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Abstract We summarize current knowledge on the

effects of the invasive Asian bivalve Limnoperna

fortunei (introduced in South America around 1990)

on local biota. Limnoperna modifies nutrient concen-

trations and decreases concentrations of particulate

organic matter in the water column (including phyto-

plankton and zooplankton), thus enhancing light

penetration and stimulating growth of periphyton

and macrophytes. Selective grazing and modification

of the N:P ratio are responsible for strong enhance-

ments of toxic cyanobacterial blooms. Limnoperna

beds significantly enhance the numbers, biomass, and

diversity of practically all accompanying inverte-

brates. The mussel’s planktonic larvae represent an

important food item for the larvae of 18 fish species,

while juveniles and adults are consumed by at least 50

fish species. Limnoperna is the first and only abundant

benthic filter-feeding animal in South American

continental waters. The fact that it intercepts and

retains in the freshwater lotic domain particulate

organic matter that would otherwise be swept into the

sea must represent an important energetic subsidy, but

the ecosystem-wide consequences of this trophic shift

have not yet been addressed. Comparison with the

impacts of the zebra mussel in Europe and North

America suggests important differences.

Keywords Invasive bivalves � South America �
Limnoperna fortunei � Environmental impact

Introduction

Biological invasions by non-indigenous species have

brought about profound changes affecting both the use

of natural resources by man and relationships between

ecosystem components. Freshwater systems, in par-

ticular lakes and reservoirs, have been identified as

especially vulnerable to invasive species, among

which mollusks and crustaceans are most significant

(Karatayev et al., 2009). Dreissena polymorpha (Pal-

las, 1771), the zebra mussel, provides an excellent

example of a highly successful freshwater invader: it

has been expanding westwards from its native Caspian

and Black seas since the 1700s, entered North America

in the 1980s, and is still spreading both in Europe and
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in North America (Karatayev et al., 2006). As its range

grew, reports of its impacts on man-made structures

and on the biota multiplied (Karatayev et al., 2002;

Kelly et al., 2010).

Another significant invader is Limnoperna fortunei

(Dunker, 1857), the golden mussel. Limnoperna

fortunei is a freshwater, byssate mytilid native to

continental south east Asia. In the mid-1960s, this

mussel was unintentionally introduced in Hong Kong

(Morton, 1975), in the early 1980s in Korea (Kojima,

1982), in the late 1980s in Taiwan (Tan et al., 1987),

and around 1990 in South America (Pastorino et al.,

1993) and Japan (Kimura, 1994). In South America,

due to its ability to travel attached to ship’s hulls, L.

fortunei spread swiftly upstream the Paraná-Paraguay

waterway at a rate of up to 250 km year-1 (Darrigran,

2002; Boltovskoy et al., 2006). Along non-navigable

rivers, upstream colonization was significantly slower

(about 20 km year-1; Boltovskoy et al., 2006),

yet also relentless. At present, L. fortunei inhabits a

region from the Pantanal (Brazil, 188S, 56.78W) and

the northernmost tributaries of the Paraná river (ca.

208S), to the Rı́o de la Plata estuary (34.88S, 57.38W),

covering five countries (Argentina, Bolivia, Brazil,

Paraguay, and Uruguay). Extensive mussel beds with

reported densities of up to over 200,000 ind. m-2

(Sylvester et al., 2007a; Spaccesi & Rodrigues Capit-

ulo, 2012) are a dominant feature of the benthic fauna

in the entire Rı́o de la Plata watershed. In the plankton,

L. fortunei larvae can outnumber cladocerans and

copepods by orders of magnitude for up to

9–10 months of the year (Boltovskoy et al., 2006;

Paolucci et al., 2007; Boltovskoy et al., 2009b).

Shortly after invasion, L. fortunei became a major

nuisance for industrial installations that use raw lake

or river water for cooling purposes. Clogging of water

intake sieves and filters, pipes, heat exchangers, and

condensers became a common difficulty, particularly

for power plants (hydroelectric, thermal, and nuclear),

requiring additional control and maintenance proce-

dures (Perepelizin & Boltovskoy, 2014). Although

economic assessments of the problems involved are

scarce and isolated, it is clear that the mussel has had a

significant negative impact on industrial activities.

Impacts on the biota, on the other hand, are much

more intricate and complex. While some ecosystem

effects parallel the changes observed for the zebra and

quagga mussels in Europe and North America

(reviewed in Karatayev et al., 2007), other effects

differ due to species-specific dissimilarities and/or to

dissimilar ecological settings.

This work reviews current knowledge of the effects

of L. fortunei on ecosystem properties in a number of

South American lakes and rivers. These impacts are

summarized in Table 1 and discussed in the sections

below. Because several excellent reviews on the effects

of invasive filtering mussels on European and North

American aquatic systems have been published in the

last years (e.g., Karatayev et al., 1997; Strayer et al.,

1999; Karatayev et al., 2002; Kelly et al., 2010; Van der

Velde et al., 2010), this work focuses specifically on

those ofL. fortunei in SouthAmerica, highlighting some

major gaps in our current knowledge. Information on

Dreissena species is used for comparative purposes,

particularly when stressing differences with the effects

described for the golden mussel.

