Ñ pμ˝, xq.

Proof. The lemma follows from [11, Section 3.2], but we give a complete proof as the
construction is used later. We can realize the system pΞ,M,Qq as a process pξnqnPN, where
ξ1 „ Q and Mξn “ ξn`1. By definition, this process is stationary with marginal Q (note that
given ξn, the future of the process tξm : m ě nu is deterministic). Any stationary one-sided
process has an extension to a stationary two-sided process with the same finite-dimensional
marginals; thus, let pξnqnPZ be the two-sided extension of the above process, and denote its
distribution by PQ. Then, in particular, PQ almost surely it holds that Mξn “ ξn`1 for all
n P Z.

Suppose that a PQ-typical sequence ξn “ pμn, xnq is given. For each n ě 0 and x P B1,
let Tx,n be the orientation-preserving homothety that maps the dyadic square of size 2 ¨ 2´n

containing x onto B1 (this is well defined for x not in the boundary of a dyadic cube). Let
En “ Tx´n,nB1. The sequence pEnqně0 is then an increasing sequence of compact sets, starting
with B1. Furthermore, Mkpμ´n, x´nq “ pμ´n`k, x´n`kq for all n, k P N. It follows from these
considerations that the limit

ν “ lim
nÑ8 νn “ lim

nÑ8 Tx̊´n,nμ´n
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exists, in the sense that the measures νn are supported on En and are compatible: νn`k|En
“ νn.

Moreover, ν0 “ μ0.
Note that pν, x0q P M˚ ˆ B1 is a function of the sequence pμn, xnq; let pQ be the push-down

of PQ under this map. One can check from the definitions that this is the desired extension: pQ
is M˚-invariant, and pQ˝ “ Q.

The distribution pQ is also called the extended version of Q. We note a consequence of the
construction.

Corollary 2.25. Let Q be a CPD, and let pQ be its extended version. If f : B1 Ñ R is a
Borel function, then ż

fpxq d pQpμ, xq “
ż

fpxq dx.

Proof. By the construction of the extended version,ż
fpxq d pQpμ, xq “ EPQ

fpx0q “
ż

fpxq dQpμ, xq “
ż

fpxq dx,

using that the sequence pμn, xnq has marginal Q and that Q is adapted and has Lebesgue
intensity.

2.6. Weak convergence

To conclude this section, we collect a number of standard facts on weak convergence. We often
have to prove weak convergence of distributions on Ξ. The following lemma shows that when
considering convergence of CP sceneries, it is enough to establish convergence of the measure
component.

Lemma 2.26. Let xμ, xyN be the projection of xμ, xyN onto the measure part, that is,

xμ, xyN :“ 1
N

N´1ÿ
k“0

δT ˝

Dkpxqμ
,

where Dkpxq is the dyadic cube of side length 2 ¨ 2´k containing x. If for some measure μ and
a CPD Q it holds that

xμ, xyN ÝÑ Q as N ÝÑ 8
at μ almost every x, then μ CP-generates Q.

Proof. By Theorem 2.21(i) and the hypothesis, for μ, almost all x any subsequential limit
of xμ, xyN is an adapted distribution with measure marginal Q, hence it equals Q.

The above lemma is repeatedly used without further reference in the later sections. We often
need to use a metric which induces the weak topology on probability measures.

Definition 2.27. For any compact metric space X, we define a distance dXpμ, νq between
two finite measures μ and ν on X by

dXpμ, νq “ sup
fPLip1pXq

ż
f dpμ ´ νq,

where Lip1pXq is the class of Lipschitz functions X Ñ R with Lipschitz constant 1.
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This metric is known by different names in the literature (bounded Lipschitz metric,
Prokhorov distance, first Wasserstein metric). It induces the weak topology on PpXq (see,
for example, [17, Chapter 14]; the statement there is for R

d but the proof works on any locally
compact metric space). We slightly abuse notation and denote by d both the metric above on
the space of measures PpB1q and on the space of distributions PpPpB1qq as it is clear from the
context which space we are dealing with.

Remark 2.28. Even though the metric dX is defined with arbitrary test functions in
Lip1pXq, it is enough to consider 1-Lipschitz functions uniformly bounded by some constant
CX . Indeed, since subtracting a constant does not change the value of

ş
f dpμ ´ νq, we may

assume fpx0q “ 0 for some fixed point x0 P X. But then, since f P Lip1pXq,
|fpxq| “ |fpxq ´ fpx0q| ď dpx, x0q ď diampXq.

Even though weak convergence is defined in terms of continuous functions, it still holds for
functionals whose discontinuity set is null for the limiting measure.

Lemma 2.29. Let X be a locally compact metric space, and let μn, μ P PpXq. If μn Ñ μ
weakly and f : X Ñ R is a function such that

μptx P X : f is discontinuous at xuq “ 0,

then
ş
f dμn Ñ ş

f dμ.

See, for example, [4, Theorem 2.7] for a stronger statement.
To finish this section, we show that to prove convergence of distributions in PpB1q, it is

enough to consider test functions ‘with a finite resolution’. Recall that Dk is the family of
dyadic cubes of level k, and let Fk be the class of functions f : PpB1q Ñ R such that fpμq
depends only on the values of μpDq, D P Dk.

Lemma 2.30. Let Qn, Q P PpB1q. If
ş
f dQn Ñ ş

f dQ for all k P N and all f P Fk, then
Qn Ñ Q.

Proof. If the functions in Fk were continuous, then this would be a direct application of
the Stone–Weierstrass Theorem. It would be possible to still rely on Stone–Weierstrass by
approximating elements of Fk by continuous functions in a suitable way, but we give a direct
argument.

Given μ P PpB1q, let μk “ ř
DPDk

μpDqδzD
, where zD is the center of D. Note that if ϕ : B1 Ñ

R is 1-Lipschitz, then |ϕpzq ´ ϕpzDq| ď ?
d2´k for any z P D, and thereforeˇ̌̌̌ż

ϕdμ ´
ż

ϕdμk

ˇ̌̌̌
“

ˇ̌̌̌
ˇ ÿ
DPDk

μpDq
ˆş

D
ϕdμ

μpDq ´ ϕpzDq
˙ˇ̌̌̌

ˇ
ď

ÿ
DPDk

μpDq?
d2´k “ ?

d2´k.

This shows dpμ, μkq ď ?
d2´k.

Now let f P CpPpB1qq, and write fkpμq “ fpμkq. Then fk P Fk by definition, and hence, by
the hypothesis,

lim
nÑ8

ż
fk dQn “

ż
fk dQ.

Since f is continuous, it is uniformly continuous; hence given ε ą 0 there is k ą 0 such that
|fpμq ´ fpνq| ă ε if dpμ, νq ă ?

d 2´k. In particular, by the above, |fpμq ´ fkpμq| ă ε for all
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μ P PpB1q. By writing f “ pf ´ fkq ` fk, it follows from the above that

lim sup
nÑ8

ż
f dQn ď

ż
f dQ ` ε,

and likewise with lim inf. Since ε ą 0 was arbitrary, this completes the proof.

