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bstract

Eigenvalues play an important role in many fields of applied mathematics to engineering. For some applications it may be desirable to calculate
he variables of a model in order to optimize an objective function and/or to verify constraints that involve the eigenvalues of a certain matrix. In
eneral the elements of such a matrix depend nonlinearly on the optimization variables. Despite its potential to address diverse chemical engineering
roblems, eigenvalue optimization techniques have not been extensively used in the Process Systems Engineering discipline. The objectives of this

ontribution are to review most relevant topics on eigenvalue optimization and to present formulations and solution strategies to practically address
igenvalue optimization problems in the field of chemical engineering. In order to illustrate the ideas, several small size applications, which have
o do with the analysis and control of nonlinear dynamic systems, are developed. Other potential applications and future lines of research are also
uggested.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Among the plethora of applications of eigenvalues in mathe-
atics and engineering it can be mentioned numerical analysis,

tructural design, quantum mechanics and system dynamics of
hysical, chemical and biological models.

In particular nonlinear dynamics is in a great extent described
hrough eigenvalues. Eigenvalues are important in nonlinear
ynamics because they provide information of the behavior of an
volving system governed by a linear operator, namely the Jaco-
ian matrix of the process dynamic system. Information about
esonance, instability, and growth or decay rates as time tends to
nfinity can be obtained through eigenvalue analysis. The reader
s referred to [1,2] for comprehensive discussions of eigenvalue
nalysis in nonlinear dynamics.
In many problems involving eigenvalues the elements of a
ertain matrix A may be functions of an amount of variables, y,
nd the values of such variables are desired to be the solution of
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ome optimization problem involving the eigenvalues of A(y)
s objective functions or constraints.

Within the eigenvalue optimization field, semi-definite pro-
ramming has received considerable attention in the last decade
3]. In semi-definite programming real symmetric positive defi-
ite matrices are considered. The positive definite constraint on
eal symmetric matrices whose elements linearly depend on the
ptimization variables are known as linear matrix inequalities,
f relevance in systems and control theory [4].

Few contributions dealing with the general unsymmetric,
onlinear case, which typically arise in chemical engineering
ystems, have been presented so far. Much of the work in
onlinear eigenvalue optimization, from both theoretical and
lgorithmic points of view, has been produced in the mechanical
structural) engineering field [5]. For a comprehensive survey
n eigenvalue optimization, which also includes a historical
ccount of the development of the field, see [6].

In the chemical engineering research literature, many tech-
iques which make use of eigenvalues for design, analysis and

ontrol of dynamic systems have been proposed since the sem-
nal works of on chemical reactors’ stability [7] and bifurcation
nalysis of chemical reactors [8]. However, very few contribu-
ions up to [9] and [10] have taken advantage of eigenvalue
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ptimization as a general approach in Process Systems Engi-
eering.

It is not the aim of this paper to make a complete review
f the field of eigenvalue optimization, but to discuss in some
xtent pertinent developments to the chemical engineering
iscipline. In particular two main optimization problems are
onsidered.

.1. Problem 1

A classic eigenvalue optimization problem is to optimize
certain objective subject to the constraint on the real part

f the eigenvalues of a general matrix to be negative. Sev-
ral authors proposed such a formulation in the context of
esign-for-stability. In [11], the aforementioned approach is
uggested for the design of economically optimal, dynami-
ally stable reactor networks. Their optimization strategy makes
se of analytical expressions of the bounds of the eigenval-
es. Such expressions turn to be simple, convex and allow
he handling of arbitrarily large systems. Since these bounds
an be very conservative a matrix measure relaxation approach
s applied in order to iteratively converge to the desired
olution.

Ringertz introduces this formulation in the context of the
tructural design problem of finding the shape of the column
hat minimizes the structural weight [5]. Ringertz’s solution
roposal is to translate the constraint on the real part of the
igenvalues of the real unsymmetric matrix to be negative, into
positive definiteness condition on an auxiliary real symmet-

ic matrix (Lyapunov matrix) making use of the Lyapunov’s
atrix identity. Ringertz’s approach to cope with positive def-

niteness makes use of the property that it is a sufficient and
ecessary condition for a real symmetric matrix to be positive
efinite that its eigenvalues be positive. Applying such a con-
ition and matrix determinant properties, the original problem
s reformulated making use of interior-point logarithmic-barrier
ransformation techniques.

