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Abstract
The RAS (renin–angiotensin system) is composed of two arms: the pressor arm containing AngII (angiotensin
II)/ACE (angiotensin-converting enzyme)/AT1Rs (AngII type 1 receptors), and the depressor arm represented by
Ang-(1–7) [angiotensin-(1–7)]/ACE2/Mas receptors. All of the components of the RAS are present in the brain.
Within the brain, Ang-(1–7) contributes to the regulation of BP (blood pressure) by acting at regions that control
cardiovascular function such that, when Ang-(1–7) is injected into the nucleus of the solitary tract, caudal
ventrolateral medulla, paraventricular nucleus or anterior hypothalamic area, a reduction in BP occurs; however,
when injected into the rostral ventrolateral medulla, Ang-(1–7) stimulates an increase in BP. In contrast with AngII,
Ang-(1–7) improves baroreflex sensitivity and has an inhibitory neuromodulatory role in hypothalamic noradrenergic
neurotransmission. Ang-(1–7) not only exerts effects related to BP regulation, but also acts as a cerebroprotective
component of the RAS by reducing cerebral infarct size and neuronal apoptosis. In the present review, we provide an
overview of effects elicited by Ang-(1–7) in the brain, which suggest a potential role for Ang-(1–7) in controlling the
central development of hypertension.
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ANGIOTENSIN-(1–7) GENERATION AND
DISTRIBUTION IN THE BRAIN

The RAS (renin–angiotensin system) is a hormonal cascade in-
volved in arterial pressure and fluid homoeostasis, and cardi-
ovascular function regulation. Deregulation of the RAS plays
an important role in the pathogenesis of cardiovascular diseases
[1,2]. It is well known that not only a systemic RAS, but also a
tissue and even an intracellular RAS exist [3,4].

Ang-(1–7) [angiotensin-(1–7)] is generated from AngI (an-
giotensin I) through an ACE (angiotensin-converting enzyme)-
independent pathway. Neutral endopeptidase (EC 3.4.24.11; EP
24.11, neprilysin), thimet oligopeptidase (EC 3.4.24.15) and pro-
lyl oligopeptidase (EC 3.4.21.26) have been reported to be in-
volved in the central generation of Ang-(1–7) from AngI [5–
7] (Figure 1). In 2000, a new enzyme was described, ACE2,

Abbreviations: ACE, angiotensin-converting enzyme; ADAM, a disintegrin and metalloproteinase; Ang-(1–7), angiotensin-(1–7); AngI etc., angiotensin I etc.; AT1R etc., AngII type 1
receptor etc.; Beta, betamethasone; BP, blood pressure; CHF, chronic heart failure; COX2, cyclo-oxygenase 2; CVLM, caudal ventrolateral medulla; DOCA, deoxycorticosterone acetate;
ERK, extracellular-signal-regulated kinase; GABA, γ -aminobutyric acid; IL, interleukin; MAP, mean arterial pressure; NOS, NO synthase; NTS, nucleus of tractus solitarii; OVLT, organum
vasculosum of the lamina terminalis; PI3K, phosphoinositide 3-kinase; PKA, protein kinase A; PVN, paraventricular nucleus; RAS, renin–angiotensin system; RVLM, rostraventrolateral
medulla; sACE2, soluble ACE2; SFO, subfornical organ; SHR, spontaneously hypertensive rat; TNF, tumour necrosis factor.

Correspondence: Professor Mariela M. Gironacci (email mariela@qb.ffyb.uba.ar).

and this was shown to be involved in Ang-(1–7) generation.
ACE2 is a carboxypeptidase that converts AngI into Ang-(1–9)
[angiotensin-(1–9)], which is subsequently cleaved to Ang-(1–
7) by ACE or neutral endopeptidase enzymatic activities [8,9]
(Figure 1). Later, it was shown that ACE2 displays more affinity
for AngII, yielding Ang-(1–7) with a catalytic efficiency 400-fold
greater for AngII than for AngI [10] (for a detailed enzymatic
pathways for the brain RAS, see [7]).

In the mouse brain, ACE2 is widespread in areas both in-
volved in the regulation of cardiovascular function and also those
that are not [11]. The OVLT (organum vasculosum of the lamina
terminalis), an area involved in thirst and salt appetite, or brain
nuclei involved in the regulation of cardiovascular function, such
as the SFO (subfornical organ), the magnocellular neurons of the
PVN (paraventricular nucleus), the area postrema, the dorsal mo-
tor nucleus of the vagus, the NTS (nucleus of tractus solitarii), the
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Figure 1 Brain RAS
Abbreviations: Mas R, Mas receptor; MrgD, Mas-related G-protein-coupled receptors; NEP, neutral endopeptidase
(neprilysin); PEP, prolyl endopeptidase; (P)RR, prorenin receptor; TOP, thimet oligopeptidase. This Figure was adapted
and modified from [29] with permission. c© 2013 Biochemical Society.

