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Abstract A number of specific heat Cm anomalies are reported in Ce- and Yb-lattice
compounds around 1 K which cannot be associated to usual phase transitions despite
of their robust magnetic moments. Instead of a Cm(T ) jump, these anomalies show
coincident morphology: (i) a significant tail in Cm/T , with similar power law decay
above their maxima (T > Tm), (ii) whereas a Cm(T 2) dependence is observed below
Tm. (iii) The comparison of their respective entropy gain Sm(T ) indicates that ≈
0.7Rln2 is condensed within the T > Tm tail, in coincidence with an exemplary
spin-ice compound. Such amount of entropy arises from a significant increase of the
density of low energy excitations, reflected in a divergent Cm(T > Tm)/T dependence.
(iv) Many of their lattice structures present conditions for magnetic frustration. The
origin of these anomalies can be attributed to an interplay between the divergent
density of magnetic excitations at T → 0 and the limited amount of degrees of
freedom: Sm = Rln2 for a doublet-ground state. Due to this “entropy bottleneck,” the
paramagnetic minimum of energy blurs out and the system slides into an alternative
minimum through a continuous transition. A relevant observation in these very heavy
fermion systems is the possible existence of an upper limit for Cm/TLimT →0 ≈ 7 J/mol
K2 observed in four Yb- and Pr-based compounds.
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1 Introduction

Within the study of quantum critical phenomena, the search of magnetic systems
tunable to low temperature transitions has provided valuable information about the
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Fig. 1 Five examples of Cm/T anomalies around 1 K. Left axis YbCu4Au [9] and CeCu6.5Al6.5 [10].
Right axis Ce2(Pd0.5Ag0.5)2In [11], Y3Ce4Ni3 [12], and CePd3Si0.2 [13]. Inset Cmax values of samples
included in this figure and in Fig. 2 (Color figure online)

physical properties of Ce and Yb compounds [1,2]. Those investigations have revealed
the variety of alternative ground states that become accessible because of the subtle
competition between comparable minima of energy. They may involve exotic or hidden
phases arising from e.g., geometrical frustration [3,4], Griffith phases [5], dimers
formation [6], or spin liquids [7]. Coincidentally, the knowledge of thermal properties
in that region of temperature have shown the effects of thermodynamic constraints
approaching quantum criticality at T → 0 [8]. In this context, some similarities have
been observed in Ce- and Yb-based systems around 1 K associated to specific heat
(Cm) anomalies.

Five examples of those anomalies are collected in Fig. 1: YbCu4Au [9] and
CeCu6.5Al6.5 [10] on the left axis, Ce2(Pd0.5Ag0.5)2In [11], Y3Ce4Ni3 [12], and
CePd3Si0.2 [13] on the right axis. These Ce- and Yb-lattice systems include different
crystalline structures, stoichiometric compositions, Ce-ligand alloys, and interstitial
atoms. The common features among them are the comparable values of their Cm(Tm)

maxima (see the inset in Fig. 1), followed by a monotonous decrease at T > Tm
without showing any discontinuity nor changes in their ∂(Cm/T )/∂T slopes.

The double logarithmic representation of Cm/T versus T presented in Fig. 2
shows their thermal dependencies above Tm following a power law with very sim-
ilar exponents. In this figure other examples are included like the pseudo binary alloys
CeCu0.45Si1.55, CeCu0.75Si1.25 [14], and the stoichiometric compound CeIrSi [15].
The Cm/T |T >Tm tail of all these systems are properly described by a modified power
law: Cm/T = g/(T q + a) [17], with an exponent q = 2 ± 0.2, whereas the para-
meter a ranges between zero and a few degrees. Another common feature among
these systems is the Cm ∝ T 2 dependence at T < Tm. The alloy YbCu4.3Au0.7 [16]
is included in Fig. 2 as an illustrative comparison for the next section. This and its
related YbCu5−x Aux alloys (with 0.7 ≥ x ≤ 0.5) also show power law Cm/T |T >Tm

dependencies but with a concentration-dependent exponent q(x) (1.3 ≥ q ≥ 0.95
[16]), whereas a = 0 in all of them. Nevertheless, the respective Cm/T |T >Tm tails
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Fig. 2 Double logarithmic representation showing the power law dependencies of Cm/T |T >Tm versus T