Effects of L. fortunei on nutrient concentrations

Short-term (6–24 h) experiments on the effects of L.

fortunei on the water column show that the mussels

significantly reduce turbidity, the amount of sus-

pended organic matter, and increase the concentra-

tions of dissolved ammonia, nitrates, and phosphates

(Kawase, 2011; Cataldo et al., 2012a). Longer mes-

ocosm incubations yield similar results for the first

24 h, but subsequently the response varies. By the end

of the 35 days experiment performed by Cataldo et al.

(2012a), nitrate concentrations increased slightly (as

compared with the controls) (Fig. 1A), whereas

ammonia and phosphates rose conspicuously

(Fig. 1B, C). These results are similar to ecosystem

effects of Dreissena (Karatayev et al., 2002).

Although short- andmedium-term experiments yield

useful insights into the influence of invasive mussels on

nutrients and the biota, from the ecological point of

view, the most important issue is how these impacts

affect aquatic ecosystems in the long term (years to

decades). For L. fortunei, the only long-term survey

available is the one carried out in Embalse de Rı́o

Tercero reservoir (central Argentina, 32.2�S, 64.5�W),

which was colonized by L. fortunei around 1998

(Boltovskoy et al., 2009a). In the time elapsed

(1996–2008), ammonia in the water increased ca.

400%, total N increased 300%, and phosphates doubled

(Fig. 2). Most significantly, the N:P ratio dropped from

16.3 (before L. fortunei) to 8.9 (after L. fortunei).
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Table 1 Effects of L. fortunei or L. fortunei-related processes on the freshwater systems invaded. Potential impacts for which direct evidences are still insufficient are denoted

with a question mark and bold

Trait, component or process

associated with the presence of L.

fortunei

Direct effect Indirect effect or consequence Final effect References

Grazing of POM & phytoplankton

by L. fortunei larvae and adults

Increased water

transparency

Deeper light penetration Deeper light penetration Boltovskoy et al. (2009a), Kawase (2011)

Enhanced light availability for

macrophytes

More macrophytes Boltovskoy et al. (2009a)

More macrophyte growth More waterfowl Boltovskoy et al. (2009a)

Grazing of phytoplankton by L.

fortunei larvae and adults

Less nutrient consumption

by phytoplankton

Enhanced nutrient availability for

macrophytes

More macrophytes Boltovskoy et al. (2009a)

Enhanced nutrient availability for

periphyton

More periphyton Cataldo et al. (2012b)

Nutrient recycling Lower N:P ratio More Cyanobacteria More cyanobacterial

blooms

Cataldo et al. (2012b), Boltovskoy et al.

(2013)

Selective grazing of solitary

Cyanobacteria

More colonial

cyanobacterial cells

Higher survival of colonial

Cyanobacteria

More cyanobacterial

blooms

Cataldo et al. (2012b)

Chemical cues Colony formation in

Cyanobacteria

Higher survival of colonial

Cyanobacteria

More cyanobacterial

blooms

Cataldo et al. (2012b)

Cyanobacterial blooms (in lentic

waterbodies)

Mortality of L. fortunei

larvae

Less L. fortunei adults? Sparser L. fortunei beds? Gazulha (2010), Boltovskoy et al. (2013)

Mortality of fishes and

benthic organisms

Less fishes and benthic
organisms?

Less nekton and benthos
biomass and diversity?

Pizzolón et al. (1999)

Grazing of zooplankton Less zooplankton? Less food for zooplanktivorous
organisms?

Less zooplanktivorous
organisms?

Rojas Molina et al. (2010), Fachini
(2011), Rojas Molina et al. (2011,
2012)

Selective grazing of zooplankton Higher impact on smaller

zooplankton

Lower survival of small
zooplankton?

Modification of
zooplanktonic
proportions? Less
Rotifera?

Rojas Molina et al. (2010), Fachini
(2011), Rojas Molina et al. (2011,
2012)

Production of feces and

pseudofeces

Increased proportion of

organic matter in

sediments

More food for benthic

invertebrates

Higher abundance and

diversity of benthic

invertebrates

Darrigran et al. (1998), Sylvester et al.

(2007b), Sardiña et al. (2008),

Karatayev et al. (2010), Sardiña et al.

(2011), Burlakova et al. (2012)

H
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1
5
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–
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Table 1 continued

Trait, component or process

associated with the presence of L.

fortunei

Direct effect Indirect effect or consequence Final effect References

L. fortunei beds Increased shelter for

invertebrate fauna

Higher invertebrate survival Higher abundance and

diversity of benthic

invertebrates

Darrigran et al. (1998), Sylvester et al.