RVLM (rostroventrolateral medulla) and the nucleus ambiguus
all show positive staining for ACE2 (for a detailed localization of
ACE2 in the brain, see [11]). Using cell-type specific antibodies,
it was shown that ACE2 is present in the cytoplasm of neurons,
but not in glial cells, of the mouse brain [11]. Conversely, ACE2
gene expression in cultured astrocytes isolated from neonatal rat
cerebellum or medulla oblongata has been reported [12].

Immunostaining for Ang-(1–7) has been observed in areas of
the brain related to hydroelectrolytic balance, including the supra-
optic and PVN of the hypothalamus [13]. Consistent with this
observation, Ang-(1–7) immunoreactivity was reported in neur-
ons from the hypothalamus and brainstem [14] and in the PVN
[15] of rats. In extracts from the rat hypothalamus, approximately
equimolar amounts of Ang-(1–7), AngII and AngI were detected
[16]. A similar profile was observed in the medulla oblongata
and amygdala, although the content of these three peptides was
40–70 % lower than that determined in the hypothalamus [16].

Recently, it has been shown that Ang-(1–7) is generated in
the rat hippocampus, with thimet oligopeptidase being the main

enzyme responsible in its generation [17]. Interestingly, Ang-(1–
7) was the preferred peptide generated from AngI metabolism in
hippocampal extracts from rats [17]. Furthermore, elevations in
the levels of thimet oligopeptidase and Ang-(1–7) were observed
in the hippocampus of epileptic rats [17]. Consistent with these
findings, increased Ang-(1–7) levels in the hippocampus of rats
during the acute and silent phases of pilocarpine-induced epilepsy
have been reported [18].

Ang-(1–7) induces its effects mainly through Mas receptor
activation, although it can also act through AT2Rs (AngII type 2
receptors). Mas receptors were first described to be specific for
Ang-(1–7) by Santos et al. [19] in 2003. With regards to loc-
alization, Mas receptors have been shown to be present in the
hippocampus, amygdala, cortex and hypoglossal nucleus, as well
as in the cardiovascular-related areas of the medulla and foreb-
rain [20]. A strong immunostaining was observed in the NTS,
CVLM (caudal ventrolateral medulla) and RVLM, inferior olive,
PVN and in the supra-optic nucleus [20]. Mas receptor staining
was predominantly present in neurons [20]. Mecca et al. [21]
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Protective axis of the RAS in the brain

Figure 2 Mas receptor in neurons
(A) Mas receptor immunoreactivity (green), (B) neurofilament immunoreactivity (red) and (C) Mas receptor plus neurofila-
ment co-localization in neuronal cultures from the hypothalamus and brainstem of newborn rats. After fixation, cells were
incubated overnight with antibodies against Mas receptor (1:200 dilution) and neurofilaments (1:300 dilution), a neuronal
marker, followed by the secondary antibodies Alexa Fluor® 510 and Alexa Fluor® 594 (1:400 dilution). Non-specific staining
was determined in the absence of the primary antibodies. Images were taken using an Olympus Fluoview FV1000 spectral
laser scanning confocal microscope with a ×60 oil-immersion lens. Scale bar, 5 μm. F.M. Cerniello and M.M. Gironacci,
unpublished work.

have shown Mas immunostaining mainly in the soma of cereb-
ral cortex neurons in rats, but not in astroglia, and to exist in
both non-nuclear and nuclear compartments [21]. In primary
neuronal cultures from the hypothalamus and brainstem of new-
born rats, we have observed Mas receptor co-localization with
neurofilaments, demonstrating the presence of Mas receptors in
neurons (F.M. Cerniello and M.M. Gironacci, unpublished work)
(Figure 2). In addition, Mas receptor protein expression was
greater in neurons from the hypothalami of SHRs (spontan-
eously hypertensive rats) than from normotensive Wistar–Kyoto
rats [22]. Further immunostaining experiments have revealed
the presence of Mas receptors on macrophages/microglia in the
rat cerebral cortex, as shown by co-localization with a specific
marker of these cells [21].

Within the mouse brain, the strongest Mas receptor protein
expression was detected in the dentate gyrus of the hippocampus
and within the piriform cortex [23]. However, Mas receptor pro-
tein expression is not restricted to these areas, as Mas-receptor-
immunopositive neurons were also observed in different parts of
the cortex, hippocampus, amygdala, basal ganglia, thalamus and
hypothalamus [23].