3. FDs form a closed set

In this section, we prove the following precise version of Theorem A.

Theorem 3.1. The family FD is a closed set in the weak topology.

The proof relies on the results in [11] relating FDs to CPDs, which we first recall. The main
tool is the centering operation that provides a way to map CPDs onto FDs, and vice versa.

Definition 3.2 (Centering operation). Let C : M˚ ˆ B1 ˆ r0, log 2s Ñ M˚ be given by

Cpμ, x, tq “ St̊ Txμ.

If Q is a distribution on M˚ ˆ B1, then its (continuous) centering centpQq is the push-down
of Q ˆ λ under C, that is,

centpQq :“ CpQ ˆ λq,
where λ is normalized Lebesgue measure on r0, log 2s. For illustration, see Figure 1.

Theorem 3.3. Let Q be a CPD, and let pQ be its extended version pgiven by Lemma 2.24q.
Then centp pQq is an extended FD.

Conversely, given an extended FD P, there exists a CPD Q such that P “ centp pQq, with pQ
the extended version of Q.

Proof. See [11, Theorems 1.14, 1.15 and Proposition 1.16]. We remark that although in
[11] CPDs are not required to have Lebesgue intensity measure, [11, Proposition 1.16] states
that one can find an appropriate CPD with this additional property.

This correspondence theorem between CPDs and FDs allows us to reduce the investigation
back to CPDs. In this ‘discrete’ setting, the analogue of Theorem 3.1 is quite straightforward.

Lemma 3.4. The family CPD is closed in PpΞq.

Proof. Write U for the distributions in PpΞq with Lebesgue intensity measure. Note that
Q P U if and only if ż ż

f dν dQpνq “
ż

fpxq dx for all f P CpB1q.
The left-hand side defines a continuous function of Q, so U is a closed set. For fixed f P CpΞq,
both sides of (2.1) are continuous as a function of Q, so the family of adapted distributions is
also closed.

It remains to show that if Qn are CPDs and Qn Ñ Q, then Q is M -invariant. Note that M
is discontinuous in general, however, it is discontinuous only at pairs pμ, xq, where x has some
coordinate equal to 0 (that is, x is in the boundary of two dyadic cubes of first level). Since
we already know Q P U and that Q is adapted, M is continuous off a set of Q-measure zero.
Lemma 2.29 then tells us MQ “ limnÑ8 MQn “ Q, as desired.
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Figure 1. The centering centpQq provides a distribution of magnifications Cpµ, x, tq, where the
scale e´t is chosen uniformly between 1

2
and 1 and pµ, xq according to the distribution Q.

Proof of Theorem 3.1. Let tPnu be a sequence of restricted FDs such that Pn Ñ P in
PpB1q. For each n, the second part of Theorem 3.3 provides us with a CPD Qn such that
centp pQnq “ pPn, where pPn, pQn are the corresponding extended versions. By Lemma 3.4 and
compactness, there exists a CPD Q which is an accumulation point of the Qn. Let pQ be
the extended version of Q. It is enough to prove centp pQq˝ “ P , since then the first part of
Theorem 3.3 yields that P is a restricted FD. In turn, this follows if we can prove that the
map Q Ñ centp pQq˝ is continuous on CPDs.

Note that Cpμ, x, tq depends only on the restriction of μ to B2 “ Bp0, 2q “ r´2, 2sd. Let

μ♦ :“ μB2 ,

with Q♦,M♦, etc. being defined in the usual way. The desired continuity then follows if we
can establish the following two claims.

(i) The map Q Ñ pQ♦ is continuous from the set of CPDs to PpM♦ ˆ B1q.
(ii) The map Q Ñ centpQq˝ is continuous from PpM♦ ˆ B1q to PpMq.

These claims are proved in the following two lemmas.

Lemma 3.5. The map Q Ñ pQ♦ is continuous on the set of CPDs.

Proof. Let f P CpM♦ ˆ B1q. We have to show that if Qk, Q are CPDs, and Qk Ñ Q, thenż
fpν♦, xq d pQkpν, xq ÝÑ

ż
fpν♦, xq d pQpν, xq.

We may and will assume that |f | is uniformly bounded by 1. Fix n ě 2, and write Δn “ ty :
distpy, BB1q ě 2 ¨ 2´nu. Decomposeż

fpν♦, xq d pQpν, xq “
ż

xPB1zΔn

fpν♦, xq d pQpν, xq `
ż

xPΔn

fpν♦, xq d pQpν, xq.

Using }f}8 ď 1 and Corollary 2.25, it follows thatˇ̌̌̌
ˇ
ż

xPB1zΔn

fpν♦, xq d pQpν, xq
ˇ̌̌̌
ˇ ď

ż
1B1zΔn

pxq d pQpν, xq ď Cd 2´n,
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and likewise for pQk, where Cd ą 0 depends on the dimension d only. Thus it is enough to show,
for a fixed n,

lim
kÑ8

ż
xPΔn

fpν♦, xq d pQkpν, xq “
ż

xPΔn

fpν♦, xq d pQpν, xq.

We use the notation of the proof of Lemma 2.24. Let pμn, xnq be a PQ-typical point, and
let pν, x0q be the resulting element of M ˆ B1. Note that if x´n P Δn, then Tx´n,nB1 Ą B2,
and it follows that ν♦ “ T♦

x´n,nμ´n. Hence, keeping in mind, the construction of the extended
version given in Lemma 2.24,ż

xPΔn

fpν♦, xq d pQpν, xq “ EPQ
1Δn

px´nqfpT♦
x´n,nμ´n, Tx´n,nx´nq

“
ż

1Δn
pxqfpT♦

x,nμ, Tx,nxq dQpμ, xq,
where in the last step we used that the stationary sequence pμn, xnq has marginal Q. Likewise,
the same holds for Qk in place of Q. The function pμ, xq Ñ 1Δn

pxqfpT♦
x,nμ, Tx,nxq is continuous

except for some pairs pμ, xq with x at the boundary of two dyadic cubes of side length 2 ˆ 2´n.
Since Q is adapted and has Lebesgue intensity, it gives zero mass to this discontinuity set. We
are done, thanks to Lemma 2.29.

Lemma 3.6. The map Q Ñ centpQq˝ is continuous from PpM♦ ˆ B1q to PpB1q.

Proof. Let f P CpM˝q and Q P PpM♦ ˆ B1q. By the definition of centering and
Fubini, ż

f dpcentpQq˝q “
ż ż log 2

0

fpS˝

t Tx̊ μq dλptq dQpμ, xq.
Even though each S˝

t may be discontinuous (when the boundary of Bp0, e´tq has positive
mass), for a given measure, there can be discontinuities only for countably many values of t. It
follows from the bounded convergence theorem that the inner integral is a continuous function
of Tx̊ μ, which in turn is a continuous function of pμ, xq, and the lemma follows.