and Cm |T <Tm ∝ T 2 of CeCux Si2−x [14], CeIrSi [15] and YbCu4.3Au0.7 [16]. Continuous curves are fits
with the Cm/T = g/(T q + a) function [17] (Color figure online)

scale each other as a function of T q because they exhibit an isosbestic point [18] at
T ≈ 1.8 K. The relevant characteristic of this system is the constant, and very high
value of Cm/T |LimT →0 ≈ 6.7 J/mol K2 which reveals an extremely high density of
low energy excitations. Notice that, despite of the plateau observed in Cm/T |LimT →0,
a Tm maximum always occurs in Cm(T ).

The aim of this work is to determine whether the coincident features observed in
these anomalies have a common origin and explore the nature of the underlying phe-
nomena. For such a purpose, we first analyze the thermodynamic constraints imposed
by the available degrees of freedom for a doublet-ground state (GS) system. The con-
sequences of the paramagnetic phase instability are discussed in terms of the free
energy competition with alternative minima.

2 Discussion

2.1 Analysis of the Entropy Gain

Valuable information for the study of this type of anomalies is provided by the thermal
dependence of the magnetic entropy: Sm = ∫

Cm/T × dT , presented in Fig. 3 after
being normalized to the value of a doublet GS, Rln2. The respective extrapolations
of Cm/T |T →0 from the lowest measured temperatures to T = 0 were performed
according to the Cm(T 2) dependencies extracted from e.g., Fig. 2 for T < Tm. A
relevant feature of the systems included in Fig. 3 is that the maximum slope of ∂Sm/∂T
(i.e., the maximum of Cm/T ) is reached at a nearly common value of Sm ≈ 0.3Rln2.
This means that all systems collect a similar amount of entropy at the respective Tm
temperatures regardless their structure, Ce- or Yb-based composition, stoichiometric,
or alloyed but always with a doublet GS. Searching for a possible meaning of such
a coincidence, one finds that this value corresponds to the remanent entropy (S0) of
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Fig. 3 Comparative evolution of the thermal dependence of the magnetic entropy (Sm) normalized to Rln2.
The line at Sm ≈ 0.3Rln2 indicates the entropy accumulated up to T = Tm. Continuous curve: Sm(T ) of
the Spin Ice Dy2Ti2O7 [19] included for comparison (Color figure online)

the well known spin-ice compound Dy2Ti2O7 [19]. In order to compare this behavior
with that of the systems under study, we have included its Sm(T ) dependence in Fig. 3
(continuous curve) taking into account that all systems coincide in entropy (Rln2)
once both levels are equally occupied at high temperature, provided other crystal field
levels are at much higher energy. Notice that the remanent entropy (S0 at T = 0) of the
spin-ice is related to an intrinsic geometrical frustration, which in other systems can
be eventually dodge through different type of phase transitions like e.g., in Shastry-
Sutherland lattices [20]. This coincidence in the entropy gain within the paramagnetic
phase suggests that the large Cm/T |T >Tm tails in these systems may arise from
frustration effects that inhibit the magnetic system to develop long-range order.

An illustrative analysis of the role of the entropy in the GS formation of these
systems can be done comparing the Sm(T ) variation of stoichiometric YbCu4Au with
the YbCu4.3Au0.7 alloy performed in Fig. 4. These related systems follow two different
ways for Sm(T ) → 0 at T = 0. While stoichiometric YbCu4Au (with a cusp at
Cm/Tm) shows a positive curvature ∂2Sm/∂T 2|LimT →0 > 0, YbCu4.3Au0.7 ends with
∂2Sm/∂T 2 = 0 as a consequence of the plateau observed at Cm/T |LimT →0. In the
figure, the dashed (cyan) curve represents the SPL = ∫

3.1/(T 2.1+0.1)×dT function,
computed using the power law fit to Cm/T |T >Tm of YbCu4Au. As expected, the SPL
curve deviates from the measured Sm(T ) at Tm and crosses the Sm = 0 axis at finite
temperature, because it exceeds the Sm = Rln2 physical limit due to its divergent
character at T → 0. Although less pronounced, a similar feature is observed for
YbCu4.3Au0.7, where the continuous (red) curve represents the SPL = ∫

1.46/T 1.3×
dT dependence extracted for this alloy. In this case, the deviation of computed entropy
from the measured Sm(T ) occurs at lower temperature because of the slower increase
of the excitations density at low energy.