Taken together, these findings provide an anatomical basis for
the physiological role of Ang-(1–7) at the central level within the
brain.

Ang-(1–7) AND BLOOD PRESSURE
REGULATION

Studies investigating the biological role of Ang-(1–7) in the brain
began about 25 years ago. In 1998, Campagnole-Santos et al. [24]
reported that Ang-(1–7) had depressor and bradycardic effects
in vivo when injected into the NTS or the dorsal motor nucleus of

the vagus, thus showing that this peptide was biologically active
within the brain. The NTS is the main termination site of primary
afferent fibres arising from many cardiovascular receptors. It re-
ceives inputs from nuclei at all levels of the brain and innervates
medullary, as well as supramedullary, centres. Several of these in-
terconnected centres within the central nervous system contribute
to cardiovascular homeostasis by adjusting BP (blood pressure)
[25,26]. However, in transgenic rats with a severe deficit of brain
angiotensinogen production, the depressor and bradycardic re-
sponse caused by Ang-(1–7) was attenuated, whereas that caused
by AngII was unaltered, suggesting that a decrease in brain RAS
activity may lead to a differential alteration in the responsiveness
of angiotensin receptors [27].

Actions on arterial baroreceptors are the main mechanism for
the short-term (seconds to minutes) control of MAP (mean arter-
ial pressure) by sending afferent inputs to a medullary circuit that
controls the sympathetic drive to the heart and peripheral vascu-
lature [28]. In opposition to AngII, Ang-(1–7) has been shown
to facilitate the baroreflex control of heart rate (for a review, see
[29]). Accordingly, central infusion of an Ang-(1–7) antagonist
blunted the baroreflex sensitivity in normotensive rats, but not
in SHRs, whereas central infusion of an AT1R (AngII type 1 re-
ceptor) antagonist facilitated the sensitivity of the baroreceptor
control of heart rate in both strains [30]. These results suggest
that central endogenous AngII and Ang-(1–7) differentially mod-
ulate the baroreflex through distinct receptors. Imbalances in an-
giotensin peptide formation and/or action may be responsible
for the depressed baroreceptor reflex sensitivity in SHRs [30].
In older transgenic rats with low glial angiotensinogen, Mas
receptor blockade in the NTS impaired baroreflex sensitivity,
whereas AT1R blockade induced no change, suggesting that glial
angiotensinogen is the main source of AngII required for the
attenuation of baroreflex sensitivity, whereas endogenous Ang-
(1–7) from non-glial sources enhances baroreflex sensitivity [31].
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These findings suggest a novel mechanism for the preservation
of baroreflex sensitivity during aging [31].

In hypertensive (mRen2)27 transgenic rats, a model of chron-
ically overactive brain RAS with impaired baroreflex function
[32], Ang-(1–7) treatment significantly improved the vagal com-
ponents of baroreflex function and heart rate variability at a dose
that did not significantly lower MAP [33]. Replacement of Ang-
(1–7) through gene transfer of a fusion protein that forms Ang-
(1–7) in the brain of (mRen2)27 rats reverses, in part, the hyper-
tension and baroreflex impairment observed in this model, and
this is consistent with a functional deficit of Ang-(1–7) in this
hypertensive strain [34]. Isa et al. [35] have shown that the im-
provement in baroreflex sensitivity in these transgenic rats caused
by the administration of an ACE inhibitor, but not an AT1R ant-
agonist, into the NTS was blocked by a Mas receptor antagonist,
reinforcing the role of Ang-(1–7) and the Mas receptor in barore-
flex sensitivity. In agreement, Mas-receptor-knockout mice have
altered cardiovascular reflex responses [36]. The lack of the Mas
receptor induced an important imbalance in the neural control of
BP, altering not only the baroreflex, but also the chemoreflex and
Bezold–Jarisch reflex [36].

Recently, it has been shown that an imbalance in the
AngII/Ang-(1–7) ratio may be responsible for the impairment in
baroreflex sensitivity and heart rate variability in a sheep model of
fetal programming resulting from exposure at day 80 of gestation
to Beta (betamethasone) [37,38]. Beta is administered to acceler-
ate lung development and improve survival of premature infants,
but may be associated with hypertension later in life. In the Beta-
exposed animals, peripheral AT1R blockade lowered MAP and
improved baroreflex sensitivity and heart rate variability, whereas
Mas receptor blockade induced opposite effects: reduced barore-
flex sensitivity and increased MAP. The authors concluded that
Beta exposure impairs baroreflex sensitivity and heart rate variab-
ility at a time point preceding the elevation in MAP via mechan-
isms involving an imbalance in the AngII/Ang-(1–7) ratio, which
is consistent with a progressive loss of Ang-(1–7) function [37].
In fact, fetal Beta exposure attenuates Ang-(1–7)/Mas receptor
expression in the dorsal medulla of adult sheep [38].