4. Splicing and the simplex of FDs

The goal of this section is to establish Theorem B, which is precisely stated
as follows.

Theorem 4.1. The convex set FD is a Poulsen simplex pas a subset of the locally convex
space of finite Radon measuresq. In other words, extremal points of FD are weakly dense in
FD.

Again, invoking the centering operation all we need to prove is the following proposition.

Proposition 4.2. The family CPD is a Poulsen simplex.

We show how to deduce Theorem 4.1 from this proposition; the remainder of this section is
devoted to the proof of the proposition.

Proof of Theorem 4.1 pAssuming Proposition 4.2q. By Theorem 3.3, the centering operation
maps CPDs onto FDs. The centering map is in fact a factor map from the suspension flow
with base pM ˆ B1,Mq and height log 2 onto FD; see [11] for the details. It follows that if
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Figure 2. Given n “ pniqiPN, the splicing map SPLn takes the first ni coordinates of the word
xi P B1 and concatenates the obtained finite words into a point in B1.

Q is an ergodic extended CPD, then its centering is an ergodic FD. Moreover, if a CPD is
ergodic, then so is its extended version. Indeed, the construction in Lemma 2.24 shows that
the extended version is a factor of the two-sided extension of Q, which is ergodic if and only if
Q is ergodic.

Finally, we recall from Lemmas 3.5 and 3.6 that the map Q Ñ centp pQq˝ is continuous. Thus
the image of the dense set of ergodic CPDs under this map is dense in the set of restricted FDs
and, by the above observations, consists of ergodic distributions, concluding the proof.

4.1. The splicing operation

The construction of the ergodic CPD which approximates a given CPD is done via an operation
which we term the splicing of scales. To introduce the notation, it is convenient to identify
points in B1 with dyadic sequences.

Notation 4.3 (Coding dyadic cubes). Write A “ t0, 1, . . . , 2d ´ 1u. Enumerate D (the
dyadic subcubes of B “ B1 of first level; recall Subsection 2.4) as tBi : i P Au. Each x P Ak

then corresponds to a dyadic cube Bx of generation k and side length 21´k. We silently identify
x with Bx whenever there is no possibility of confusion. Moreover, we also identify each x P B
with x P AN such that

txu “
č
kPN

Bx|k .

If x is any sequence of length at least b (possibly infinite), then we write xb
a “

pxa`1, xa`2, . . . , xbq. Also, if x is an infinite word, then we write x8
n “ pxn`1, xn`2, . . .q;

geometrically, x8
n “ TBxn

0
x. In the case a “ 0, we also write x|b “ xb

0. We allow the empty word
∅, which in our identification corresponds to B1; we note xa

a “ ∅. If μ P PpBq and x P Ak, then
we write

μp¨|xq “ TBx
μBx

.

In symbolic notation, if y P A�, then μpy|xq “ μpxyq{μpxq.

We can now give the definition of the splicing map.

Definition 4.4 (Splicing map). Given a sequence n “ pniqiPN of integers, we define
SPLn : BN

1 Ñ B1 as

SPLnppxiqiPNq :“ px1|n1x
2|n2 ¨ ¨ ¨ q,

where the notation on the right-hand side indicates concatenation of words. For illustration,
see Figure 2.
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Of particular interest to us is the action of the splicing map on product measures
Ś8

i“1 μi

on BN
1 , and also on product distributions. Let

ν “ SPLn

˜ 8ą
i“1

μi

¸
.

By the definition of splicing, the ν-mass of a finite word y (or equivalently, a dyadic cube D) is
built from the μi-masses of consecutive subwords of y whose length comes from the sequence
n. To make this statement precise, for k P N, define the sum

Sk “ Skpnq :“ n1 ` n2 ` ¨ ¨ ¨ ` nk.

Lemma 4.5. If k P N, Sk ď N ď Sk`1 and y P AN , then

νpyq “ μ1pyS1
0 qμ2pyS2

S1
q ¨ ¨ ¨ μk´1pySk

Sk´1
qμkpyN

Sk
q. (4.1)

Proof. If x P ASk`i and y P Aj , with 0 ď i ď i ` j ď nk`1, then

νpy|xq “ μkpy|xSk`i
Sk

q. (4.2)

In particular, if x P ASk and y P Aj with 0 ď j ď nk`1, then νpy|xq “ μkpyq. By iterating (4.2),
if Sk ď N ď Sk`1 and y P AN , then

νpyq “ μ1pyS1
0 qμ2pyS2

S1
q ¨ ¨ ¨ μk´1pySk

Sk´1
qμkpyN

Sk
q

as claimed.

Relying on this lemma, by choosing a suitable sequence n, we can now control the frequency
of occurrences of the measures μi in the CP scenery xν, xyN .

4.2. Proof of Proposition 4.2

We are now ready to establish Proposition 4.2. We know from Lemma 3.4 that CPD is compact.
Moreover, by Lemma 2.23 and the existence and uniqueness of the ergodic decomposition, CPD
is a Choquet simplex. Thus, for Proposition 4.2, we need to show only that ECPD is dense in
CPD.

Proposition 4.6. Ergodic CPDs are dense in CPD.

Proof. The density of ergodic CPDs is implied by the Krein–Milman Theorem if we are
able to prove that, given a rational probability vector pt1{q, . . . , tk{qq, and given ergodic CPDs
R1, . . . , Rk, there is a sequence of ergodic CPDs QN converging to p1{qq řk

i“1 tiRi as N Ñ 8.
To find the sequence QN , let SPL “ SPLn be the splicing map corresponding to the

k-periodic sequence

n “ pNt1, Nt2, . . . , Ntkq8 “ pNt1, . . . , Ntk, Nt1, . . . , Ntk, . . .q.
Note that, as ti{q is rational, Nti is an integer for all i P t1, . . . , ku. Write rR “ Śk

i“1 Ri and
define an adapted distribution P “ PN by setting

P “ SPLp rRNq,
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that is, we take the distributions Ri in the product k-periodically. Then define QN by setting
the measure marginal

Q
N “ 1

N

N´1ÿ
j“0

Qj ,

where Qj is the push-forward of pΞ, P q under the map pμ, xq Ñ μp¨|xj
0q. Then QN is an ergodic

CPD with QN Ñ p1{qq řk
i“1 tiRi as N Ñ 8. These two facts are verified in Lemmas 4.7 and

4.8.

Lemma 4.7. For fixed N, the distribution Q “ QN is an ergodic CPD.

Proof. The outline of the proof is simple: we show that Q has Lebesgue intensity by
definition, and then that MDpμ, xq “ tQu for Q almost all μ and μ almost all x. Then it
follows from Theorem 2.21 that Q is a CPD (here we need to know that Q has Lebesgue
intensity), and then from Proposition 2.22 that Q is ergodic. We proceed to the details.