In this strategy, Lyapunov matrix positive definiteness has to
e ensured along the optimization process in order to avoid lost
f feasibility and logarithmic indetermination. For example, its
igenvalues can be evaluated at each iteration and verified to be
reater than zero. Alternative, more efficient strategies can be
onceived based on Cholesky decomposition techniques. If this
ondition is violated, backtracking is required in the line search
ntil positive definiteness recovery. Such an approach requires
pecial algorithms since the positive definiteness safeguard has
o be implemented as an “additional inner loop” in standard
arrier optimization solvers. For a detailed discussion of this
ssue, see [9].

In [10], the authors proposed an alternative formulation to
hat of [5] to cope with positive definiteness, which results
n a standard NLP formulation. This approach has the impor-
ant advantage that standard NLP solvers can used. The idea

s to apply Sylvester conditions on the Lyapunov matrix. An
quation-oriented approach is proposed to solve the resulting
roblem, which considers the elements of the Lyapunov matrix
s optimization variables. The major drawback of the proposed
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pproach is that analytical expressions for the involved deter-
inants are required. Since determinants are highly nonlinear

unctions, non-convex optimization issues arise, mainly having
o do with the provision of adequate bounds and starting points
o the optimization variables. Moreover, analytical expressions
or determinants are not easily obtained even for small size
atrices.

.2. Problem 2

Another typical eigenvalue optimization problem is to maxi-
ize the smallest eigenvalue of a symmetric matrix. In [5], such
formulation is applied in the field of structural engineering

o the problem of maximizing the lowest natural vibration fre-
uency of a structure and to linear buckling. The problem is
eformulated in terms of an auxiliary variable and also requires
positive definiteness constraint on a certain matrix. The solu-

ion strategy implies a logarithmic barrier transformation and
pecialized numerical optimization algorithms to cope with the
ositive definiteness condition.

To the best of our knowledge, only [12,10] have proposed
hemical engineering pertinent applications of such problem.
n [12] the typical control problem of pole placement through
tate feedback is addressed as the maximization of the mini-
um eigenvalue of a certain symmetric matrix related to the

ynamic system of the process. A required positive definiteness
ondition is imposed by means of Sylvester criterion. The solu-
ion approach also considers an equation-oriented model with
he already described implementation drawbacks. In [10] the
roblem of maximization of the minimum singular value of the
rocess system transfer function matrix, a classic controllabil-
ty index, is addressed within a multiple objective framework to
esign-for-operability.

From the above it can be concluded that very few applica-
ions of eigenvalue optimization have been proposed so far to
ddress chemical engineering related problems. The focus in
his contribution is to illustrate the application of those for-

ulations in the analysis and control of nonlinear dynamic
ystems of pertinence to the chemical engineering discipline.

common resolution framework for both problems is also
uggested.

This article is structured as follows. In the next section,
asic eigenvalue optimization theory is introduced, main eigen-
alue optimization problems are presented, and novel solution
trategies proposed. Next, small-scale chemical engineering
pplications in the context of nonlinear dynamics and control
re posed and solved for the different eigenvalue optimization
ormulations. A Conclusions and Future work section closes the
rticle.

. Eigenvalue optimization

As pointed out in [11] there exists the impossibility of obtain-

ng mathematical expressions for the eigenvalues of systems
arger than 4 × 4. This makes it impossible to include eigenval-
es within an optimization model in a straightforward manner
as objectives and/or constraints). Furthermore, even in the cases
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here analytical expressions can be obtained, their usual high
omplexity and non-convexity make difficult to standard NLP
olvers to cope with them.