The RVLM plays a crucial role in the tonic and phasic regu-
lation of BP. It exerts a widespread control over the sympathetic
outflow to effectors affecting cardiovascular function [25,26].
The RVLM is a major tonic pressor region which innervates
directly the sympathetic pre-ganglionic neurons located in the
intermediolateral cell column of the spinal cord [25,26]. The
CVLM receives direct baroreceptor input from the NTS and ex-
erts a modulatory action on RVLM neurons via a short inhibitory
pathway, thus having a sympato-inhibitory action [25,26]. It has
been shown that Ang-(1–7) is as effective as AngII on BP regula-
tion when injected into the RVLM or CVLM (see [29]). Despite
both peptides eliciting similar responses with respect to BP when
injected into the RVLM or CVLM, differential actions on the
baroreflex control of heart rate have been reported [39]. Micro-
injections of AngII and Ang-(1–7) into the RVLM did not affect
the baroreflex control of heart rate, whereas micro-injections of
angiotensin peptides into the CVLM induced differential changes
in the bradycardic or tachycardic component of the baroreflex.
Although Ang-(1–7) attenuated the baroreflex bradycardia and

facilitated the baroreflex tachycardia, AngII produced opposite
effects. These results suggest that AngII and Ang-(1–7) produce
a differential modulation of the baroreflex control of heart rate,
probably through a distinct effect on the parasympathetic drive
to the heart [39].

It seems that a site-specific action exists for Ang-(1–7) within
the brain. For instance, Ang-(1–7) induces similar responses to
AngII on BP regulation when it is injected into the RVLM, NTS
or CVLM, although these effects are elicited through different
mechanisms and receptor subtypes [40,41]. In contrast, Ang-(1–
7) exerts opposite actions to those displayed by AngII on barore-
flex sensitivity and ischaemic injury [21,29,30]. Up until now,
there has been no clear explanation for this differential effect for
Ang-(1–7). One may argue that when both peptides act in the
same manner, AngII may be metabolized to Ang-(1–7). Despite
the fact that both AngII or Ang-(1–7) induced an increase in
MAP when injected into the RVLM, several studies have found
that blockade of AT1Rs or AT2Rs in the RVLM does not alter
BP [42,43], but when Mas receptors are blocked a reduction in BP
was observed [44,45]. In addition, the pressor effect elicited by
AngI into the RVLM was not blocked by an ACE inhibitor, but
was reduced by a Mas receptor antagonist, reinforcing the role of
endogenous Ang-(1–7) in this area. Another possible explanation
may be that Ang-(1–7) binds to AT1Rs and in this way it elicits
responses similar to AngII; however, this hypothesis can be dis-
regarded because the effect of Ang-(1–7) was not modified by an
AT1R antagonist [46]. It seems that the counterbalancing effect
of Ang-(1–7) on the actions of AngII depends on the particular
cerebral area. Is there something specific to these control centres
(NTS, RVLM and CVLM) that could explain this finding? To
date, we do not know.

The PVN in the hypothalamus is one of the major sources
of afferent inputs to sympathetic pre-ganglionic neurons which
control the heart, blood vessels and adrenal medulla. In addition,
the PVN also projects to other autonomic nuclei in the brain-
stem, which may in turn influence the sympathetic vasomotor
outflow. Ang-(1–7) has been shown to be as effective as AngII in
enhancing cardiac sympathetic afferent reflexes and increasing
sympathetic outflow when injected into the PVN of renovascular
hypertensive rats [47]. In addition, both endogenous Ang-(1–7)
and AngII in the PVN contribute to enhanced cardiac sympathetic
afferent reflexes and sympathetic outflow in renovascular hyper-
tension [47]. Furthermore, chronic infusion of both Mas receptor
and AT1R antagonists into the PVN prevents hypertension in a
rat model of sleep apnoea [48].

Ang-(1–7) AND NEUROTRANSMITTER
RELEASE IN THE BRAIN

Several lines of evidence in animals and humans suggest that
sympathetic nervous system overactivity is a primary contrib-
utor to the development and maintenance of hypertension. Sym-
pathetic nervous system overactivity may result from either in-
appropriately elevated sympathetic drive from brain centres, an
increase in synaptically released neurotransmitters or amplifica-
tion of the neurotransmitter signal at the target tissue [49]. The
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catecholamines dopamine, noradrenaline (norepinephrine) and
adrenaline (epinephrine), acting as neurotransmitters, play im-
portant roles in the sympathetic control of BP, both centrally and
peripherally [49].