We start by showing that P has Lebesgue intensity. Since each Ri has Lebesgue intensity,
using (4.1) and the k-periodicity of the sequence n, we find that if K “ S�k for some � P N,
then

rP spxK
0 q “

ż
νpxK

0 q dP pνq “
�ź

j“1

kź
i“1

ż
μpxSj`i

Sj`i´1
q dQj`ipμq

“
�ź

j“1

kź
i“1

ż
μpxSi

Si´1
q dRipμq

“
˜

kź
i“1

2´dNti

¸�

“ 2´dK .

Since cubes of the form xK
0 generate the Borel σ-algebra, P has Lebesgue intensity as claimed.

Now

rQjspx�
0q “

ż
μpx�

0q dQjpμq “
ż

μpx�
0|yj

0q dμpyq dP pμq

“
ż

μppyj
0qpx�

0qq
μpyj

0q dμpyq dP pμq

“
ÿ

zPAj

ż
μppzxqj`�

0 q dP pμq “ Lpx�
0q,

showing that Qj and therefore the average Q also has Lebesgue intensity.
Next, we claim

lim
LÑ8

1
L

L´1ÿ
i“0

δμp¨|xiN
0 q “ P for P almost all pμ, xq. (4.3)

In essence, this is a consequence of the ergodic theorem for product measures under the shift.
After re-indexing, the splicing map SPL: BN

1 Ñ N induces a map SPL: pBk
1 qN Ñ B1 on the

space of k-tuples pBk
1 qN by

SPLpηq “ pΦpη1qΦpη2q ¨ ¨ ¨ q, η “ pη1, η2, . . . q P pBk
1 qN,

where for a given ζ “ px1, . . . , xkq P Bk
1 , we define

Φpζq “ px1|Nt1 ¨ ¨ ¨ xk|Ntk
q.
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Using this description, we can reformulate (4.3) as

lim
LÑ8

1
L

L´1ÿ
i“0

δSPLpσiηq “ SPLp rRNq for rRN almost all η,

where σ is the shift on the sequence space pBk
1 qN. But this is a consequence of the ergodic

theorem applied to the ergodic system ppBk
1 qN, rRNq. Indeed, we need to show that for any

f P CpB1q and rRN almost all η,

lim
LÑ8

1
L

L´1ÿ
i“0

fpSPLpσiηqq “
ż

f dSPLp rRNq.

In turn, it is enough to verify this for f in a countable dense subset of CpB1q, and hence for a
fixed f P CpB1q. But this holds by the ergodic theorem applied to the function f ˝ SPL.

Next, we claim

lim
LÑ8

1
L

L´1ÿ
i“0

δμp¨|xiN`j
0 q “ Qj for P almost all pμ, xq. (4.4)

We start by noting

μp¨|xiN`j
0 q “ μp¨|xiN

0 qp¨|xiN`j
iN q.

(The notation on the right-hand side means νp¨|xiN`j
iN q, where ν “ μp¨|xiN

0 q.) Indeed, it is
straightforward to check the equality for cubes rzs which form a basis of the σ-algebra.

Given η P pBk
1 qN, let

Ψpηq “ SPLpηqp¨|Φpη1qj
0q.

Using our previous notation, the last observation and the definitions of P and Qj , we find that
(4.4) is equivalent to

lim
LÑ8

1
L

L´1ÿ
i“0

δΨpσiηq “ Ψp rRNq for rRN almost all η.

Just as before, this follows from the ergodic theorem. Averaging over j, we conclude that

lim
LÑ8

1
L

L´1ÿ
i“0

δμp¨|xi
0q “ Q for P almost all pμ, xq.

Now from Theorem 2.21(2), we deduce that Q is a CPD. Since a full P -measure set has positive
Q-measure, the second part of Proposition 2.22 shows that Q is ergodic, finishing the proof.

Lemma 4.8. It holds that

lim
NÑ8 QN “ 1

q

kÿ
i“1

tiRi.

Proof. By Lemma 2.30, we only have to prove that if f P Fp for some p, then

lim
NÑ8

ż
f dQN “ 1

q

kÿ
i“1

ti

ż
f dRi.

Recall that Fp is the class of functions f : PpB1q Ñ R such that fpμq depends only on the
values μpDq, D P Dp. Define the set of indices

GN,i “ tj P t0, . . . , N ´ 1u : Npt1 ` ¨ ¨ ¨ ` ti´1q ď j ď j ` p ď Npt1 ` ¨ ¨ ¨ ` tiqu.
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Note that (since we are keeping p fixed)

lim
NÑ8

#GN,i

tiN
“ 1 for all i P t1, . . . , ku.

On the other hand, if j P GN,i, then it follows from (4.2) and the definition of Fp thatż
f dQN

j “
ż

fpμp¨|yj
0qq dμpyq dP pμq “

ż
fpμp¨|yj

0qq dμpyq dRjpμq “
ż

f dRj ,

using that Rj is a CPD in the last equality. We conclude thatˇ̌̌̌
ˇ
ż

f dQN ´ 1
q

kÿ
i“1

ti

ż
f dRi

ˇ̌̌̌
ˇ ď }f}8

řk
i“1 |tiN ´ #GN,i|

N
ÝÑ 0

as N Ñ 8.

5. Every FD is generated by a USM

In this section, we establish Theorem C, which we restate as follows.

Theorem 5.1. For any P P FD there is a USM μ which generates P . In other words, there
is a Radon measure μ such that T Dpμ, xq “ tP u for μ almost all x.

First, we note that for EFDs this is a consequence of the ergodic theorem.

Lemma 5.2. Let P be an FD. Then P almost all μ are USM generating the ergodic
component of Pμ. In particular, if P is an EFD, then P almost all measures generates P .

Proof. This follows from [11, Theorem 3.9] and the ergodic decomposition.

In particular, if P is an EFD, then there exists at least one measure generating P . If P is
not ergodic, then this is still true, but requires a more involved argument using the splicing
operation introduced in the previous section.

Yet again, the corresponding statement for CPDs is easier to prove, and implies Theorem 5.1
by invoking the centering operation.

Proposition 5.3. If μ P M and Q is a CPD, then at μ almost every x where Q P
MDpμ, xq, also P “ centp pQq˝ P T Dpμ, xq, where pQ is the extended version of Q. In fact, if
μ CP-generates Q, then μ is a USM generating P .

Proof. This is essentially proved in the course of the proof of [11, Proposition 5.5(3)].
Although in that proposition the setting is that of an arbitrary measure that has been translated
by a random vector, in the proof of the third part what really gets proved is that if μ is a
measure such that for μ typical x, the sequence xμ, xyNi

converges to a CPD Q along some
sequence pNiq, and xμyx,Ti

Ñ P as i Ñ 8 for Ti :“ Ni log 2, i P N, then

P “ centp pQq˝.

The point of the first two parts of [11, Proposition 5.5] is that a random translation of a fixed
measure does satisfy these conditions. This yields the first claim.

