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Abstract: Given a positive and unitarily invariant Lagrangian L defined in the algebra
of matrices, and a fixed time interval [0, t0] ⊂ R, we study the action defined in the Lie
group of n × n unitary matrices U(n) by

S(α) =
∫ t0

0
L(α̇(t)) dt,

where α : [0, t0] → U(n) is a rectifiable curve. We prove that the one-parameter sub-
groups of U(n) are the optimal paths, provided the spectrum of the exponent is bounded
by π . Moreover, if L is strictly convex, we prove that one-parameter subgroups are the
unique optimal curves joining given endpoints. Finally, we also study the connection of
these results with unitarily invariant metrics in U(n) as well as angular metrics in the
Grassmann manifold.

1. Introduction

The group of n × n complex unitary matrices U(n) carries, as any Lie group, a canon-
ical connection without torsion defined on left-invariant vector fields X,Y as ∇X Y =
1
2 [X,Y ], whose geodesics are the one-parameter groups t �→ Uet Z (here U is a unitary
matrix and Z an anti-Hermitian matrix). We can introduce a Riemannian metric on the
unitary group in a standard fashion

〈X,Y 〉g = T r(U∗X (U∗Y )∗) = T r(XY ∗),

for U∗ X,U∗Y in the Lie algebra of the group, that is, for U∗ X,U∗Y anti-Hermitian
matrices. It is well-known that the connection just introduced is in fact the Levi-Civita
connection of the metric g induced by the trace, and that geodesics are short provided
the spectrum of Z is bounded by π (see for instance [3]).
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Now consider the bi-invariant Finsler metric given by the spectral norm,

‖X‖U = ‖U∗ X‖ = ‖X‖
for any X tangent to a unitary matrix U . Remarkably, if one keeps the connection
but changes the metric, the geodesics of the connection are still short for the induced
rectifiable distance (which, as in the Riemannian setting, is computed as the infimum of
the length of piecewise smooth curves joining given endpoints, and L(α) = ∫ 1

0 ‖α̇‖dt).
The same result was also proved in [4], using techniques of variational calculus, if the
Finsler metrics are given by the p-Schatten norms for p ≥ 2. This raises a natural
question: what do these norms have in common that could imply this phenomenon? A
possible answer could be that all these norms are unitarily invariant, thus they induce
bi-invariant metrics on the unitary group. One of the main obstacles to dealing with
general unitarily invariant norms, is that variational arguments become intractable if the
norm is not smooth enough.

In this article we prove that this is the right answer, and introduce a new approach
that simplifies considerably the technicalities. It is based on a beautiful and deep result
due to Thompson on the product of exponential matrices (Theorem 1 below).

Our approach also works for more general optimization problems described as fol-
lows: fix a bounded interval [a, b] ⊂ R, and let S be the action defined on piecewise C1

curves α : [a, b] → U(n) by

S(α) =
∫ b

a
L(α̇(t)) dt,

where L is a Lagrangian defined in the algebra of n × n matrices, with the following
unitary invariance property: for every n × n matrix A, and every pair of n × n unitary
matrices U and V

L(U AV ) = L(A). (1)

As usual, it is asked that the Lagrangian is a convex and positive map, and without loss
of generality we will assume that L(0) = 0. A Lagrangian that satisfies these properties
will be called symmetric Lagrangian. Two classical examples of symmetric Lagrangians
are:

– A unitarily invariant norm ‖ · ‖φ ;
– The kinetic energy E(A) = ‖A‖2

F , where ‖ · ‖F denotes the Frobenius norm.

In the first case, we recover the geometric context mentioned above, because the action
S defines the length of α associated to the Finsler structure that considers the norm ‖ ·‖φ
in each tangent space. Note that in this case, S does not depend on the parametrization
of α. So, there is no significant difference between the problem of finding a curve that
minimizes S among all piecewise C1 curves or among all piecewise C1 curves with a
given interval of parameters.

However, in the second example, the action associated to the kinetic energy depends
on the parametrization. Let α : [a, b] → U(n) be a smooth curve. A simple change of
variable shows that, if we take the family of curves αr : [ra, rb] → U(n) defined by
αr (t) = α(t/r), then r �→ S(αr ) is a non-increasing function for r ∈ (0,+∞). The
same phenomenon also holds for any other convex Lagrangian. This suggests that in
order to find a minimum we should fix the length of the interval of parameters. This is
also suggested by considering the example of the energy functional, where the parameter
t should be interpreted as the time parameter.
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As translations of that interval do not change the value of S(α), without loss of
generality we can consider intervals of the form [0, b]. So, the optimization problem
that we will study is the following:

Problem 1. Given U, V ∈ U(n) and b > 0, find the piecewise C1 curves γ : [0, b] →
U(n) such that γ (0) = U , γ (b) = V and γ minimizes the action given by

S(α) =
∫ b

0
L(α̇(t)) dt (2)

where L is a given symmetric Lagrangian.