AngII has been shown to exert a stimulatory neuromodulatory
action on the brain noradrenaline system [50]. AngII, by activ-
ating AT1Rs, induces an increase in noradrenaline release and
synthesis centrally. In contrast, Ang-(1–7) elicits an inhibitory
neuromodulatory response in the brain noradrenaline system by
acting at three levels: synthesis, release and uptake. Ang-(1–7),
acting in sympathetic neurons through Mas receptor or AT2R
stimulation, induces a decrease in neurotransmitter synthesis and
release, as well as an increase in noradrenaline uptake, leading
to a decrease in neurotransmitter levels in the synaptic cleft [29].
The Ang-(1–7)-stimulated noradrenaline uptake is the result of
Ang-(1–7) action solely on neurons, since Mas receptors were
shown to be present in neurons and not in astroglia [21], an-
other cell assisting in the termination of signalling molecules
that diffuse away from the synapse. In addition, ACE2 was also
demonstrated to be present in neurons and not in glial cells [11],
reinforcing again the role of Ang-(1–7) in neurons.

With regard to other central neurotransmitters, it has been
shown that Ang-(1–7) caused a significant increase in dopamine
and GABA (γ -aminobutyric acid) release in the rat stratium, but
had no effect on glutamate release [51]. The Ang-(1–7)-induced
dopamine release was blocked by an inhibitor of aminopepti-
dase A, an enzyme which converts Ang-(1–7) into Ang-(3–7),
suggesting that this effect occurs after metabolism into Ang-(3–
7). In contrast, inhibition of aminopeptidase A had no effect on
the Ang-(1–7)-induced GABA release. The Ang-(1–7)-mediated
GABA release, but not dopamine release, was blocked by a Mas
receptor antagonist, suggesting that only the observed effects on
GABA release are mediated by Mas receptors [51].

Thus Ang-(1–7) may contribute to the overall central effects
by selectively regulating synaptic neurotransmitter levels.

BEYOND THE BRAIN EFFECTS OF Ang-(1–7)
ON BLOOD PRESSURE

Ang-(1–7) not only participates in BP or baroreflex regulation
in the brain, but has been shown to improve object recognition
memory function [52]. Furthermore, central administration of
Ang-(1–7) induces anxiolytic-like effects and decreased oxidative
stress in the amygdale of rats [53].

A cerebroprotective action has been described for centrally
administered Ang-(1–7) in ischaemic stroke in the endothelin-1-
induced middle cerebral artery occlusion model [21]. Ang-(1–7),
acting via its Mas receptor, treated rats had reduced cerebral
infarct size and improved performance on neurological examin-
ations [21]. These beneficial actions of Ang-(1–7) were due to
the attenuation of iNOS [inducible NOS (NO synthase)], pro-
inflammatory cytokines and microglia activation [54]. Indeed,
the neuroprotective action of Ang-(1–7) in ischaemic stroke has
been shown to involve the Mas-receptor-mediated suppression
of the inflammatory NF-κB (nuclear factor κB) pathway [55].

Another mediator involved in the protective effect of Ang-(1–7)
may be NO. Ang-(1–7) stimulates NO release and up-regulates
eNOS (endothelial NOS) expression in ischaemic tissues follow-
ing focal cerebral ischaemia/reperfusion in rats [56]. The cerebro-
protective effect elicited by Ang-(1–7) has also been described
in stroke-prone SHRs [57]. Intracerebroventricular infusion of
Ang-(1–7) increased the survival time in these rats. Ang-(1–7)
treatment also decreased the number of haemorrhages in the stri-
atum, improved neurological status (reduced lethargy), decreased
the number of microglia in the striatum and tended to increase
neuron survival at the same site [57]. Recently, it has been shown
that cerebral infarction resulted in a significant increase in Ang-
(1–7) and Mas receptor levels, as well as ACE2 levels, in the
cerebral cortex compared with sham-operated rats, reinforcing
the concept that this axis plays a pivotal role in the regulation of
acute neuron injury in ischaemic cerebrovascular diseases [58].