Besides this issue, a critical difficulty in eigenvalue opti-
ization problems is the potential “coalescence” of eigenvalues

13]. The eigenvalues of a matrix with differentiable elements
smooth in the optimization variables) are themselves non-
ifferentiable (non-smooth) at the points where coalescence
ccurs. It is also frequent that the optimization objective tends to
ake the eigenvalues coalesce at the solutions [13]. The follow-

ng classic example illustrates this point. Consider the following
atrix:

(y) =
[

1 + y1 y2

y2 1 − y1

]

hose eigenvalues are 1 ±
√

y2
1 + y2

2.
It can be seen that the maximum eigenvalue is minimized by

1 = y2 = 0 (Fig. 1). Clearly the maximum eigenvalue is not a
mooth function in such a point.

In order to overcome the aforementioned difficulties
hen eigenvalues are present, it is necessary to develop

pecialized optimization methods. A couple of classic eigen-
alue optimization problems motivate the reminder of this
ection.

.1. Optimization with constraints on the real part of the
igenvalues of a real unsymmetric matrix

A classic eigenvalue optimization problem is to optimize a
ertain objective subject to the constraint on the real part of the
igenvalues of a certain matrix A(y) to be negative:

min
y

Φ(y)

s.t.

Re(λi(A(y)) < 0, i = 1, ..., n

h(y) = 0

g(y) ≤ 0,

(P1)
y ∈ Y = {y|yl ≤ y ≤ yu}
A(y) is a general unsymmetric matrix whose elements depend

onlinearly on y. In the following, the developments in [5,9]

ig. 1. Non-differentiability of the maximum eigenvalue of Overton’s example.
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re reviewed in some extent to provide adequate theoretical
ackground to address problem (P1).

Real symmetric matrices have real eigenvalues. Unsymmet-
ic matrices, on the other hand, have complex eigenvalues in
eneral [14]. It is possible, however, to translate the constraint
n the real part of the eigenvalues of a real unsymmetric matrix,
(y) to be negative, Re(λi(A)) < 0 (i = 1, . . ., n), into a positive
efiniteness condition (denoted by symbol �) on a real sym-
etric matrix P, P � 0, through Lyapunov’s matrix identity. [1]:
TP + PA + I = 0.
Therefore, problem (P1) can be rewritten as follows

min
y

Φ(y)

s.t.

AT(y)P + PA(y) + I = 0

P � 0

h(y) = 0

g(y) ≤ 0

y ∈ Y

(P1′)

Lyapunov equation forces matrix P to become unbounded
some element of P tends to infinite) when the largest eigen-
alue of A in real part approaches zero. This behavior has been
eported by [5] and also observed by the authors during their
omputational experiences. In order to avoid such difficulty, the
ositive definiteness condition is applied on the inverse of P,
hich is an equivalent but numerically better-posed constraint

5]:

min
y

Φ(y)

s.t.

AT(y)P + PA(y) + I = 0

P−1 � 0

h(y) = 0

g(y) ≤ 0

y ∈ Y

(P1′′)

In Ringertz’s approach [5] (P1′′) is reformulated as an
nterior-point logarithmic-barrier transformation smooth NLP
roblem, which requires special algorithms to be addressed. In
9] it was proposed to apply Sylvester conditions on matrix P−1.
ylvester’s criterion [14] states that the necessary and sufficient
onditions for a symmetric matrix Q(n, n) to be positive definite,
re that the determinants of its successive principal minors Qi

i = 1, . . ., n) be positive: det[Q(1, 1)], det[Q(2, 2)], . . ., det[Q(n,
)]. Therefore, (P1′′) can be reformulated into a new problem as

min
y

Φ(y)

s.t.

AT(y)P + PA(y) + I = 0

det(Pi
−1) > 0, i = 1, ..., n

h(y) = 0

g(y) ≤ 0

(P1N)
y ∈ Y

This is a standard NLP problem, since the determinants
re themselves smooth, and can be addressed with standard
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radient-based algorithms. The constraints of greater than zero
n the determinants are handled through a small constant ε:
et(Pi

−1) ≥ ε, ε > 0. The equation-oriented approach proposed
n [9] to address problem (P1N) requires the provision of ana-
ytic expressions of the involved determinants, which are highly
onlinear.