(2007b), Sardiña et al. (2008),

Karatayev et al. (2010), Sardiña et al.

(2011), Burlakova et al. (2012)

Consumption by adult

fishes

More food for adult fishes More fishes López Armengol and Casciotta (1998),

Boltovskoy and Cataldo (1999), Ferriz

et al. (2000), Garcı́a and Protogino

(2005), Boltovskoy et al. (2006),

Cantanhêde et al. (2008), Lösch et al.

(2009), Montalto et al. (1999),

González-Bergonzoni et al. (2010),

Oliveira et al. (2010a), Masdeu et al.

(2011), Belz et al. (2012), Lopes and

Vieira (2012), Vieira and Lopes (2013)

Consumption by
waterfowl?

More food for waterfowl? More waterfowl? Boltovskoy et al. (2009a)

Consumption of juveniles

and adults by benthic

invertebrates (e.g.,

leeches, gastropods,

crustaceans, insect larvae)

More food for some benthic

invertebrates

Higher abundance and
diversity of benthic
invertebrates?

Darrigran et al. (1998), Sylvester et al.
(2007b), Sardiña et al. (2008),
Karatayev et al. (2010), Sardiña et al.
(2011), Burlakova et al. (2012)

L. fortunei veligers in the water

column

Consumption by larval

fishes

Higher larval fish survival More fishes Paolucci et al. (2007, 2010a, 2010b)

Overgrowth of various organisms

(sponges, crustaceans,

gastropods, bivalves)

Impair locomotion,
prevent valve opening/
closure, smother
siphons, prevent normal
growth?

Lower survival of some
invertebrates?

Lower abundance and
diversity of some
invertebrates?

Darrigran (2002), Mansur et al. (2003),
Scarabino (2004), Lopes et al. (2009),
Karatayev et al. (2010), Rojas Molina
and Williner (2013)

Intermediate host for fish parasites Presence of new fish

diseases

Lower survival of some fish
species?

Less fishes? Ogawa et al. (2004), Baba and Urabe
(2011b)

8
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Effects of L. fortunei on phytoplankton and toxic

cyanobacterial blooms

Reported grazing rates of L. fortunei vary from 0.2 to

725 ml ind.-1 h-1, or 0.1 to 29.5 ml mg-1 dry tissue

(DT) h-1 (Rückert et al., 2004; Sylvester et al., 2005;

Pestana et al., 2009; Gazulha, 2010; Fachini, 2011;

Cataldo et al., 2012a, b; Gazulha et al., 2012b; Frau

et al., 2013). ‘‘Normal’’ filtration rates for 15-25 mm

golden mussels range around 100 ml ind.-1 h-1, or

ca. 2-4 ml mg-1 DT h-1. This is roughly comparable

with data reported for other freshwater mussels

(Sylvester et al., 2005; Karatayev et al., 1997), which

indicates that strong impacts on the water column are

due to high mussel densities and active water mixing,

rather than to exceptional individual filtration rates.

Indeed, none of the indigenous (mainly Unionidae) or

introduced (Corbicula fluminea) South American

bivalve species attain densities similar to those

observed in L. fortunei beds, which on suitable

substrates are typically around 5,000 ind. m-2, and

can occasionally exceed 200,000 ind. m-2 (Sylvester

et al., 2007a; Spaccesi & Rodrigues Capitulo, 2012).

In addition to alteration of the light environment,

the two major components of the impact of bivalve

filter-feeding on phytoplankton are (1) consumption of

algal cells and (2) modifications in nutrient supply

(Table 1). Short-term laboratory and mesocosm trials

with L. fortunei indicate swift depletion of the

experimental containers (Cataldo et al., 2012a).

However, longer term studies suggest that after the

initial decline, algal numbers recover partially, most

probably stimulated by the increasing availability of

nutrients (Cataldo et al., 2012b). Nevertheless, water-

bodies that have been colonized by the mussel for

years have less suspended particulate matter in the

water column, including phytoplankton, than before

the invasion. Ten years after having been colonized by

L. fortunei, waters of Embalse de Rı́o Tercero

reservoir lost about 30–40% of their seston load,

represented chiefly by algae, ca. 50% of their plank-

tonic primary production, and became 30% clearer

(Boltovskoy et al., 2009a). A similar trend was

suggested for some marginal lagoons and tributaries

associated with the Middle Paraná river (ca. 31.78S,
60.68W) (Devercelli & Peruchet, 2008; Rojas Molina

& José De Paggi, 2008).

Many surveys highlight that grazing selectivity

may involve a preference for smaller particle sizes
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(\100 lm), phytoplankton over zooplankton, Eu-

glenophyta over other algae, and single-celled phyto-

plankton over colonies and filamentous species

(Rückert et al., 2004; Rojas Molina et al., 2010;

Fachini, 2011; Cataldo et al., 2012b; Gazulha et al.,

2012a; Frau et al., 2013).