The second question that arises is whether the minimal paths, when they exist, are
unique or not, or if they are unique modulus a reparametrization of the path. Thus we
will study the following:

Problem 2. Given U, V ∈ U(n), b > 0, and a minimizing function γ : [0, b] → U(n)
with γ (0) = U , γ (b) = V , is this function the unique minimizer of the Lagrangian for
the given endpoints? Is it true that any other minimizing curve with these given endpoints
is just a reparametrization of γ ?

2. Preliminaries

Throughout this paper Mn(C) denotes the algebra of complex n ×n matrices, Gl (n) the
group of all invertible elements of Mn(C), U(n) the group of unitary n×n matrices, and
H(n) the real subalgebra of Hermitian matrices. If T ∈ Mn(C), then ‖T ‖ stands for the
usual spectral norm, | · | indicates the modulus of T , i.e. |T | = √

T ∗T , and tr(T ) denotes
the trace of T . Given A ∈ H(n), λ1 (A) ≥ · · · ≥ λn (A) denotes the eigenvalues of A
arranged in non-increasing way, and given an arbitrary matrix T ∈ Mn(C), s1 (T ) ≥
· · · ≥ sn (T ) denotes the singular values of T , i.e. the eigenvalues of |T |. We will use
λ(A) (resp. s(T )) to denote the vector in R

n consisting of the eigenvalues of A (resp.
the singular values of T ). Finally, given A, B ∈ H(n), by means of A ≤ B we denote
that A is less than or equal to B with respect to the Löwner order.

2.1. Product of exponentials. We begin this subsection with the following remarkable
result:

Theorem 1 (Thompson [17]). Given X,Y ∈ H(n), there exist unitary matrices U and
V such that

ei X eiY = ei(U XU∗+V Y V ∗).

We will use the following corollary of Thompson’s theorem:

Corollary 2. Let X,Y, Z ∈ H(n) be such that ‖Z‖ ≤ π and ei X eiY = ei Z . Then, there
are unitary matrices U and V such that |Z | ≤ |U XU∗ + V Y V ∗|.
Proof. By Thompson’s Theorem it is enough to prove that, if X,Y ∈ H(n), ei X = eiY ,
and ‖X‖ ≤ π , then |X | ≤ |Y |. Let Y = ∑

n∈N
ηn en ⊗ en be a spectral decomposition

of Y . If Λ = {n : eiηn = −1}, then

|X | = π P +
∑
n /∈Λ

|μn| en ⊗ en,
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where P is the spectral projection of X onto the subspace generated by the eigenvectors
associated to ±π , and the eigenvalues μn ∈ (−π, π) satisfy that eiμn = eiηn for every
n /∈ Λ. Clearly PY = Y P and P|X |P ≤ P|Y |P . On the other hand, since |μn| ≤ |ηn|
for every n /∈ Λ, we also obtain that (1 − P)|X |(1 − P) ≤ (1 − P)|Y |(1 − P).

Another result due to Thompson is the following triangle inequality for the modulus
of matrices:

Theorem 3 (Thompson [15,16]). Given A, B ∈ Mn(C), there exist unitaries V and W
such that

|X + Y | ≤ V |X |V ∗ + W |Y |W ∗.

Combining this result with Corollary 2 we get:

Proposition 1. Let m ≥ 2, and consider X, X1, . . . , Xm ∈ H(n) such that ‖X‖ ≤ π

and

ei X = ei X1 · · · ei Xm .

Then, there exist unitary matrices U1, . . . ,Um such that |X | ≤ ∑m
k=1 Uk |Xk |U∗

k .

Proof. For m = 2 it is a direct consequence of Corollary 2 and Theorem 3. Suppose
that the result is proved for m = k. Then, given X, X1, . . . , Xk+1 ∈ H(n) such that
‖X‖ ≤ π , let Y ∈ H(n) be such that ‖Y‖ ≤ π and

eiY = ei X2 · · · ei Xk+1 .

By the inductive hypothesis, there exist unitary matrices V2, . . . , Vk+1 such that

|Y | ≤
k+1∑
j=2

Vj |X j |V ∗
j .

On the other hand, since ei X = ei X1 eiY , by the case n = 2 already proved, there are
unitary matrices U1 and U such that |X | ≤ U1|X1|U∗

1 +U |Y |U∗. If we define U j = U Vj
for j ≥ 2, then we get the desired result.