Notice the subtle crossing between SPL(T ) and Sm(T ) in YbCu4.3Au0.7 that pro-
duces a slight discontinuity in the ∂Sm/∂T slope according to the fact that the Sm(T )
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Fig. 4 Comparison between two isotypic Yb compounds. Dashed (cyan) and continuous (red) curves
computed from respective Cm/T |T >Tm power laws. Straight (blue) line represents the Sm(T < Tm)

region. Inset Comparison between YbCu4.3Au0.7 and CePd3B0.5, continuous (green) curve represents the
analytical fit (Color figure online)

gain up to Tm ≈ 0.4 K is not tangent to SPL. Although from thermodynamics a change
of slope in the ∂Sm/∂T derivative corresponds to a second-order transition, the mag-
nitude of the observed discontinuity is practically irrelevant, i.e., less that 10 % of the
value predicted for a second-order transition in the mean field for a spin s = 1/2 [21].
This discontinuity even disappears for YbCu4.6Au0.4 [16].

Concerning the YbCu4Au compound, it is evident that the measured Sm(T ) deviates
from the negative ∂2SPL/∂T 2|T >Tm < 0 curvature, because the divergent character
of Cm/T would end into a non physical singularity at T = 0. Consequently, the neg-
ative curvature of Sm(T ) itself becomes non physical and contrary to the third law
of thermodynamics for T → 0 [22]. One should remark that, in a classical second-
order transition, the Sm(T → 0) extrapolation from the paramagnetic phase joins
the one performed from the ordered phase at T = 0, with the consequent compensa-
tion expected for the entropy as a state quantity. This is not the case for the studied
compounds, because no entropy compensation is possible since the magnetic entropy
bottleneck produced by the Sm = Rln2 limit impedes such a compensation.

2.2 Maximum Value of γ |T →0

Coming back to the ∂2SPL/∂T 2|T >Tm = 0 case, the divergent Cm/T |T →0 =γT →0
behavior results in an exceptionally high value of ≈6.7 J/mol K2 as observed in
YbCu5−x Aux within the 0.7 ≥ x ≥ 0.5 range [16]. The fact that this value is indepen-
dent of concentration below Tm and nearly coincides with other very heavy Fermions,
arises the question whether it represents an upper limit for the density of excita-
tions approaching T = 0. Those compounds are YbBiPt [23], YbCo2Zn20 [24] and
PrInAg2 [25], whose γT →0 values are ≈ 7.3 J/mol K2 for Yb-based compounds and
γT →0 ≈ 6.5 J/mol K2 for PrInAg2. Notably, the latter compound has a non-Kramer
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doublet GS [25] because of its integer J = 4 total angular momentum. Concerning
Ce-based compounds, to our knowledge the highest value is reported for CeNi9Ge4
with γT →0 ≈ 5.6 J/mol K2 [26], followed by CePd3B0.5 [27] with a slightly lower
value of γT →0 ≈ 5.3 J/mol K2 extrapolated from T > 0.45 K, see below.

Another interesting question arises concerning the nature of the γT →0 plateau,
because it could be associated to the formation of an extremely narrow band or it
simply reflects a discrete spectrum of constant density of low energy excitations.
The Cm/T |T →0 evolution in CePd3B0.5 provides significant information, because
it is a unique case showing a monotonous temperature dependence, described by
Cm/T = 4.3/(T 2 +0.8) over a decade of temperature [27]. This function extrapolates
to T = 0 with signatures of Fermi liquid (FL) behavior because for T << 0.8 K it
can be written as 5.4(1 − T 2/0.8), that is the specific heat expansion for a Fermi gas
[28].