Results on grazing on cyanobacteria, in particular

Microcystis, are contradictory. Several surveys con-

cluded that both toxic and non-toxic strains of

Microcystis are actively consumed by the mussels

(Rückert et al., 2004; Gazulha et al., 2012a). Others,

however, found that microcystin LR hinders filtration

significantly (Boltovskoy et al., 2009b; Fachini, 2011).

Interestingly, a similar controversy is also found in

studies on the effects ofMicrocystis onD. polymorpha

(Dionisio Pires et al., 2005; Juhel et al., 2006). At any

rate, regardless of its capabilities of consuming

Microcystis, the golden mussel has very pronounced

effects on the population dynamics of this cyanobac-

teria, strongly boosting its densities (Cataldo et al.,

2012b) (Fig. 3A). Significantly, this growth is accom-

panied by an increase in the ratio of colonial to solitary

Microcystis, and in the size of the colonies (Fig. 3B).

There are several factors that account for this effect:

(1) changes in nutrient availability and proportions, in

particular the N:P ratio; (2) size-selective grazing,

whereby small, solitary cells are eliminated, while

colonies survive; (3) promotion of colony formation

through the production of chemical signals that trigger

aggregation of solitary cells in order to avoid grazing;

and (4) microcystin toxicity, deterring grazing as

Microcystis biomass builds up (Cataldo et al., 2012b).

Promotion ofMicrocystis growth was also observed

in North American waterbodies invaded by D. poly-

morpha, but only at low to moderate P concentrations

(\25 lg total P l-1; Sarnelle et al., 2005), whereas at

high P values no enhancements are observed. As

opposed to this pattern, in South America, L. fortunei

boosts cyanobacterial numbers at very high total P

levels (between 50 and *100 lg total P l-1 in the

reservoir where these experiments were carried out;

Cataldo et al., 2012b; O’ Farrell et al., 2012).

A remarkable consequence of toxic cyanobacterial

growth (at least partly promoted by L. fortuneís

activity) is that the blooms suppress the bivalvés

reproduction. This effect was suggested by several

laboratory and field studies (Boltovskoy et al., 2009b;

Gazulha et al., 2012b), and confirmed by the analysis

of nine years of observational data in Salto Grande

reservoir (Argentina/Uruguay, 31�S, 57.8�W) (Bol-

tovskoy et al., 2013). Experimental results indicate

that 10–20 lg l-1 of microcystin LR kills up to 100%

of the larvae in 48 h (Boltovskoy et al., 2013). The fact

that larval numbers return to ‘‘normal’’ levels when

blooms decline indicates that adult mussels survive

through these adverse periods (Boltovskoy et al.,

2009b, 2013).

Effects of L. fortunei on periphyton and aquatic

macrophytes

As shown by studies of the zebra mussel and other

sessile filter-feeding organisms, nutrient regeneration,

clarification of the water column, and elimination of

nutrient-consuming phytoplankton favor the growth of

periphyton and aquatic macrophytes (Karatayev et al.,

1997).

Research to date suggests that L. fortunei has similar

effects. Its impact on the periphyton has been confirmed

and quantified, showing significant increases in the

presence of mussels (Cataldo et al., 2012a). Enhance-

ments of aquatic macrophytes have also been observed:

in Embalse de Rı́o Tercero reservoir, Elodea callitri-

choides became much more abundant after the water-

body was invaded by the mussel, but these changes

have not been quantified (Boltovskoy et al., 2009a).

0

50

100

150

M
ea

n 
si

ze
 o

f
sp

.
co

lo
ni

es
 (

m
)

M
ic

ro
cy

st
is

μ

200

Days

0

100,000

200,000

0 7 14 21 28 35

D
en

si
tie

s 
of

 c
ol

on
ia

l
sp

.
ce

lls
in

d.
L

M
ic

ro
cy

st
is

(
m

)
-1

B

without L. fortunei
with L. fortunei

A

Fig. 3 Changes in the abundance of colonial cells of Micro-

systis spp. A, and in the size of these colonies B throughout

35-days experimental period in 400 L mesocosms with and

without L. fortunei (two replicates per treatment) (from Cataldo

et al., 2012b)

86 Hydrobiologia (2015) 746:81–95

123

Author's personal copy



Effects of L. fortunei on zooplankton

Relationships between L. fortunei and zooplankton

can involve multiple interactions (Table 1), including

(but not restricted to): (1) feeding of adult mussels on

planktonic animals, (2) mussel grazing on phyto-

plankton and other organic particles, thus competing

with the zooplankton for food, (3) mussel larvae

serving as a food resource for predatory zooplankton,

and (4) mussel larvae serving as a food resource for

predatory and filter-feeding animals in general (plank-

tonic, nektonic, or benthic), thus reducing predation

pressure on other zooplankton. Of these, only grazing

of adult L. fortunei on zooplankton and predation of

larval fish on mussel veligers have been addressed so

far. Indirect relationships are conceivably numerous,

but we only have vague hints of their potential impact

on zooplanktonic communities.