For the latter statement, if μ CP-generates Q, then by definition for μ typical x, we
have xμ, xyNi

Ñ Q for all sequences Ni Ñ 8. Hence any accumulation point of the scenery
distributions xμyx,Ti

must equal centp pQq˝, and we conclude that μ generates centp pQq˝, as
claimed.
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In light of this proposition and the equivalence between FDs and CPDs given in Theorem 3.3,
Theorem 5.1 is established once we prove the following proposition.

Proposition 5.4. For any CPD Q there exists a measure μ P M which CP-generates Q.

Proof. Write

G :“ tQ P CPD : there exists μ P M which CP-generates Qu.
We need to prove G “ CPD. If Q is ergodic, then we know from Proposition 2.22 that Q almost
all μ do generate Q. On the other hand, we saw in Proposition 4.2 that ergodic CPDs are dense.
Hence it is enough to show that G is closed under the weak topology.

In the course of the proof, we use notation from Subsection 4.1. Let Qi P G and suppose
there exists

Q “ lim
iÑ8 Qi.

Since each Qi is a CPD, we know from Lemma 3.4 that Q is a CPD, so in order to show Q P G
we are required to construct a measure μ which CP-generates Q. For each i P N, let μi be a
measure CP-generating Qi. Fix 0 ă ε ă 1 and choose a sequence εi Ó 0 such that

8ź
i“1

p1 ´ εiq “ ε.

Since μi generates Qi we can find mi P N such that μipUiq ą 1 ´ εi for the set

Ui “ tx P B1 : dpxμi, xyN , Q
iq ă εi for every N ě miu.

We use the sequence pmiq to construct a sequence pniq as follows: let n1 “ maxtem1 , em2u and
for i ą 1 put

ki :“ maxteni´1 , emi , emi`1u and ni :“ mi ` ki.

We let SPL “ SPLn be the splicing map associated to the sequence n “ pniqiPN; recall
Subsection 4.1. Write

μ :“ SPL

˜ 8ą
i“1

μi

¸
and U :“ SPL

˜ 8ą
i“1

Ui

¸
.

By the definition of product measure,

μpUq “ lim
MÑ8

Mź
i“1

μipUiq ě lim
MÑ8

Mź
i“1

p1 ´ εiq “ ε ą 0.

Hence μU is well defined and
MDpμU , xq “ MDpμ, xq

for μ almost every x P U by Proposition 2.20. Hence if we can prove for a fixed z P U that
xμ, zyN Ñ Q as N Ñ 8, then the normalized restriction μU CP-generates Q by definition.
This is what we do in Lemma 5.5.

Lemma 5.5. Given z P U, we have

lim
NÑ8 xμ, zyN “ Q.

Proof. Choose xi P Ui, i P N, such that z “ SPLpx1, x2, . . . q. Define the sum

Si “ Sipnq “ n1 ` n2 ` ¨ ¨ ¨ ` ni.
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For each N P N choose i “ ipNq P N such that Si ď N ă Si`1. Note that the sequence
pipNqqNPN increases to infinity as the numbers Si increase to infinity. We do not write the
dependence of i on N explicitly, but it is important to keep in mind that i Ñ 8 as N Ñ 8.
Write the proportions

pN “ Si

N
and qN “ 1 ´ pN .

Then 0 ď pN , qN ď 1 for any N P N.
Fix a control parameter K P N, which we do not touch until the end of the proof after we

have let N Ñ 8. Assume that N is so large (depending on K) that Si´1 ` K ă Si. This is
possible since ni Ñ 8 as N Ñ 8.

We make use of the metric d from Definition 2.27. The aim is to estimate dpxμ, zyN , Qq and
for this we need to find suitable distribution decompositions of the difference xμ, zyN ´ Q. We
provide a different decomposition of this difference depending on the position of N ´ Si with
respect to mi. In both cases, we obtain a representation for the average xμ, zyN ´ Q and we see
that when N is very large, this representation is close to 0. For this purpose, fix f P Lip1pXq
and let M :“ }f}8.

(1) Suppose N ´ Si ą mi`1. Then split the average xμ, zyN into

pN

¨̋
1
Si

Si´Kÿ
k“Si´1

δμp¨|zk
0 q‚̨` qN

˜
1

N ´ Si

N´1ÿ
k“Si`K

δμp¨|zk
0 q

¸
` 1

N

ÿ
rest of k

δμp¨|zk
0 q

and denote this sum by pNFN ` qNGN ` EN . Then, as pN ` qN “ 1, we obtainż
f dpxμ, zyN ´ Qq “ pN

ż
f dpFN ´ Qq ` qN

ż
f dpGN ´ Qq `

ż
f dEN .

Moreover, we continue splitting:

FN ´ Q “ pFN ´ Q
iq ` pQi ´ Qq and FN ´ Q “ pGN ´ Q

i`1q ` pQi`1 ´ Qq.
Thus, in this case, we obtain an estimate for

ş
f dpxμ, zyN ´ Qq in terms of

pNdpFN , Q
iq ` pNdpQi

, Qq ` qNdpGN , Q
i`1q ` qNdpQi`1

, Qq `
ż

f dEN

as the first four terms can be estimated from above with their d-distance. We claim

dpFN , Q
iq ď ?

d2´dK ` εi, (5.1)

dpGN , Q
i`1q ď Si ´ K ´ Si´1

Si
¨ ?

d2´dK ` εi`1, (5.2)ż
f dEN ď M ¨ Si´1 ` K

Si
. (5.3)

In order not to interrupt the flow of the proof, these are shown in Lemma 5.6.
(2) Suppose N ´ Si ď mi`1. Then split the average xμ, zyN into

1
N

Si´Kÿ
k“Si´1

δμp¨|zk
0 q ` 1

N

ÿ
rest of k

δμp¨|zk
0 q “: F 1

N ` E1
N .

In this case, we writeż
f dpxμ, zyN ´ Qq “

ż
f dpF 1

N ´ Qq `
ż

f dE1
N

“
ż

f dpF 1
N ´ Q

iq `
ż

f dpQi ´ Qq `
ż

f dE1
N .
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Thus we obtain an estimate for dpxμ, zyN , Qq in terms of

dpF 1
N , Q

iq ` dpQi
, Qq `

ż
f dE1

N .

Now we have the estimates

dpF 1
N , Q

iq ď Si ´ K ´ Si´1

Si
¨ ?

d2´dK ` εi, (5.4)ż
f dE1

N ď M ¨ Si´1 ` K ` mi`1

Si
. (5.5)

The proof of these is deferred to Lemma 5.7.

We are left to analyze the estimates above. Note that when N Ñ 8, the fractions Si´1{Si Ñ
0 so we have

Si ´ K ´ Si´1

Si
ÝÑ 1 and εi ÝÑ 0 as N ÝÑ 8.