In order to avoid the implementation drawbacks of previous
pproaches (for example in [9]), the following new calculation
equence is presented to evaluate positive definiteness con-
traints in problem (P1N) as part of the solution procedure with
tandard NLP solvers:

Solution procedure for (P1N):
◦ Step 1: Provide a starting point for y.
◦ Step 2: Evaluate A(y) either analytically or numerically.
◦ Step 3: Evaluate P by solving Lyapunov equation (resolu-

tion of a linear systems of equations).
◦ Step 4: Evaluate P−1 using standard routines for inverse

matrix calculation.
◦ Step 5: Evaluate det(Pi

−1), i = 1, . . ., n using standard rou-
tines for determinant calculation.

Matrix P is obtained from A(y) by solving Lyapunov equa-
ion AT(y)P + PA(y) + I = 0 which represents a sparse system of
inear equations in n(n + 1)/2 unknowns. For the problems con-
idered in this work, the Lyapunov equation was reformulated
s a linear system of equations and solved for the elements of P
ith standard linear systems routines. Alternatively, there exist

everal efficient iterative techniques to solve large-scale Lya-
unov equations that could be used. The ADI method [15], for
xample generates a sequence of matrices, which converges,
ften very fast, towards the solution. The ADI method has been
mplemented in the LYAPACK package, a Matlab toolbox for
arge Lyapunov and Riccati equations [16].

.2. Maximization of the minimum eigenvalue of a
ymmetric matrix

Consider now the problem of maximizing the smallest eigen-
alue of a real symmetric matrix A(y):

max
y

λmin(A(y))

s.t.

h(y) = 0

g(y) ≤ 0

y ∈ Y

(P2)

roblem (P2) is classically reformulated in terms of an auxiliary
ariable, z [5]:

max
y,z

z

λi(A(y)) ≥ z, i = 1, ..., n
s.t.
h(y) = 0

g(y) ≤ 0

y ∈ Y

(P2′) s
e
m
a

ing and Processing 46 (2007) 1192–1199 1195

rom the definition of eigenvalue of A: Av = λIv (v stands
or eigenvector). By subtracting zIv to both terms it results:
A − zI)v = (λ − z)Iv. Then, the condition λi > z ⇒ λi − z > 0
mplies that A − zI � 0. Therefore, the above problem can be
ewritten as

max
y,z

z

s.t.

A(y) − zI � 0

h(y) = 0

g(y) ≤ 0

y ∈ Y

(P2′′)

n [5] it is proposed the use of the positive condition on the eigen-
alues of a symmetric matrix to ensure positive definiteness
f matrix A(y) − zI. Such an approach results in a logarith-
ic barrier transformation problem, which requires specialized

lgorithms to be addressed.
In order to pose a regular NLP problem which can be tackled

ith standard NLP solvers, the positive definiteness condition
n problem (P2′′) can be expressed in terms of the determinants
f the principal minors of matrix A(y) − zI, leading to the new
ormulation:

max
y,z

z

s.t.

det{(A(y) − zI)i} > 0, i = 1, ..., n

h(y) = 0

g(y) ≤ 0

y ∈ Y

(P2N)

The greater than zero constraints on the determinants are
andled through a small constant ε: det[(A(y) − zI)i] ≥ ε, ε > 0.
he following new calculation sequence is presented to evaluate
ositive definiteness constraints:

Solution procedure for (P2N):
◦ Step 1: Provide a starting point for y and z.
◦ Step 2: Evaluate A(y) either analytically or numerically.
◦ Step 3: Evaluate A(y) − zI.
◦ Step 4: Evaluate det[(A(y)-zI)i], i = 1, . . ., n.

. Applications of eigenvalue optimization to dynamics
nd control problems

Many problems in analysis, design and control of non-
inear dynamic systems are addressed using simulation-based
pproaches since dynamic simulation allows the handling
f large-scale nonlinear systems in a straightforward man-
er. Dynamic simulation, however, may be a time consuming
nd computationally expensive activity and alternative sys-
ematic approaches to address such problems are usually
esired.

In this section, small-scale examples of classic problems in

ystem dynamics and control are addressed by making use of
igenvalue optimization problems (P1) and (P2). The resulting
odels are solved according to formulations (P1N) and (P2N)

nd the proposed positive definiteness calculation sequences,
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espectively. The case study is a typical non-isothermal CSTR
aken from [17], which presents a rich dynamic behavior and
hallenging control features.