In a survey of the diet of L. fortunei based on

stomach contents, Rojas Molina et al. (2010) recorded

81 species of algae, 46 Rotifera, 17 Cladocera, and 4

Copepoda, ranging from 4 lm to [1 mm in size.

Animal food was present in 96% of the stomachs

analyzed, with the rotifers Keratella and Lecane as

dominant components. Large food items (chiefly

cladocerans and copepodids) were scarce in numbers,

but in terms of biomass they accounted for 67% of the

food ingested (Fig. 4). Several animal species were

strongly and positively selected, especially Rotifera

(also noticed by Fachini, 2011) and small Cladocera

(Fig. 4). Positive selection was associated primarily

with size, and also with neuromuscular coordination

and escape responses (Rojas Molina et al., 2011,

2012).

Ecosystem-wide impacts of predation by L. fortunei

on zooplankton have also been reported, suggesting

that rotifers dropped in abundance after the invasion,

whereas cladocerans and copepods were unaffected

(Rojas Molina and José de Paggi, 2008). A similar

effect was also reported for the zebra mussel (Mac-

Isaac et al., 1995).

Effects of L. fortunei on benthic invertebrates

Analyses of the influence of L. fortunei on benthic

organisms have been based on two approaches: (1)

comparison of natural assemblages occurring in L.

fortunei beds (attached to immobile substrate) or

druses (clusters of mussels around a pebble or another

mobile object) with those obtained nearby, in areas

barren of mussels (Darrigran et al., 1998; Marçal &

Callil, 2008; Karatayev et al., 2010; Sardiña et al.,

2011; Burlakova et al., 2012), and (2) experimental

studies with artificial substrates contrasting the abun-

dance and composition of invertebrates recorded in

areas with and without mussels (Sylvester et al.,

2007b; Sardiña et al., 2008). In general, all studies

concluded that in the presence of L. fortunei, benthic

plankton stomach
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10,000,000
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Approximate relative volumes

Fig. 4 Feeding selectivity of L. fortunei as shown by changes in

the proportions of various planktonic organisms in the water

column and in the musseĺs stomachs. Size categories (lm3)

include the following organisms, \1,000: Cyanobacteria,

Chlorococcales, most Volvocales, most Bacillariophyceae

Centrales, Chrysophyceae, and Cryptophyceae; 1,000 to

57,000: some Chlorococcales, filamentous Chlorophyceae, most

Zygnematales, most Bacillariophyceae Pennales, Eu-

glenophyta, and Dinophyceae; 35,000–1,600,000: Protozoa,

Rotifera, Nematoda and L. fortunei larvae; 1,600,000–

10,000,000: Chydoridae, Bosminidae, Ceriodaphnia cornuta,

nauplii larvae and Ostracoda;[10,000,000: Copepoda and other

Cladocera (Sididae, Moinidae, Daphnidae, Macrothricidae,

Chydoridae). Plankton data are based on 14 plankton samples

(seven for phytoplankton, and seven for zooplankton, from

seven different sites); stomach contents data are based on 140 L.

fortunei specimens around 17 mm in length, 20 from each of

seven sites. Modified from Rojas Molina et al., (2010)
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diversity, abundance, and biomass increase

significantly.

Using artificial substrates, Sylvester et al. (2007b)

found that areas covered by L. fortunei host 43–100%

more invertebrate biomass (excluding L. fortunei) than

areas lacking the mussel. This study concluded that

facilitation is due to changes in the physical structure

of the substrate, as well as to the biological activity of

the bivalves. In an attempt to separate these two

effects, Sardiña et al., (2008) deployed artificial

substrates with either a layer of living mussels, a

layer of intact empty shells mimicking living mussels,

or blank, bare tiles. After 64 days, biomass, abun-

dance, and diversity were the highest on tiles with live

mussels, followed by tiles with empty shells (Fig. 5).

These differences have been attributed to the ability of

mussel beds to retain sediments, and to the higher

contents of organic matter in sediments associated

with live mussels.

These studies suggest that most benthic inverte-

brates are facilitated by L. fortunei, and these species

do not benefit equally. The direction and intensity of

this influence are probably associated with several

traits, in particular feeding mode. Epifaunal scrapers,

deposit feeders, and their predators benefit the most,

whereas some burrowing animals may thrive better in

bare, especially fine, sediments (Ward & Ricciardi,

2007; Karatayev et al., 2010; Sardiña et al., 2011;

Burlakova et al., 2012). It should be stressed, however,

that the lack of a positive effect does not imply a

negative influence. While the organisms that are

presently facilitated by L. fortunei probably were

restricted in occurrence before the invasion because

they are unable to occupy soft sediments (Sardiña

et al., 2011), the ones that do not benefit from mussel

beds and druses may well be indifferent to the

presence of the mussel.