In the inset of Fig. 4 the low temperature Sm(T ) of YbCu4.3Au0.7 and CePd3B0.5
are compared, showing that the latter is the only case where Sm(T ) and its second
derivative tend to zero monotonously. Since for this case the lower limit of the experi-
mental results is T ≈ 0.45 K, the continuous curve extrapolated to T = 0 is computed
from SPL = ∫

4.3/(T 2 + 0.8) × dT (dark green in the inset of Fig. 4). Interest-
ingly, in the case of CePd3B0.5 that follows a Cm/T ∝ 1/T 2 dependence, SPL can
be evaluated analytically by the formula

∫
dx/(x2 + c) = (1/c) × arctan(2x/c) [29].

The SPL = 0.83 × arctan(x/0.9) curve is the one depicted in the inset of Fig. 4 for
CePd3B0.5 after normalized by Rln2. As expected, arctan x → x as x → 0, fulfilling
the condition for a FL system. Very low temperature electrical resistivity measure-
ments are certainly required to confirm the FL nature of this GS.

2.3 Analysis of the Free Energy Minima

The search of the origin of these anomalies requires a detailed analysis of the evolution
of free energy minimum. The lack of a jump associated to the Cm/T (T ) anomalies
included in Figs. 1 and 2 indicates that no second-order transition occurs rather a con-
tinuous modification in the landscape of the free energy surface. A possible description
for this situation is sketched in Fig. 5 where competing minima in the Gibbs energy
(G) is illustrated. On the left panel, Fig. 5a represents the Gibbs surface for the para-
magnetic (T > Tm) phase, with the (yellow) disk indicating the G minimum and the
arrows two alternative paths to energetically neighbors minima, and Fig. 5b the situa-
tion for T < Tm, where the system (yellow disk) has moved into another minimum of
G because the former has vanished. On the right panel, Fig. 5c presents a schematic
comparison of the G(�) dependencies at T > Tm, T = Tm and T < Tm being � a
generic order parameter.

Differently than in a second-order transition, where the paramagnetic G(� = 0)-
minimum continuously transforms into a G(� �= 0) one as � starts to grow from zero,
in this case the G-minimum of the paramagnetic phase is blurred out by the entropy
bottleneck originated in the divergent growth of the density of excitations. Since that
minimum is no workable anymore for T ≤ Tm, the system slides along the free energy
surface into any other accessible minimum as represented in Fig. 5c for T = Tm.
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(a)

(b)

(c)

Fig. 5 Schematic representation of competing alternative minima of Gibbs free energy (G). a At T > Tm
the yellow disk indicates the paramagnetic minimum of G and the arrows the way to two alternative minima.
b At T < Tm the yellow disk indicates the chosen minimum of G once the paramagnetic one was blurred
out. c Description of G(�, T ) variation (where � is a generic order parameter) for three representative
temperatures to show how the G(T > Tm) minimum of the paramagnetic phase (at � = 0, blue curve)
blurs out and the system slides at T = Tm (green curve) into an alternative minimum at � �= 0 for T < Tm
(red curve) (Color figure online)

As mentioned in the description of Fig. 3, one of the common features among these
compounds is the coincident amount of the entropy collected up to Tm: Sm ≈ 0.3Rln2,
that also coincides with the remanent entropy of the spin-ice compound Dy2Ti2O7.
Therefore, frustration effects which inhibit any order parameter development have to
be taken into account as the origin of the entropy accumulated at T > Tm. In fact,
many of the analyzed systems crystallize in structures favoring geometrical frustration,
like tetrahedral nearest neighbors coordination in YbCu4Au and CeIrSi, or triangular
one in Ce2(Pd0.5Ag0.5)2In, Y3Ce4Ni3, and CeCu0.45Si1.55. The fact that the entropy
condensed above Tm compares with that of Dy2Ti2O7 indicates that these systems can
dodge an intrinsically degenerated GS sliding into an alternative minimum of energy
once they have condensed such amount of entropy. This entropy bottleneck seems to
properly represent a thermodynamical constraint which leads the systems to resolve
their magnetic frustration accessing to alternative (previously hidden) phases.