The dimensionless model of the system, which corresponds
o a non-isothermal irreversible series first order reaction,
→ C → P, is

˙1 = 1 − x1 − Da x1k1(x3) + v (1)

˙2 = −x2 + Da x1k1(x3) − Da Sx2k2(x3) (2)

˙3 = −x3 + B Da x1k1(x3) − B Da αSx2k2(x3) − β(x3 − u)

(3)

here

1(x3) = exp

(
x3

1 + x3/ϕ

)
(4)

2(x3) = exp

(
γx3

1 + x3/ϕ

)
(5)

ere x1 is the component A dimensionless concentration, x2 the
omponent C dimensionless concentration and x3 is the reactor
imensionless temperature. u is the coolant dimensionless tem-
erature and v is considered as a bounded input that changes the
alue of the inlet concentration of reactant A.

It is assumed that x3 is the controlled variable and u is manip-
lated for control purposes. Parameter B is considered as a
isturbance and modeled as

= Bn(1 + δ) (6)

here δ is a percentage of disturbance. Model parameters are:
a = 0.26, ϕ = 100, β = 7.995, γ = 1, S = 0.5, Bn = 75.1, α = 0.426

nd v = 0.
The system has an open loop (u = 0) equilibrium point at (x1ss,

2ss, x3ss) = (0.0361, 0.0671, 4.8582). For δ ≤ −0.1 (−10%) the
ystem presents oscillatory behavior (even limit cycles) and
haos for δ = −0.23 (−23%). For δ ≤ −0.64 the system recovers
symptotic stability.

In order to stabilize such a complex behavior several feed-
ack schemes are proposed in [17]. The simplest one is an only
roportional law:

(t) = kc(x3,set − x3) (7)

here x3,set is the desired set-point for the controlled variable
nd kc > 0 the controller gain. See [17] for a detailed analysis
f the open loop and closed loop behavior of the system under
tudy.
In the following, three dynamic and control problems of the
escribed CSTR are addressed as eigenvalue optimization prob-
ems (P1) and (P2). All the NLPs were solved according to the
roposed strategies making use of the FFSQP feasible path SQP
olver [18]. In all cases matrix A was numerically evaluated and
arameter ε was set equal or lower than 1.0E−3 in the different
roblems.
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.1. Identification of bifurcations

Critical values of parameters in which steady state equilib-
ium solutions bifurcate are of major importance in the analysis
f dynamic systems. At bifurcation points, multiple equilibri-
ms (pitchfork bifurcations) or limit cycles (Hopf bifurcations)
ppear. At bifurcation points, the eigenvalues of the Jacobian
atrix of the dynamic system cross the imaginary axis (annul-
ent of the real part of the eigenvalues). For a basic introduction

o bifurcations see [2].
The reactor under study presents an open loop (kc = 0) bifur-

ation point for a certain value of parameter δ, as shown by
imulation in [17]. In the following we pose the problem of
nding the critical value of parameter δ at which the bifurcation
ccurs. We seek to minimize δ between its bounds, such that
he spectrum of the Jacobian matrix of the dynamic system, A,
ritically belongs to the stable half of the complex space. The
roblem turns to be a type (P1) formulation:

min
δ,x1ss,x2ss,x3ss

δ

s.t.

Re(λi(A)) < 0, i = 1, ..., 3

Eqs. {(1), . . . , (3)} in stationary fashion (ẋi = 0)

Eqs. {(4), . . . , (7)}
−0.30 ≤ δ ≤ 0.10

(8)

he optimization variables are δ and the steady state of the
ystem (x1ss, x2ss, x3ss). The solution of problem (8) reformu-
ated according to (P1N) is δc = −0.066 (−6.6%) and (x1ss, x2ss,
3ss) = (0.0472, 0.0859, 4.550). The asymptotically stable tran-
ient response of the system for δ < δc, is shown in Fig. 2(a) for
= −0.050 (−5.0%) applied at t = 2. At δ = δc the spectrum of

he Jacobian matrix is {−1.3064E−6 ± 23.970i; −3.907}. The
ystem has a pair of complex (critically imaginary) eigenvalues,
hich implies that a Hopf bifurcation occurs at the bifurcation
oint with limit cycle formation. This behavior is shown by sim-
lation in Fig. 2(b) where sustained oscillations are obtained for
perturbation of δ = −0.0745 at t = 2.