Several studies suggested that freshwater invasive

mussels homogenize the composition of benthic

communities (Sardiña et al., 2011). Across waterbod-

ies, similarities between communities associated with

L. fortunei are significantly higher than the similarities

between bare sediment samples (Karatayev et al.,

2010; Sardiña et al., 2011; Burlakova et al., 2012).

This effect is likely a result of the fact that L. fortunei

beds represent isolated and highly populated islands of

hard, biologically modified substrate in a sea of

sparsely populated mud, rather than a consequence of

their invasive nature. As noticed by Burlakova et al.,

(2012), mussel aggregates create habitat for species

that would otherwise be infrequent in the environment,

providing them with shelter and food.

L. fortunei as food for other organisms

For L. fortunei, potential predators have been identi-

fied in a number of groups, including leeches,

gastropods, crustaceans, insect larvae, fishes, aquatic

turtles, water birds, and aquatic mammals (crab-eating

raccoons, river otters) (Sylvester et al., 2007a).

Experimental results indicate that predators in the

lower delta of the Paraná river (probably mostly

fishes) eliminate up to 90% of the bivalve’s biomass,

or 6 kg of whole live mussels m-2 year-1 (Sylvester

et al. 2007a). Nakano et al. (2010) estimated that

predators eliminate 96–97% of the mussels in Lake

Ohshio (Japan). This trophic subsidy is likely very
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important for local fauna, but as reviewed below,

direct evidence of consumption is currently limited to

larval and adult fishes, two crustaceans, and some

ancillary observations on a few bird species.

Consumption of L. fortunei veligers by larval fishes

Densities of golden mussel larvae in the plankton can

be very high, often outnumbering crustacean zoo-

plankton (Boltovskoy et al., 2006; Paolucci et al.,

2007; Boltovskoy et al., 2009b). These veligers have

become an important food resource for local fish

larvae.

Of 25 larval fish taxa surveyed in the rivers Paraná,

Paraguay, and Uruguay, 18 have been found to feed on

veligers (Paolucci, 2010). Proportions of feeding (i.e.,

post yolk-sac) fish larvae with L. fortunei veligers in

their guts vary from 20 to 70% (Paolucci et al., 2007),

and those for which veligers are the dominant

component of the diet (in terms of biomass) make up

15–71% of the fish larvae examined (Paolucci et al.,

2007). Mussel larvae are a particularly significant

component of the diet of the youngest larval fish

stages, presumably because veligers are an easy target

because of their low mobility and poor escape

responses. Around 30–35% of the protolarvae con-

sume veligers; in mesolarvae, the share of veligers is

smaller, dropping again in the latest developmental

stage—the metalarvae (3%) (Paolucci et al., 2007).

Comparison of plankton samples and fish gut

contents indicates that L. fortunei is preferred over

copepods and cladocerans (Paolucci et al., 2007,

2010a, b), unless mussel larvae are scarce in the

plankton, in which case cladocerans are favored

(Paolucci, 2010). Veligers are not only readily avail-

able and widely consumed, but they also represent an

energetically more profitable food resource yielding

significantly higher growth rates than crustaceans

(Paolucci et al., 2010b). Higher growth rates stem

from the higher energy contents of veligers, and from

the lower energy costs of capturing slow-moving prey

(Paolucci et al., 2010b).

Significantly, veligers became the preferred food

item for the larvae of some of the most abundant and

ecologically important fish species, like several

Pimelodidae and Prochilodus lineatus. The biomass

of P. lineatus represents over 60% of the overall fish

biomass in the Paraná-Uruguay system (Bonetto,

1998), and is the main prey of several large, ichthy-

ophagous fishes. The fact that veligers are particularly

important as a food resource for the earliest larval fish

stages, for which mortality rates are highest, has likely

forced important shifts in the dynamics of the species

involved (Boltovskoy et al., 2006), as well as in those

of other organisms that form part of their trophic webs.

Consumption of juveniles and adults of L. fortunei

The inventory of fish species that feed on L. fortunei has

increased steadily, in part due to new surveys, and in

part because of the mussel’s geographic expansion.

Garcı́a andMontalto (2006) identified 18 fish species as

predators of L. fortunei in South American inland

waters; seven years later, the list had increased to

almost 50 species. In some areas, fishes that consume L.

fortunei represent [50% of the species regularly

present in commercial fisheries (Oliveira et al., 2010a).

The importance of mussels in the diet varies

geographically, seasonally (Oliveira et al., 2010a),

and with fish age (López Armengol & Casciotta,

1998). Fishes that have been consistently reported to

rely heavily on L. fortunei for food include approx-

imately a dozen species, with some of them feeding on

the mussel almost exclusively (Ferriz et al., 2000;

Penchaszadeh et al., 2000; Cataldo et al., 2002). If

animal food was not underrepresented in fish gut

analyses prior to introduction of the golden mussel

(due to the scarcity of hard remains), plants and

detritus were the main food items of these species

(Ferriz et al., 2000). Presently, L. fortunei represents

an additional food item that is widely available and

energetically more profitable (Ferriz et al., 2000).