2.4 About the Nature of the Anomaly

Before discussing these anomalies as originated in a peculiar phase transition, it is
illustrative to compare their morphology with those of other well-known anomalies.
One of the systems included in Fig. 6 is CeCu6.5Al6.5 whose anomaly was compared in
the literature with a Schottky type anomaly [10]. Although its Cm(Tm) ≈ 3.3 J/mol K
value is close to the value for two equally degenerated levels (i.e., 3.64 J/mol K),
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Fig. 6 Comparison of YbCu4Au and CeCu6.5Al6.5 anomalies with Schottky, spin glass, and 2D-simple
quadratic Heisenberg lattice anomalies (Color figure online)

the observed thermal dependencies above and below Tm do not fit into such a class of
anomalies. The same analysis applies to YbCu4Au also included in Fig. 6. Additionally
to the Cm(T ) dependence, the other systems studied in this work show much lower
Cm(Tm) maximum as it can be seen in the inset of Fig. 1.

A similar comparison can be done with the specific heat anomaly of spin glasses.
Also in this case the Cm ∝ T 2 temperature dependence displayed by the compounds
included in Fig. 2 below Tm suggests a quasi-two-dimensional (2D) magnetism [30]
rather than a spin glass-like behavior (c.f. Cm ∝ T [31]). Additionally, the observed
power law Cm(T )/T dependence for T > Tm also differs form that of a spin glass, see
in Fig. 6 the comparison with ThGd spin glass [32]. Furthermore, the lattice distrib-
ution of magnetic Ce and Yb atoms, including stoichiometric compounds, practically
excludes any role of random interactions due to atomic disorder in this peculiar behav-
ior.

Exploring a possible quasi-two-dimensional (2D) magnetic character for these sys-
tems, one finds that a simple quadratic lattice of Heisenberg spins 1/2 does not order
magnetically, but at low temperature it tends to a Cm ∝ T 2 dependence [33]. How-
ever, the Cm/T |T >Tm tail does not follow a power law like the one observed in the
analyzed systems, also included in Fig. 6. Nevertheless, the entropy condensed at Tm
coincides with the value observed in the systems under study, i.e., Sm(Tm) ≈ 0.3Rln2
[34]. A spin liquid character for the GS for these systems has to be taken into account
because that type of behavior was claimed for the triangular lattice organic materials
ET and Pd(dmit)2 compounds showing a Cm ∝ T 2 dependence [35] and the isotypic
compound Yb2Pt2Pb [36].

A clear distinction between usual magnetic disorder effects in a magnetic lattice and
the anomalies under study is provided by the family of Ce2(Pd1−x Agx )2In alloys. This
system shows a ferromagnetic transition TC decreasing in temperature and intensity
from TC = 4.1 K at x = 0 [37] down to ≈ 2 K at x = 0.4, where the ferromagnetic
transition vanishes. In coincidence with the progressive reduction of the Cm(TC ) jump,
another anomaly arises at Tm ≈ 1.1 K, becoming fully developed at x = 0.5 as
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Fig. 7 Magnetic field effect on the Cm/T (T ) dependence of Y3Ce34Ni3. �I and �I I indicate the Cm/T
values on respective sides of the transition. Lower inset Field dependence of �I and �I I evaluated at ±10%
of Tm. Upper inset Discontinuity of the specific heat derivative in four of the systems under analysis (Color
figure online)

depicted in Figs. 1 and 2 . Disorder effects produced by Ag doping the Pd lattice may
explain the broadening and weakening of the ferromagnetic transition, but not the
emerging anomaly at Tm as an independent entity.

Due to the low temperature range at which these anomalies occur, quantum fluc-
tuation effects should not be excluded. This fact is supported by the analysis of mag-
netic phase diagrams performed on Ce systems, whose order transitions are driven to
T < 1K by alloying Ce-ligand atoms [8,17]. In those cases, a systematic change of the
phase boundary slope between 2 and 3 K is observed and attributed to quantum fluctu-
ations overcoming the decreasing thermal fluctuations. Additionally, the possible 2D
character of those fluctuations was determined by neutron scattering studies performed
on the archetype of non-Fermi-liquid systems, CeCu6−x Aux [38]. Nevertheless, one
has to remak that microscopic quantum critical mechanisms and thermodynamic con-
straints do not exclude each other because they produce intertwined effects.