The system possesses another bifurcation point at
c ∼= −0.635. For δ ≤ δc the system recovers asymptotic stabil-
ty. In order to estimate this other bifurcation point, problem
8) is slightly modified in order to maximize � between say
0.90 ≤ δ ≤ −0.23. The solution of the resulting (P1N) formu-

ation is δc = −0.634 and (x1ss, x2ss, x3ss) = (0.527, 0.326, 1.252).
he corresponding eigenstructure is {−1.355E−2 ± 3.00i;
1.320}. Fig. 2(c) shows the resulting open loop oscillatory

ransient response.

.2. Minimum gain for control of chaos

In the following we pose the problem of finding the smallest
ain, kc such that the resulting operating point is Lyapunov stable

or δ = −0.23 (−23%) for which the system verifies open loop
haos.

We seek to minimize kc between its bounds, such that the
pectrum of the Jacobian matrix of the dynamic system, A,
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Fig. 2. Open loop transient response: (a) δ = −0.050, (b) δ = −0.0754, and (c)
δ = −0.64.
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ritically belongs to the stable half of the complex space. Again
he problem turns to be a type (P1) formulation:

min
kc,x1ss,x2ss,x3ss

kc

s.t.

Re(λi(A)) < 0, i=1, ..., 3

Eqs. {(1), . . . , (3)} in stationary fashion (ẋi=0)

Eqs. {(4), . . . , (7)}
0 ≤ kc ≤ 5

(9)

The optimization variables are kc and the steady state of the
ystem (x1ss, x2ss, x3ss). As result of the solution of problem
9) reformulated according to (P1N), the minimum value of the
ontroller gain to achieve a stable response is kc = 0.9670, which
eans that the system can be stabilized for any kc > 0.9670. In

ig. 3 it can be appreciated the dynamic response for a control
ction applied at t = 2 for two values of kc. From Fig. 3(a) it is evi-
ent that chaotic behavior is not suppressed with kc = 0.1, while
t is effectively controlled with kc = 1.0 (Fig. 3(b)). The steady

Fig. 3. Closed loop response for: (a) kc = 0.1 and (b) kc = 1.0.
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tate operating point for kc = 0.967 is (x1ss, x2ss, x3ss) = (0.0844,
.1425, 3.876). The spectrum of the corresponding Jacobian
atrix is {−9.208E−5 ± 18.911i; −3.580}. The system has
pair of complex eigenvalues, which are very close to the

maginary axis. This implies that a Hopf bifurcation occurs at
c = 0.9670 for δ = −0.23 (limit cycle formation) and suggests
scillatory transient responses for kc > 0.967. This behavior can
e appreciated in Fig. 3(b) for kc = 1.0.

.3. Optimizing the transient response

Lyapunov’s direct method provides a technique to character-
ze the transient response of a dynamic system [19]. Let V(x) be a
yapunov function of ẋ = f(x). Consider parameter η defined as,
= minx{−dV (x)/dt/V (x)}, which may be loosely regarded as

he inverse of the largest time constant of the system in the region
f asymptotic stability and may be considered as a dynamic per-
ormance index of the system [19]. A large value of η suggests
hat the system returns rapidly to the origin. In particular, for

Lyapunov function of the form V (x) = xTPx it stands that
= λmin(P−1).
It seems reasonable, then, to pose a design problem in order

o maximize the aforementioned index, giving rise to a (P2) type
igenvalue optimization formulation:

max
kc,x1ss,x2ss,x3ss

λmin(P−1)

s.t.