Chronic treatment with Ang-(1–7) is beneficial in attenuating
hypertension-induced pathophysiological changes in the brain.
Intracerebroventricular infusion of Ang-(1–7) for 4 weeks signi-
ficantly reduced iNOS and the NADPH oxidase subunit gp91 in
the brain of SHRs [59]. The increase in apoptotic neurons was also
attenuated by Ang-(1–7). These antioxidative and anti-apoptotic
effects caused by chronic infusion of Ang-(1–7) in SHRs were ac-
companied by a reduction in the expression of AngII and AT1Rs,
and were independent of BP reduction [59]. Furthermore, Ang-
(1–7) was reported to prevent excessive hypertension-induced
autophagic activation through Mas receptors and AT2Rs in brain
of SHRs [60]. These studies demonstrate that Ang-(1–7) may be
helpful in preventing hypertension-related cerebrovascular dis-
eases [59,60].

Despite the fact that several findings point to a cerebroprect-
ive role for Ang-(1–7), it has been reported recently that Mas
receptor deficiency induced an increase in the number of young
doublecortin-positive neurons in the piriform cortex, an area re-
lated to adult neurogenesis [61]. In contrast, deletion of the Mas
receptor did not alter cell proliferation in the adult dentatus gyrus,
another area capable of adult neurogenesis [61]. This results sug-
gests that blockade of Mas receptors might be beneficial in stim-
ulating neurogenesis in adults [61].

DOWNSTREAM Ang-(1–7) SIGNALLING IN
THE BRAIN

In the brain, the interaction of Ang-(1–7) with the Mas receptor
has been associated with the activation of several intracellular
signalling pathways. NO generation mediated by Mas receptor
activation has been demonstrated [56,62–64]. One of the mech-
anisms by which NO is generated is through the activation of
bradykinin B2 receptors. Ang-(1–7), through Mas receptor stim-
ulation, induces bradykinin generation which, in turn, activates
B2 receptors, with the subsequent activation of NOS and thus
NO generation [64]. In differentiated catecholaminergic neur-
ons, Ang-(1–7) is capable of increasing nNOS (neuronal NOS)-
derived NO levels, which activate the hyperpolarizing voltage-
gated outward K+ current [65].
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Figure 3 Proposed Ang-(1–7) signalling in the central nervous system
Abbreviations: AA, arachidonic acid; CSAR, cardiac sympathetic afferent reflex; Ikv, voltage-gated outward K+ ; MasR, Mas
receptor; NET, noradrenaline transporter; NE, noradrenaline; PG, prostaglandin.

In neurons from the hypothalamus, Mas receptor stimula-
tion by Ang-(1–7) is coupled with PI3K (phosphoinositide 3-
kinase)/Akt- and MEK1/2 (MAPK/ERK kinase 1/2)/ERK1/2
(extracellular-signal-regulated kinase 1/2)-dependent signalling
pathways, and therefore Ang-(1–7) induces changes in the
gene transcription of the noradrenaline transporter [22]. An-
other mediator of the actions of Ang-(1–7) is COX2 (cyclo-
oxygenase 2), the key enzyme that converts arachidonic acid
into prostaglandins, as it has been shown that Ang-(1–7)-induced
plasticity changes in the lateral amygdala occur via COX-2
[62].

Activation of Mas receptors by Ang-(1–7) in the PVN or
RVLM of renovascular hypertensive rats is associated with the
cAMP/PKA (protein kinase A) pathway, which mediates the en-
hanced sympathetic outflow and cardiac sympathetic afferent re-
flex elicited by the heptapeptide [66,67]. In this context, it has
been demonstrated that superoxide anions are the signalling mo-
lecules implicated in the sympatho-excitatory effect of Ang-(1–7)
mediated by the Mas receptor in the RVLM. NADPH oxidase is
the major source of the superoxide anions that modulate the ef-
fects of Ang-(1–7) in the RVLM [68]; however, the mechanism
of NADPH oxidase activation by Ang-(1–7) in the RVLM is still
not well understood.

Interestingly, it has been shown that renin may mediate the
central control of BP at the NTS through the Ras/PI3K/Akt sig-
nalling pathway to regulate the phosphorylation of eNOS. In this
way, renin modulates BP via centrally located AT1Rs and Mas
receptors, which activate Ras, PI3K, Akt and eNOS phosphoryla-
tion [69].

Figure 3 summarizes the signalling pathways coupled to the
Ang-(1–7)/Mas receptor axis.