The effects of this new food supply on fish

populations have not been assessed, but are likely

significant. Impacts are probably not only restricted to

species that consume the mollusk directly, but also

species that may benefit from this new food resource

indirectly, including many of the large ichthyopha-

gous species that feed on other fishes. Furthermore, L.

fortunei transfers large amounts of organic matter

from the pelagic to the benthic domains through

filtration and the formation of feces and pseudofeces

(Sardiña et al., 2008; Cataldo et al., 2012b), which

boosts invertebrate densities (Sylvester et al., 2007b;

Sardiña et al., 2008, 2011; see above). This is probably

important for deposit feeding detritivorous fish
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species, which represent the bulk of the local fish

fauna (Bonetto, 1998).

Argentine freshwater fish landings increased three-

fold after invasion of L. fortunei (Boltovskoy et al.,

2006), which may suggest better recruitment and

survival conditions. However, interpretation of this

trend has several confounding variables, including

changes in fishing regulations, fishing pressure, and

fish export trends.

In North America, Dreissena has been shown to

increase the abundance of littoral species by enriching

coastal bottom areas with organic matter but decrease

the abundance of pelagic fishes due to depletion of

zooplankton forage species through grazing (Strayer

et al., 2004). The effects of L. fortunei on South

American fish stocks are probably different because

filter-feeding fishes are scarce and POC loads are very

high (see ‘‘Concluding remarks’’ section).

In addition to fishes, two crab species (Zilchiopsis

collastinensis and Trichodactylus borellianus) and

one turtle have been observed to feed on L. fortunei

(Bujes et al., 2007; Torres et al., 2012; Carvalho et al.,

2013), but data on the importance of this item in their

diet are still scarce.

In Embalse de Rı́o Tercero reservoir, coot and

grebe (Fulica leucoptera, F. armillata, Podilymbus

podiceps) densities increased noticeably after intro-

duction of the golden mussel, presumably in response

to the areal growth of the beds of aquatic macrophytes

on which the birds feed. Furthermore, both coots and

grebes have been observed to dive and emerge with

clusters of L. fortunei in their beaks (M. Hechem, pers.

comm.), which suggests that they also feed on the

mussel, as do other coot species onDreissena in North

America (Molloy et al., 1997).

Miscellaneous interactions of L. fortunei with other

organisms

In addition to the impacts reviewed above, several

other interactions between L. fortunei and native

organisms have been reported, but most are restricted

to anecdotal records.

Overgrowth of various benthic organisms, includ-

ing sponges, crustaceans, gastropods, and other

bivalves, has been observed repeatedly (Darrigran,

2002; Mansur et al., 2003; Lopes et al., 2009;

Karatayev et al., 2010; Rojas Molina & Williner,

2013), and it has been suggested that the impact on

some of them, in particular unionids, may be signif-

icant (Mansur et al., 2003; Scarabino, 2004). How-

ever, these conclusions are based on extrapolation of

the known effects of the zebra mussel in Europe and

North America (e.g., Schloesser et al., 1996), rather

than on ad hoc local studies.

Mansur et al. (2003) reported that decrease in reed

(Scirpus californicus) populations in some areas of

southern Brazil may be associated with the settlement

of L. fortunei on their roots resulting in the ‘‘suffoca-

tion’’ of the plants, but this conclusion is debatable

(Boltovskoy et al., 2006).

In Japan, introduction of L. fortunei has been

associated with the appearance of new fish parasites

(trematodes) whose life cycle includes the mussel as

an intermediate host (Ogawa et al., 2004; Baba &

Urabe, 2011a). No such reports from South America

are known yet.

Concluding remarks

Studies on the golden mussel have traditionally used

Dreissena polymorpha as a model, which resulted in

useful guidelines for defining potential interactions

and fruitful research topics. However, similarities

between these two species have often proved mis-

leading when extrapolating to L. fortunei the effects of

the zebra mussel on the systems invaded (Boltovskoy

et al., 2006; Cataldo et al., 2012b; Boltovskoy et al.,

2013). The mechanisms by which L. fortuneimodifies

living conditions for other organisms are largely the

same as those described for Dreissena species (Kara-

tayev et al., 1997; Ward & Ricciardi, 2007; Kelly

et al., 2010; Burlakova et al., 2012), but the final

results of these interactions are not necessarily alike.

Intrinsic dissimilarities between the two species and

environmental differences are responsible for signif-

icant differences in the impacts involved. Among the

former, reproductive period, dissolved oxygen and

calcium requirements, thermal regime, and resistance

to pollution are probably of major importance. Envi-

ronmental differences, in turn, involve clearer and

colder waterbodies in Europe and North America than

the warmer and more turbid South American rivers

(Karatayev et al., 2007, 2010).