ATP + PA + I = 0

Eqs. {(1), . . . , (3)} in stationary

fashion (ẋi = 0)

Eqs. {(4), . . . , (7)}
0 ≤ kc ≤ ku

c
(10)

There exists a straightforward relationship between V(x) and
he Lyapunov equation in (10) (see [1] for details). The opti-
ization variables are z, kc and the steady state of the system

x1ss, x2ss, x3ss). The solution of (10) reformulated as (P2N) is
resented In Table 1 for several values of ku

c . According to the
esults in [17], the larger the gain the quicker the suppression of
scillations. This effect can be observed in Fig. 4(a) and (b) for
wo different values of kc and δ = −0.23. In agreement with such

esults, the upper bound, kc = ku

c , is the value which optimizes
arameter η as a result of solving problem (10). It can also be
ppreciated from Table 1 that z is effectively a lower bound of
he smallest eigenvalue of P−1.

able 1
arameter η as a function of kc

u
c kc z η = λmin(P−1)

.0 1.0 4.69183E−4 4.69189E−4

.0 2.0 1.83360450E−2 1.83360457E−2

.0 3.0 4.3717764E−2 4.3717765E−2

.0 4.0 7.68382492E−2 7.68382499E−2

.0 5.0 0.117723585 0.117723587

p
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s
o
c
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p
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b

e
r

Fig. 4. Closed loop response for: (a) kc = 0.1 and (b) kc = 1.0.

. Conclusions and future work

In this work, outstanding theoretical aspects on eigenvalue
ptimization, relevant to chemical engineering applications have
een reviewed. Since existing techniques for eigenvalue opti-
ization are numerically hard to implement, novel solution

rocedures were also introduced. The principal advantage of
uch solution strategies is that they present regular NLP for-
ulations and can therefore be tackled with standard NLP

olvers. The presented formulations were illustrated by means
f applications to the dynamic and control problems of a
hemical engineering pertinent system: a nonlinear CSTR with
rich dynamic behavior. The appealing feature of the pro-

osed eigenvalue optimization techniques is that they allow
rather systematic “optimization-based” approach to some

ynamic problems which have a classic tedious “simulation-

ased approach”.

Future work on the subject will consider larger dynamic mod-
ls in the state and parameters spaces in order to address more
ealistic chemical engineering systems. Preliminary results have
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een obtained in [20] for a medium scale system (matrix P
f dimension 26) where the redesign-for-stability problem of
he Tennessee Eastman Challenge Process, an open loop unsta-
le recycle reactor, was addressed in the context of problem
P1)/(P1N). However, for larger scale problems the calculation
f the inverse of P might become a limitation and alternative
ormulations could be required.

It is also considered that eigenvalue optimization techniques
ight represent a valuable tool in a comprehensive study of

ifurcations in the context of problem (P1). In the proposed
pproach for identification of bifurcation points (Section 3.1),
nly information about the type of bifurcation, Hopf or pitch-
ork, can be inferred from the nature of the eigenvalues (real or
omplex) at the bifurcation point. In order to obtain information
bout the nature of the bifurcation (sub- or super critical), of
elevance in engineering applications, higher order bifurcation
onditions should be included in problem (P1).

Moreover, the generalization of flexibility techniques to cope
ith disturbance and parametric uncertainty in the context of

ormulation (P1), as those proposed in [21], would represent
meaningful contribution to nonlinear systems analysis. For

xample systematic techniques to estimate multi-parametric
ifurcation surfaces, instead of single parameter bifurcation
oints, as well as domains of attractions of equilibrium points
ould be welcome since such studies have up to date a rather

artistic” approach, limited to low dimension state and parameter
paces.
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ppendix A. Nomenclature

general matrix
a, ϕ, β, γ , S, Bn, α, v parameters of the CSTR
et(·) determinant
(·) general dynamic functions vector
(·) vector of equality constraints
(·) vector of inequality constraints

identity matrix
c controller gain of the CSTR

dimension of the dynamic system
Lyapunov matrix
manipulated variable of the CSTR
general vector

(·) general Lyapunov function

general state vector

1, x2, x3 states of the CSTR
1ss, x2ss, x3ss steady state values of the CSTR
3,set set point value for state x3 of the CSTR

[

ing and Processing 46 (2007) 1192–1199 1199

vector of optimization variables
space of optimization variables
auxiliary variable

reek letters
disturbance variable of the CSTR
small positive constant

(·) general objective function
dynamic performance index

i eigenvalue
min minimum eigenvalue
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