2.2. The Lagrangians. Let us list in the following proposition several properties of the
symmetric Lagrangian that will be used in the sequel:

Proposition 2. Let L : Mn(C) → [0,∞) be a symmetric Lagrangian, i.e. L is a convex
map with L(0) = 0, and unitarily invariant in the sense of Eq. (1). Then

(P1) L is continuous,
(P2) L(t A) ≤ tL(A) for every t ∈ [0, 1],
(P3) L(A) ≤ L(B) provided 0 ≤ A ≤ B,
(P4) There exists φ : R

n
+ → [0,+∞) such that L(A) = φ(s(A)). This φ is invariant

under rearrangement, positive, convex, with φ(0) = 0 and φ(x) ≤ φ(y) if x, y ∈
R

+
n and xi ≤ yi for i = 1 . . . n.
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Proof. The first property is clear because every convex function in a finite dimensional
vector space is continuous. Also (P2) is a consequence of the convexity and the fact
that L(0) = 0. As L is unitarily invariant, the singular value decomposition implies that
L(A) only depends on the singular values of A. Hence, if x ∈ R

+
n and diag(x) denotes

the n × n diagonal matrix whose diagonal entries correspond to the coordinates of x ,
we can define φ(x) = L(diag(x)); clearly φ(0) = 0, it is non-negative and convex.
Convexity implies that if x, y ∈ R

n
+ and xi ≤ yi for i = 1, . . . , n, then φ(x) ≤ φ(y).

This proves (P4), and (P3) is a direct consequence of it.

Remark 4. Let φ : R
n
+ → [0,+∞) be a rearrangement invariant, positive and convex

function, with φ(0) = 0. Then φ gives place to a symmetric Lagrangian Lφ via the
equation Lφ(A) = φ(s(A)). Note that the natural extension of φ to R

n is strongly Schur
convex, but not necessarily subadditive.

3. Optimality of One Parameter Subgroups

A geodesic segment is a curve t �→ Ueit Z for Z ∈ H(n) and U ∈ U(n). In this section
we prove that the geodesic segments (which are parametrized with constant velocity) are
optimal for Problem 1. Moreover, if L is strictly convex, then we will prove that these
geodesic segments are the unique optimal paths.

3.1. Geodesic segments are short.

Definition 5. A polygonal path is a broken geodesic, that is, a curve P : [0, b] → U(n)
such that there is a partition of the interval [0, b] given by the points 0 = t0 < · · · <
tk = b, Hermitian matrices X1,. . .,Xk with norm less than or equal to π , and U ∈ U(n)
so that

P(t) =
⎧⎨
⎩

Ue
i t

t1
X1 if t ∈ [0, t1]

Uei X1 · · · ei X j−1 e
i

t−t j−1
t j −t j−1

X j
if t ∈ [t j−1, t j ] ( j > 1)

. (3)

Our first step toward the proof of the optimality of the geodesic segments with con-
stant velocity is the following proposition, which proves that segments are better than
polygonal paths.

Proposition 3. Let U ∈ U(n) and V = Uei Z , with Z ∈ H(n) and ‖Z‖ ≤ π . Let

γ : [0, b] → U(n) be the segment γ (t) = Ueit Z
b , and P : [0, b] → U(n) a polygonal

path joining U to V . Then S(P) ≥ S(γ ).
Proof. Let 0 = t0 < · · · < tk = b, and X1,. . .,Xk ∈ H(n) with norm less than or equal
to π , so that P has the form showed in (3) . Then

S(P) =
k∑

j=1

∫ t j

t j−1

L(
Ṗ(t)

)
dt =

k∑
j=1

∫ t j

t j−1

L
(

X j

t j − t j−1

)
dt

=
k∑

j=1

(t j − t j−1)L
(

X j

t j − t j−1

)
(4)
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On the other hand, since ei Z = ei X1 · · · ei Xk and ‖Z‖ ≤ π , by Proposition 1 there exist
unitary matrices U1, . . .Un such that

|Z | ≤
n∑

k=1

Uk |Xk |U∗
k . (5)

Then, joining (4) and (5), and using the properties of L we obtain

S(P) = b
k∑

j=1

(t j − t j−1)

b
L

(
X j

t j − t j−1

)

≥ b L
⎛
⎝1

b

k∑
j=1

U j |X j |U∗
j

⎞
⎠ ≥ b L

( Z

b

)

=
∫ b

0
L

( Z

b

)
dt = S(γ ).

To prove that geodesic segments are optimal paths among all the possible piecewise
C1 curves, we need the following standard approximation result by polygonal paths.

Lemma 6. Let α : [0, b] → U(n) be piecewise smooth. Then for any ε > 0 there is a
polygonal path Pε : [0, b] → U(n) such that for any t ∈ [0, b],

‖P∗
ε (t)Ṗε(t)− α∗(t)α̇(t)‖ < ε.