The Paraguay-Paraná-Uruguay floodplain river sys-

tem invaded byL. fortunei inSouthAmerica hasmarked
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differences with the colder, clearer and more oligo-

trophic North American waterbodies colonized by

Dreissena. Notably, the mean concentration of POC in

the Paraná river (about 3.5 mg l-1, 20–40% of it labile

and available for biologic consumption: Depetris, 1976;

Depetris& Pasquini, 2007) ismuch higher than inmany

of the waterbodies invaded by Dreissena (typically

around 0.15–1 mg l-1 in the Great Lakes; Fanslow

et al., 1995;Barbiero&Tuchman, 2004; Johengen et al.,

2008), which suggests that filtering organisms are less

food limited (Sylvester et al., 2005). Furthermore,

because indigenous filter-feeding benthic animals in the

Paraná watershed are scarce, most of this organicmatter

is flushed out into the ocean through the Rı́o de la Plata

estuary. L. fortunei, the first and only abundant macro-

benthic filter-feeder, is intercepting an important pro-

portion of this particulate organic matter and retaining it

in the system for use by a wide array of animals. The

ecosystem-wide effects of this new scenario are obvi-

ously a function of mussel densities throughout large

areas, a situation which may seem unlikely in these

floodplain rivers dominated by soft, unconsolidated

sediments. However, indirect evidence suggests that the

Paraná system does host large L. fortunei populations:

veliger densities in theParaná river and its outlet, theRı́o

de la Plata estuary (mean annual values around

6,000–7,000 larvae m-3; Boltovskoy et al., 2009b),

are higher than those recorded in Embalse de Rı́o

Tercero (ca. 4,000 larvae m-3), where average adult

mussel densities are almost 1,000 ind. m-2 (or 0.6 kg of

whole mussel mass m-2) (Boltovskoy et al., 2009a).

This comparison suggests that densities of reproducing

adults are high in the rivers, reinforcing the notion that

large scale impacts are possible.

Complications for interpreting the effects of L.

fortunei on the ecosystem are even more critical when

attempting to label the impacts as negative or positive.

A basic precautionary principle and the long list of

examples where introduced species have been shown

to have devastating effects on the biota (Simberloff,

2003) clearly support the need to make all efforts

possible to keep biological invasions at bay, or to

eradicate them if feasible. However, once a non-native

species have been introduced and its eradication is out

of the question (as is the case of L. fortunei), analyses

of its interactions with the local biota should be based

on evidence, rather than on extrapolations from other

invasives and geographic areas. Much of the literature

on the golden mussel has been oriented at forcibly

demonstrating the environmental harm caused by this

invader, thus biasing if not the results, the interpreta-

tion of the evidence obtained (Bujes et al., 2007; Defeo

et al., 2013). Data available indicate that many of the

interactions between L. fortunei and local organisms

result in negative outcomes (e.g., enhancement of

cyanobacterial blooms, grazing on some phyto- and

zooplankton, introduction of new fish parasites),

whereas others are probably positive (e.g., food for

larval and adult fishes, enhancement of benthic

abundance and diversity).

As far as we know, in South America, L. fortunei’s

range is still limited to one major watershed (Rı́o de la

Plata) and several minor basins (Mar Chiquita, Patos-

Mirim, Guaı́ba, Tramandaı́). Infestation of the next

large watershed—the Amazon, has not been reported

so far, but is most probably inevitable. The Amazon is

navigable to ocean liners of virtually any tonnage,

including ships with ballast water from infested ports

along the Paraná-Uruguay-Rı́o de la Plata waterways

and the Guaiba basin, where compliance with inter-

national water ballast regulations is rather loosely

enforced (Boltovskoy et al., 2011). This suggests that

sooner or later L. fortuneiwill invade the Amazon and,

eventually, other South and North American freshwa-

ter bodies (Ricciardi, 1998; Boltovskoy et al., 2006;

Karatayev et al., 2006; Oliveira et al., 2010b). This

spread will increase the need for objective, regional

studies, untainted by a priori judgments on the

environmental harm or benefit of the golden mussel.

So far we have only explored a few effects of this

invader on local scales, but on the ecosystem scale our

understanding of interactions of L. fortunei with the

environment is still very limited. The following impacts

would be particularly interesting questions for future

research: biomagnification and transfer of contaminants

(Villar et al., 1997), thermal shifts due to changes in

water transparency (Yu & Culver, 2000), the homog-

enization of faunal composition across environments

(Sardiña et al., 2011), facilitation of other invasive

species (Ricciardi, 2001), changes in macrophyte

growth, modifications in benthic oxygenation, over-

growth of other organisms, and trophic relationships

withwaterfowl and aquatic vertebrates other thanfishes.
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pesca y la piscicultura en los rı́os de la cuenca del Plata con
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gastrointestinal de três espécies nativas de peixes cultiva-

das em tanquesrede no reservatório de Itaipu. In: Anais do I
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