ACE2 IN THE BRAIN

In the brain, ACE2 is expressed in neurons [11] and astroglial
cells [12]. ACE2 is an integral membrane protein with its cata-
lytic site exposed to circulating vasoactive peptides [70]. In a
human liver cell line endogenously expressing ACE2, it has
been shown that ACE2 attachment to the cell membrane is
regulated by calmodulin binding through a calcium-dependent
calmodulin–peptide complex involving the ACE2 cytoplasmic
domain [71,72]. The enzyme is released from the plasma mem-
brane in response to phorbol ester stimuli by TNF (tumour
necrosis factor)-α-converting enzyme (ADAM17), a disinteg-
rin and metalloproteinase, resulting in the formation of a soluble
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Figure 4 ACE2 at the central level
Abbreviations: AP, anterior hypothalamus; MasR, Mas receptor.

truncated, but active, ACE2 [sACE2 (soluble ACE2)] [71–73].
This process is called ACE2 shedding [71–73]. sACE2 has been
also observed in the cytoplasm of neurons in the mouse brain,
probably due to endocytosis of the secreted enzyme [11]. Mod-
ulation of ACE2 membrane attachment may be of physiological
and pathophysiological importance, as it determinates the levels
of ACE2 as an integral membrane protein, the levels of circulat-
ory sACE2 and the levels of intracellular sACE2. Recently, it has
been shown that ADAM17 levels were up-regulated in DOCA
(deoxycorticosterone acetate)-salt-induced hypertension, which
contributes to ACE2 shedding [74]. The knockdown of ADAM17
prevented the reduction in ACE2 levels in the brain and blunted
DOCA salt-induced hypertension, showing that ACE2 shedding
contributes to the development of neurogenic hypertension [74].

AngI and AngII are not the only substrates for ACE2. Other
substrates of physiological relevance are apelin, particularly
apelin-13 and apelin-36 [10], and AngA [75,76]. ACE2 hydro-

lyses apelin or AngII with similar catalytic efficiency [77]. In-
tracerebroventricular administration of apelin does not modify BP
[78], but its administration into the SFO decreases BP and heart
rate as a consequence of its modulating effects on neuron excitab-
ility in this area [79]. A neuroprotective role has been attributed
to apelin, as it has been shown that it attenuates neuron apop-
tosis after ischaemia/reperfusion injury [80]. ACE2 also cleaves
AngA, which exerts pressor actions [76] to yield the recently de-
scribed heptapeptide alamandine. The novel peptide alamandine
elicits biological activities that resemble those of Ang-(1–7) [75].

ACE2 expression is decreased in hypertensive rat strains [81].
Yamazato et al. [82,83] showed that ACE2 expression is reduced
in the RVLM and NTS of SHRs compared with Wistar–Kyoto
rats. In agreement, ACE2 expression has also been reported to
be reduced in neurogenic hypertension [84] and in CHF (chronic
heart failure) [85,86], another important cardiovascular patho-
logy. In contrast, exercise induced an increase in central ACE2
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expression, thus reversing the imbalance of ACE2 in regions of
the brain that regulate autonomic function [85]. Given the fact that
ACE2 expression is decreased in SHRs, overexpression of murine
ACE2 in the RVLM of SHRs and Wistar–Kyoto rats succeeded
in lowering BP in the hypertensive strain, probably because this
gene therapy ensured that SHRs overcame the ACE2 deficiency
[82]. In contrast, overexpression of murine ACE2 in the NTS
failed to decrease BP but increased baroreflex sensitivity [83].

In neurogenic hypertension, the brain-targeted expression of
human ACE2 under the control of a neuron-specific promoter in
the SFO or in the PVN attenuated the AngII pressor response and
improved autonomic function through augmentation of baroreflex
sensitivity and a reduction in sympathetic outflow [87,88]. In
mice with CHF, brain-selective overexpression of human ACE2
attenuated CHF and induced a decrease in BP [86].

Interestingly, human ACE2 overexpression in the SFO [87]
and in the PVN [88] did not affect BP in control normotens-
ive animals, but attenuated neurogenic hypertension, suggesting
that ACE2 plays a role in pathophysiological situations. The fact
that murine ACE2 overexpression in the RVLM decreased BP in
SHRs but had no effect on Wistar–Kyoto rats [82] reinforces this
hypothesis.

Several studies have tried to elucidate the mechanism by which
ACE2 overexpression therapy improves neurogenic hypertension.
Neuron-selective expression of human ACE2 in the brain exhib-
ited a protective response to AngII pressor stimuli that was re-
versed by chronic systemic blockade of Mas receptors, suggesting
that attenuation of neurogenic hypertension by neuronal human
ACE2 overexpression was mediated by the Ang-(1–7)/Mas re-
ceptor axis [84]. In addition, up-regulation of NOS expression
correlating with augmented NO release was also observed in this
model [84]. Sriramula et al. [88] have reported that the attenuation
of neurogenic hypertension induced by human ACE2 overexpres-
sion in the PVN was accompanied by the up-regulation of AT2Rs
and Mas receptors as well as the down-regulation AT1Rs and
ACE, shifting the RAS to its depressor arm. In addition, AngII-
stimulated pro-inflammatory cytokine release was also attenuated
[88]. In ACE2− /y mice treated chronically with AngII infusion,
human ACE2 overexpression in the PVN induced a decrease in
ROS (reactive oxygen species) and AT1Rs and improved auto-
nomic function [89]. Taken together, these results suggest that
central gene-therapy-protective effects of ACE2 on neurogenic
hypertension are closely linked to the Ang-(1–7)/Mas receptor
pathway.