Thus we see that these upper bounds in (5.1), (5.2) and (5.4) tend to 0 if we first let N Ñ 8 and
then K Ñ 8. Moreover, by the choices of ni, the numbers mi`1{Si Ñ 0 as N Ñ 8, so the upper
bounds in (5.3) and (5.5) tend to 0 as N Ñ 8 for any K. Since by our assumption Qi Ñ Q

as N Ñ 8, the terms dpQi
, Qq, dpQi`1

, Qq Ñ 0 as N Ñ 8, so the proof of the proposition is
complete.

We finish by proving the remaining estimates in the proof of Lemma 5.5.

Lemma 5.6. If N ´ Si ą mi`1, then estimates (5.1)–(5.3) hold.

Proof. Recall that z “ SPLpx1, x2, . . . q, so by the triangle inequality,

dpFN , Q
iq ď dpFN , xμi, xiySi

q ` dpxμi, xiySi
, Q

iq
and

dpGN , Q
i`1q ď dpGN , xμi`1, xi`1yN´Si

q ` dpxμi`1, xi`1yN´Si
, Q

i`1q.
Since z P U , we know that the points xi P Ui and xi`1 P Ui`1. Moreover, N ´ Si ą mi`1 and
Si ą mi, so by the definitions of Ui and Ui`1, we have

dpxμi, xiySi
, Q

iq ă εi and dpxμi`1, xyN´Si
, Q

i`1q ă εi`1.

Next, let us look at the term dpGN , xμi`1, xi`1yN´Si
q. Note that if Si ď k ď N ´ 1, then

dpμp¨|xk
0q, μi`1p¨|xk´Si

0 qq ď ?
d ¨ 2´K .

This follows from (4.2), just like in the proof Lemma 2.30. Using this, we estimate

dpGN , xμi`1, xi`1yN´Si
q ď 1

N ´ Si

N´1ÿ
k“Si

dpμp¨|xk
0q, μi`1p¨|xk´Si

0 qq

ď 1
N ´ Si

N´1ÿ
k“Si

?
d2´dK “ ?

d2´dK .

Moreover,

dpFN , xμi, xiySi
q ď 1

Si

Si´Kÿ
k“Si´1

dpμp¨|xk
0q, μip¨|xk´Si´1

0 qq ď Si ´ K ´ Si´1

Si
¨ ?

d2´dK .
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Moreover, for the distribution EN , we see that the number of elements in its sum is exactly

N ´ rpSi ´ Kq ´ Si´1s ´ rN ´ Sis “ Si´1 ` K,

and so by N ě Si and M “ }f}8 we obtain the claimż
f dEN ď M ¨ Si´1 ` K

N
ď M ¨ Si´1 ` K

Si
.

Lemma 5.7. If N ´ Si ď mi`1, then estimates (5.4) and (5.5) hold.

Proof. An argument symmetric to the proof of Lemma 5.6 when estimating GN shows

dpF 1
N , Q

iq ď Si ´ K ´ Si´1

N
¨ ?

d2´dK ` εi ď Si ´ K ´ Si´1

Si
¨ ?

d2´dK ` εi

as claimed. Moreover, the number of generations chosen in the sum over ‘rest of k’ in E1
N is

exactly

Si´1 ` K ` pN ´ Siq ď Si´1 ` K ` mi`1,

and so by N ě Si and M “ }f}8, we obtain the claimż
f dE1

N ď M ¨ Si´1 ` K ` mi`1

N
ď M ¨ Si´1 ` K ` mi`1

Si
.

6. Generic FDs

We now establish Theorem D, stated more precisely as follows.

Theorem 6.1. For a Baire generic measure μ P M pwhere in M we are considering the
weak topologyq, it holds that

T Dpμ, xq “ FD for μ almost all x.

As usual, we prove first an auxiliary result for CPDs. This result is a consequence of the
existence of measures that CP-generate a given CPD.

Proposition 6.2. For a Baire generic μ P M˝, the set of micromeasure distributions

MDpμ, xq Ą CPD at μ almost every x P B1.

In particular, if μ is supported on Bp0, 1
2 q, then for Lebesgue almost every ω P Bp0, 1

2 q, we have

MDpμ ` ω, x ` ωq “ CPD at μ almost every x.

The idea of the proof is to choose a suitable countable dense subset S Ă CPD and prove that
a Baire generic measure μ has S as a subset of MDpμ, xq at a μ typical x. Then the closedness
of MDpμ, xq guarantees the claim. By the countability of S, we need just to verify the claim
for a fixed Q P S, as the countable intersection of Baire generic sets is Baire generic. This in
turn can be obtained by proving that the property of being close to a measure μ whose CP
scenery distribution xμ, xyN is weakly close to Q in a set of large μ measure, is an open and
dense property.

To deal with openness of measure-theoretical properties using Euclidean balls, the dense
subset of CPDs must consist of measures which give zero mass to all boundaries of dyadic
cubes. This is guaranteed by the Lebesgue intensity properties of CPDs.
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Definition 6.3. We define

B1̋ :“ B1

K 8ď
N“1

ď
DPDN

BD.

That is, we remove the boundaries of dyadic cubes of all levels from B1. Further, we let

F “ tμ P M˝ : μpB1̋q “ 1u.

Lemma 6.4. There exists a countable dense subset S Ă CPD such that for any Q P S there
exists a measure μ P F that CP-generates Q.

Proof. Since ECPD Ă CPD is dense by the Poulsen property (Proposition 4.2) and CPD
is separable, there exists a countable subset S Ă ECPD which is dense in CPD. Each CPD Q
has Lebesgue intensity measure, so rQspB1̋q “ 1. This yields that Q almost every μ gives mass
μpB1̋q “ 1. On the other hand, by the ergodic theorem, if Q is ergodic, then Q almost every
μ CP-generates Q, so we in particular fix one such μ with μpB1̋q “ 1. This yields the desired
set S.

We state a simple lemma which explains why we work with measures in F .

Lemma 6.5. For fixed y P B1 and N P N, the map ν Ñ xν, yyN is continuous at all μ P F
for which xμ, yyN is defined.

Proof. The claim follows if we can show that ν Ñ νp¨|yj
0q is, for each fixed j, continuous

at elements of F for which νp¨|yj
0q is defined. Write z “ yj

0. Recall that by definition, μp¨|zq “
TBz

μBz
. Fix a sequence pμnq with μn Ñ μ. Since μ P F , we have μpBBzq “ 0, so by the weak

convergence of measures (see, for example, Lemma 2.29 applied to f “ χBz
), we have μnpBzq Ñ

μpBzq. Hence the measures pμnqBz
Ñ μBz

as n Ñ 8. The homothety map TBz
: B1 Ñ B1 is

continuous, so the continuity follows.

Lemma 6.6. Given any non-empty open set O Ă PpM˝q, N P N and c ą 0, let

U :“ tμ P M˝ : μptx : xμ, xyN P Ouq ą cu.
Then F X U is contained in the interior of U .

Proof. For any ν P M, let

Aν “ tx P B1̋ : xν, xyN P Ou.
Fix μ P F X U , that is, μpB1̋q “ 1 and μpAμq ą c.