Focusing on the thermodynamic conditions derived from an entropy bottleneck,
one has to analyze how the access to an alternative minima of energy occurs. From
the discussion held in §2.3, the slide of the system into another minimum is expected
to be continuous according to the lack of an energy threshold once the paramagnetic
minimum was blurred. In terms of free energy, such type of crossover into another
minimum is associated to a discontinuity in its third derivative, i.e., ∂3G/∂T 3, which
corresponds to a third-order transition according to the Ehrenfest definition. Taking
profit from Pippard’s description [39] of third order transitions, the occurrence of
that class of transition can be tested applying that criterion of the ∂Cm/∂T derivative
discontinuity. Such a discontinuity is clearly observed in the four systems included
in the upper inset of Fig. 7. The broadness of the transitions can be attributed to the
polycrystalline body of the samples.

A complementary analysis concerning the nature of this anomaly can be performed
exploring the G-derivatives involving other intensive parameters, e.g., pressure (P) or
magnetic field (H ). In a third-order transition, the equality between phases I and I I
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corresponds to the respective entropy derivatives:

∂SI (T, H)/∂T = ∂SI I (T, H)/∂T

For simplicity, we define ∂S/∂T (= Cm/T )=�, then the equality becomes �I =�I I

with the discontinuity in its derivative. An equivalent formulation of Clapeyron’s
equation [39] for Ehrenfest third-order transition can be written as:

dT/d H = [(∂�I I /∂ H)T − (∂�I /∂ H)T ]/[(∂�I /∂T )H − (∂�I I /∂T )H ]

In the case of an equal variation of �i (H) on both sides of the transition, i.e.,
(∂�I I /d H) = (∂�I /d H) one extracts that dT/d H = 0. This implies no change of the
transition temperature under field variation as it is observed in Fig. 7 for Y3Ce4Ni3. The
variation of �i (H) on respective sides of the transition are compared in the lower inset
of that figure. Notice that the �I (H) = �I I (H) equality holds up to H = 1.5 Tesla
because above that value the magnetic field induces an incipient ferromagnetic char-
acter. Notice that this compound also fulfills some conditions for magnetic frustration
like a triangular arrangement of its magnetic atoms [40] and a large frustration factor
[3] f = −θ/Tm with f > 30, although crystal field effects may contribute signifi-
cantly to this value. Despite of the scarce available examples of specific heat studies
under pressure, the case of CeAl3 [41] is a good candidate for this analysis because
the anomaly at Tm = 0.35 K is suppressed with 0.38 kbar.

3 Conclusions

The number of Ce- and Yb-lattice compounds showing specific heat anomalies around
1 K, with peculiar but similar temperature dependencies that cannot be associated
to Schottky, spin-glass or 2D-systems anomalies, arises the question about which
type of physics underlies that common behavior. The coincident entropy condensed
into the Cm/T |T >Tm , Sm ≈ 0.7Rln2, resembles that of a geometrically frustrated
spin-ice suggesting frustration as a factor to inhibit magnetic order development at
T > Tm. Crystal structures of many of those systems favor that possibility, particularly
in stoichiometric compounds where disorder should play a minor role.

Such amount of entropy represents a sort of entropy bottleneck produced by a
(power law) divergent growth of the density of magnetic excitations and the constraint
imposed by the limited amount of available degrees of freedom: Rln2. Differently
than in a Spin-Ice scenario, these systems are able to dodge that type of degenerated
ground state by sliding into an alternative minimum of energy through a continuous
transition with characteristics of third order.

The systematic Cm ∝ T 2 dependence observed below Tm can be associated to
a quasi-two-dimensional system. However, a direct determination of the magnetic
structure and its dynamic nature requires of spectroscopic studies. A relevant fea-
ture extracted from this study concerns the possible existence of an upper limit of
Cm/TLimT →0 ≈ 7 J/mol K2. This value was systematically observed in at least four
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Yb- and Pr-based compounds associated to a constant density of magnetic excita-
tions at T → 0. Nevertheless, constant Cm/TLimT →0 does not necessarily imply the
formation of an extremely narrow band like in the possible ground state of CePd3B0.5.
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