Regarding CHF, human ACE2 overexpression in the brains
of mice attenuated CHF by decreasing sympathetic outflow, and
this effect was attenuated by chronic systemic blockade of Mas
receptors, suggesting that inhibition of sympathetic activity in
mice with CHF by human ACE2 overexpression is mediated
by the Ang-(1–7)/Mas receptor axis [86]. In addition, decreased
AT1R levels were also observed in the NTS, but not in the RVLM
of mice with CHF [86].

Many studies have highlighted the role of central ACE2 in
baroreflex function. Indeed it has been demonstrated that ACE2
deficiency in the NTS from SHRs may be responsible for the im-
paired baroreflex function observed in this strain [83]. Accord-
ingly, complete ACE2 gene deletion in mice [89] or local ACE2

inhibition in the NTS of rats [90] resulted in reduced baroreflex
function. These findings support the concept that, within the NTS,
local synthesis of Ang-(1–7) from AngII is required for normal
sensitivity for the baroreflex control of heart rate in response to
increases in arterial pressure [90].

ACE2 expression and AT1R levels seem to be intimately con-
nected. Systemic infusion or intracerebroventricular injection of
AngII caused ACE2 down-regulation and AT1R up-regulation in
the brain stem, SFO and PVN, which was reversed by human
ACE2 overexpression [84,87,88]. Accordingly, AngII stimula-
tion caused a decrease in ACE2 mRNA and protein expression in
primary cultures of cerebellar and medullar astrocytes, and this
was prevented by AT1R blockade [12]. ACE2 overexpression not
only led to AT1R down-regulation in the NTS, SFO and PVN,
but also increased AT2R and Mas receptor expression [84,87,88].
Additionally, ACE2 overexpression in the PVN attenuated the
AngII-induced increase in the expression of the pro-inflammatory
cytokines TNF-α, IL (interleukin)-1β and IL-6 [88]. Taken to-
gether, these data suggest that ACE2 overexpression confers a
protective effect by modulating angiotensin receptor expression
in the brainstem [84,87,88]. Figure 4 summarizes the principal
findings concerning ACE2 expression at the central level.

SOME CONSIDERATIONS

It seems that there is a reluctance to determine peptide concen-
trations and brain distribution, and this may be due to method-
ological limitations. In addition, all of the studies reporting the
effects of Ang-(1–7) employed quantities of the peptide several
orders of magnitude higher than those present in the brain. If
physiological concentrations are employed, no net effect may be
observed, because of the many mechanisms being employed at
the same time to maintain the physiological state. Despite the
fact that pharmacological concentrations are used to investigate
an effect of the peptide, some studies corroborate these results
by using gene-deleted mice (where it is possible) or through
receptor blockers or antibodies that inhibit the action of the en-
dogenous peptide. However, this last point is limited by the lack
of a commercially available antibody against Ang-(1–7). Further-
more, there is some doubt about the effectiveness and specificity
of many of the antibodies used. Therefore, where it is possible
and to support the findings, data obtained using high concen-
trations of peptide should be corroborated by other approaches,
including gene-deleted mice, specific receptors blockers or spe-
cific antibodies that block the action of endogenous hormones or
even through inhibition of enzymes involved in hormone gener-
ation. In this way, it is possible to confirm the endogenous role of
the peptide.

CONCLUSIONS

Our understanding of the RAS has changed considerably from
when it was first identified. Originally, it was thought that AngII
was the only bioactive component, but this is now not the case
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following the identification of other components of the system,
including AngIII, AngIV, Ang-(1–7), Ang-(1–12), AngA and,
more recently, alamandine [75,76]. These peptides have been
described to contribute to the overall actions of the RAS, with
some of them favouring an increase in BP, whereas others result
in a decrease in BP. The Ang-(1–7)/Mas receptor axis contributes
to BP regulation centrally and exerts a cerebroprotective action.
In view of its renal- and cardiovascular-protective effects, this
axis should be considered as a potential therapeutic target by
potentiating its activity. Further investigations into the molecular
events underlying the actions of Ang-(1–7) and the regulation of
Mas receptors will be required before this becomes a reality.
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