We claim that there is an open set V Q μ such Aμ Ă Aν for all ν P V. Indeed, note that
xν, xyN depends only on the dyadic cube of level N which contains x. Now let Z denote the
(finite) collection of centers of dyadic cubes whose interior is contained in Aμ. Then Aμ Ă Aν

whenever
ν P

č
zPZ

tη : xη, zyN P Ou,

which contains a neighborhood of μ by Lemma 6.5. This is where we used the fact that μ P F .
Note that Aμ is open (as a union of open dyadic cubes). Since μpAμq ą c and μ is Radon,

there is a compact subset K Ă Aμ such that μpKq ą c. If we let W “ tν P M : νpKq ą cu, then
W is open: indeed, if ηn are in its complement and ηn Ñ η then, using [17, Theorem 1.24],

ηpKq ď lim inf
nÑ8 ηnpKq ď c,

so the complement of W is closed.
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We have seen that the set V X W contains μ, is open and is contained in U . Hence μ is in
the interior of U , as claimed.

Lemma 6.7. For any non-empty open sets O Ă PpM˝q and B Ă M˝, and any ε ą 0, there
exist N0 P N and a measure μ P B X F such that

μptx : xμ, xyN P O for all N ě N0uq ą 1 ´ ε.

Proof. Recall the collection S Ă CPD from Lemma 6.4. Since S is dense, we can find a CPD
Q P O X S. By the definition of S, there exists a measure ν P F that CP-generates Q. Pick
τ P B. Following the terminology of Hochman [11, Section 8.2], define the pν, nq-discretization
of τ by

τn “
ÿ

DPDn

τpDqT ´1
D ν.

This is very similar to splicing, except that we use the measure τ for the first n dyadic
generations and the measure ν for all the others. Since ν is a probability measure, we obtain
τn Ñ τ so there exists n “ nδ P N such that τn P B. Let μ be this discretization τn. Note that
μ P F since ν P F .

Recall the symbolic coding of dyadic cubes introduced in Notation 4.3. It follows from the
definition of μ that for any x P B1 such that τpxn

0 q ą 0 and any j P N,

μp¨|xn`j
0 q “ νp¨|xn`j

n q. (6.1)

We employ the metric on measures d introduced in Subsection 2.6. Pick δ ą 0 such that
BdpQ, 2δq Ă O, where Bd denotes the open ball in this metric. Since ν CP-generates Q, there
exists m P N such that νpUδq ą 1 ´ ε for

Uδ “ ty P B1 : dpxν, yyN , Qq ă δ for all N ě mu.
Now if N ě n, f : PpM˝q Ñ R is 1-Lipschitz, x P B1 is such that νpxN

0 q ą 0, then we deduce
from (6.1) thatˇ̌̌̌ż

f dxμ, xyN ´
ż

f dxν, x8
n yN

ˇ̌̌̌
“ 1

N

ˇ̌̌̌
ˇn´1ÿ
j“0

ż
f dμp¨|xj

0q ´
N`n´1ÿ

j“N

ż
f dνp¨|xj

0q
ˇ̌̌̌
ˇ ď 2n}f}8

N
.

Recall from Remark 2.28 that in the definition of the metric d we may restrict ourselves to
1-Lipschitz functions f with }f}8 ď C for some fixed constant C ą 0. By taking m larger if
needed, we may further assume 2nC{m ă δ. The above calculation then shows

dpxμ, xyN , xν, x8
n yN q ă δ whenever N ě m.

Hence, if we define

Vδ “ tx P B1 : x8
n P Uδu,

then we have xμ, xyN P O for all N ě m. Furthermore, by the definition of μ,

μpVεq “
ÿ

DPDn

τpDqνpTDVεq ě
ÿ

DPDn

τpDqνpUεq ą 1 ´ ε.

This concludes the proof.

We can now conclude the proof of Proposition 6.2.
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Proof of Proposition 6.2. Let S Ă CPD be the countable dense subset from Lemma 6.4.
For Q P S, ε ą 0 and K P N, we define

UQ,ε,K :“
ď

NěK

interiortμ P M˝ : μptx : dpxμ, xyN , Qq ă εuq ą 1 ´ εu

and

R :“
č

QPS

č
εPQ, 0ăεă1

č
KPN

UQ,ε,K .

The collection UQ,ε,K is open as a union of open sets over N ě K. Moreover, by Lemma 6.6
applied to the open set O “ BdpQ, εq Ă PpM˝q, the collection UQ,ε,K contains the set

DQ,ε,K “
ď

NěK

tμ P F : μptx : dpxμ, xyN , Qq ă εuq ą 1 ´ εu.

By Lemma 6.7, the set DQ,ε,K is dense: for a given non-empty open set B Ă M˝, we can choose
μ P F X B such that dpxμ, xyN , Qq ă ε happens for all N ě N0 in a set of μ measure greater
than 1 ´ ε. In particular, we can find N ě K with this property, showing that B meets DQ,ε,K .
Hence DQ,ε,K is dense as claimed, and so is UQ,ε,K .

Since the set R is a countable intersection of sets with dense interiors, its complement is a
set of first category. Fix μ P R and let tQju be an enumeration of S. Let εi Œ 0 be a sequence
of rational numbers. Then, for some Ni,j Õ 8, we obtain μpAi,jq ě 1 ´ εi for

Ai,j :“ tx P B1 : dpxμ, xyNi,j
, Qjq ă εiu.

Write

A “
č
jPN

lim sup
iÑ8

Ai,j .

Then as εi Œ 0, we have by the convergence of measures that μpAq “ 1. Fix x P A. For each j
there are infinitely many i such that

dpxμ, xyNi,j
, Qjq ă εi.

This shows S Ă MDpμ, xq. Since MDpμ, xq is closed in PpΞq we have CPD Ă MDpμ, xq at μ
almost every x.

The second statement is immediate from the fact that MDpμ ` ω, x ` ωq Ă CPD for
Lebesgue almost all ω (recall Theorem 2.21).

Proof of Theorem 6.1. Given Q P S, ε ą 0 and K P N, letrUQ,ε,K “ interiortμ P M : μ˝ P UQ,ε,Ku,
where UQ,ε,K is as in the proof of Proposition 6.2. These sets are open by definition. We claim
they are also dense.

Let π : M Ñ M˝ be the map μ Ñ μ˝. This map is not continuous (and is not everywhere
defined), but it is defined and continuous on the set D Ă M of measures which give zero mass
to the boundary of B1 and positive mass to B1. It is easy to see that D is in fact dense,
and D˝ is dense in M˝ (where, as usual, D˝ “ tμ˝ : μ P Du). Hence, since UQ,ε,K is open and
dense, D˝ X UQ,ε,K is dense in M˝. Since measures in D are continuity points of π, the set
π´1pD˝ X UQ,ε,Kq is contained in the interior of π´1pUQ,ε,Kq. We see that it is also dense in
M.

Let D be a metric on M inducing the weak topology (see, for example, [17, Remark 14.15]
for an instance of such a metric). Fix τ P M and ε ą 0. Pick ν P D such that Dpν, τq ă ε{2.
Since ν P D, � :“ νpB1q ą 0 so in particular ν˝ is well defined. Now pick a sequence μn Ñ ν˝

with μn P D˝ X UQ,ε,K ; this is possible by density. Even though μn is a measure on B1, we
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identify it with a measure on R
d. Let

νn “ ν|RdzB1 ` �μn.

Then it is easy to see that νn Ñ ν weakly, so we have Dpνn, τq ă ε for some n. By construction
ν˝

n “ μn and therefore νn P π´1pD˝ X UQ,ε,Kq, showing that this set, and hence also rUQ,ε,K , is
dense as claimed.

Now, similarly to the proof of Proposition 6.2, define

R0 “
č

QPS

č
εPQ, 0ăεă1

č
KPN

rUQ,ε,K .

Fix P P FD. Theorem 3.3 implies that there exists a CPD Q such that

P “ centp pQq˝.

Since μ P R0, the proof of Proposition 6.2 implies CPD Ă MDpμ, xq at μ almost every x P B1,
so in particular Q P MDpμ, xq at these x. Then, by Proposition 5.3, we know P P T Dpμ, xq at
μ almost every x P B1. We also know that at μ almost every x P B1 we have T Dpμ, xq Ă FD
by Theorem 2.10. We have shown T Dpμ, xq “ FD for any μ P R0 and μ almost all x P B1.

To finish the proof, define

R “
č

nPZd

tTnμ : μ P R0u,

that is, we intersect all integer translates of R0. This set is a countable intersection of open
and dense sets (note that for fixed n, the map Tn is a homeomorphism of M) and thus
its complement is a set of first category. Moreover, if μ P R, then for all integer vectors n,
T Dpμ, xq “ FD for μ almost all x P Bpn, 1q. As the union of these balls covers R

d, we are
done.

Appendix. Remarks on the choice of norm

We have so far followed [11] in working with the L8 norm of R
d. However, other than

simplifying some proofs, there is nothing special about this norm, and all the results from
[11] that we require work equally well with any other norm. Since in geometric measure theory
one uses mainly the Euclidean norm, our geometric applications in [15] are simplified if we use
Euclidean versions of the results presented here.

Rather than verifying that all the proofs from [11] can be made to work with any norm, we
explain how to deduce the results from their L8 version. This is most clear for the extended
version of FDs, since in this case choosing different norms amounts only to a different choice of
normalization; see the discussion in [11, Section 3.1]. For restricted versions things also work,
helped by the uniqueness of the extended version.

For the sake of completeness, we provide details of the modifications needed to carry the
theory to the setting of an arbitrary norm. Note that the concepts of FD and T D are effectively
tied to the L8 norm } ¨ } which was implicit in their definition. Let } ¨ }1 be any other norm
on R

d. We use an apostrophe to denote the corresponding concepts defined in terms of this
new norm. For example, B1

1 is the unit ball in the norm } ¨ }1, the set of FDs with respect to
this norm is FD1, etc. Further, for μ P M with 0 P suppμ, we denote μ1 “ p1{μpB1

1qqμ and
μ♦ “ μB1

1
. As with μ˚, μ˝, we use the same notation to indicate postcomposition with these

maps, as in Q1, Q♦, etc.
The proof of the one–one correspondence Q Ñ Q♦ between restricted and extended versions

[11, Lemma 3.1] is independent of the chosen norm. Thus we assume this.
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Proposition A.1. (A.1) The map μ Ñ μ1 is an isomorphism pthat is, a bijective factor
mapq from pM˚, S˚q to pM1, S1q.
(A.2) If Q P FD, then Q1 P FD1 and conversely for any P P FD1 there is Q P FD with Q1 “ P .
(A.3) Theorem 2.10 continues to hold with the norm } ¨ }1, that is, if μ P M, then for μ almost
all x, T D1pμ, xq Ă FD1.
(A.4) Theorem 2.11 holds for the norm } ¨ }1, that is, if Q P FD1, then the ergodic components
of Q are also in FD1.
(A.5) Theorem 3.3 holds for the norm } ¨ }1, that is, if Q is a CPD, then cent1pQq P FD1 and,
conversely, given any P P FD1, there is an extended CPD Q with cent1pQq “ P . Here cent1pQq
is the push-down of Q ˆ λ under ppμ, xq, tq Ñ S1

tTxμ pwhere λ is normalized Lebesgue measure
on r0, log 2qq.

Proof. (A.1) This is routine from the definitions.
(A.2) Given the first part, we need to show only that if Q P FD, then Q1 is quasi-Palm.
Suppose Q1pY q “ 1. Since μ Ñ μ1 is a bijection, Y “ Z 1, where QpZq “ 1. By the quasi-Palm
property of Q, μx,t P Z for Q almost all μ almost all x. But then Txμ1 P Z 1 for Q almost all μ
and μ almost all x, and whence also for Q1 almost all μ1 and μ1 almost all x, since μ and μ1
are equivalent.
(A.3) Fix μ P M, and let x be a point such that T Dpμ, xq Ă FD; by Theorem 2.10, we know
this happens for μ almost all x.

Assume first that the unit ball of } ¨ }1 is contained in B1. In this case, we have S♦
t Txμ “

pS˝

t Txμq♦. Suppose xμy1
x,Tj

Ñ Q; by passing to a subsequence we may assume xμyx,Tj
Ñ P ,

where P P FD by our choice of x. Then, writing pP for the extended version of P , we have
p pP 1q♦ “ Q; by the previous part, pP 1 is in FD1 and by uniqueness is therefore the extended
version of Q, showing Q P FD1 as claimed. Note that this argument works in reverse: if
T D1pμ, xq P FD1, then T Dpμ, xq P FD.

The general case now follows by considering first the norm } ¨ }2 “ maxp} ¨ }, } ¨ }1q (whose
unit ball is contained in B1) and then using the result for this norm to deduce the same for
} ¨ }1 (which has a larger unit ball).
(A.4) This assertion follows from the first two: we know from Theorem 2.11 that if Q “ş
QμdQpμq is the ergodic decomposition of Q, then Qμ P FD for Q almost all μ. By the first

part, the ergodic decomposition of Q1 is
ş
Q1

μdQ1pμq, and by the second part Q1
μ P FD1 for Q1

almost all μ.
(A.5) Note that cent1pQq “ pcentpQqq1 so both statements are a consequence of the result for
the L8 norm and the first part.

Now it becomes clear that Theorems 3.1, 4.1, 5.1 and 6.1 hold for any norm and in particular
for the Euclidean norm. This can be deduced either from the fact that our proofs are norm-
independent (once we have norm-independent versions of the results we assume), or by following
simple arguments of the kind above to pass from the L8 norm to an arbitrary norm.
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