Proof. We may as well assume that α is smooth in [0, b]. Recall that α, α̇ are continuous
in the uniform norm. Let ε > 0, and choose a partition 0 = t0 < t1 < · · · < tn = b of
the interval [0, b] such that, for any k = 0, 1, . . . , n,

‖α(t)− α(s)‖ < 2 and ‖α∗(t)α̇(t)− α∗(s)α̇(s)‖ < ε

2

if s, t ∈ [tk, tk+1]. The first condition implies that there exist Zk ∈ H(n) such that
‖Zk‖ < π and ei Zk = α∗(tk)α(tk+1). Moreover, if log denotes the principal branch of
the logarithm, then

Zk = log(α∗(tk)α(tk+1)).

Now note that, for any fixed t ∈ [0, b], the map g : h �→ 1
h log(α∗(t)α(t + h)), is

well-defined and analytic, for sufficiently small h. Moreover

g(h) −−−→
h→0

d

ds
logα∗(t)α(t + s)

∣∣∣∣
s=0

= α∗(t)α̇(t).

Then, taking a refinement of the partition if necessary, we can also assume that

‖Zk − α∗(tk)α̇(tk)‖ < ε

2

for any k = 0, 1, 2 . . . , n. Consider the map Pε : [0, b] → U(n) which is defined as

Pε(t) = α(tk)e
t−tk

tk+1−tk
Zk for t ∈ [tk, tk+1].

Then Pε is certainly a polygonal path, and it is straightforward to see that verifies the
claim of the lemma.
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Theorem 7. Let U ∈ U(n) and V = Uei Z , with Z ∈ H(n) and ‖Z‖ ≤ π . Then, the
curve γ (t) = ueit Z/b is optimal among piecewise smooth curves α : [0, b] → U(n)
joining U to V , with respect to the action S defined by a symmetric Lagrangian, and in
particular inf S = bL(Z/b).
Proof. Given ε > 0, let δ > 0 such that ‖X −Y‖ ≤ δ implies that |L(X)−L(Y )| < ε/b
for every X and Y in a ball big enough. Then, let Pδ be a polygonal path in U(n) as in
the previous lemma, joining U to V , such that

‖α̇ − Ṗδ‖ = ‖α∗α̇ − P∗
δ Ṗδ‖ < δ.

Then by Proposition 3,

S(γ ) ≤ S(Pδ) =
∫ b

0
L(Ṗ(t)) dt ≤ ε +

∫ b

0
L(α̇(t)) dt < ε + S(α),

Therefore, S(γ ) ≤ S(α).
Remark 8. If α : [0, b] → U(n) is just rectifiable (that is, differentiable p.p. with α̇(t)
bounded), the approximation by a polygonal path can be carried out with no major
changes, and the proof of the previous theorem shows that in fact, geodesic segments
are optimal among rectifiable arcs joining given endpoints.

3.2. Uniqueness of short paths. Concerning uniqueness, it is clear that the convexity
condition of L should be strengthened.

Let us agree to callLnondegenerate if, given A, B ∈ H(n), the existence ofλ ∈ (0, 1)
such that the inequality of the convexity condition turns into an equality, implies that
there exists s ≥ 0 such that A = s B. In other words, if

L(λA + (1 − λ)B) = λL(A) + (1 − λ)L(B)
for some λ ∈ (0, 1), then A = s B for some s ≥ 0. This is a notion of nondegeneracy
outside lines.

The other notion at play here is the strongest notion of strict convexity of L, which
of course means that if the equality above holds for some λ ∈ (0, 1), then A = B. A
simple example of a strictly convex Lagrangian is the energy functional, given by the
square of the Frobenius norm on H(n).
Remark 9. Note that strict convexity implies nondegeneracy, but the notion of nonde-
generacy is relevant since no linear space norm can be strictly convex. In fact, it is usual
to say that a norm ‖ · ‖ on a linear space is strictly convex when the weaker condition
(nondegeneracy) stated above holds, which due to the homogeneity of the norm amounts
to say that

‖A + B‖ = ‖A‖ + ‖B‖
implies A = s B for some s ≥ 0, and geometrically, is equivalent to the fact that the unit
ball of the normed space has no segments.

We begin with a technical lemma. Recall that if A ∈ H(n), then λ1 (A), . . ., λn (A)
denotes the eigenvalues of A arranged in non-increasing way.
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Lemma 10. Let X,Y, Z ∈ H(n) be such that ei Z = ei X eiY and ‖Z‖ < π . If λk (X) =
rλk (Z) and λk (Y ) = (1 − r)λk (Z) for some r ∈ [0, 1] and every k ∈ {1, . . . , n}, then
X = r Z and Y = (1 − r)Z.

Proof. It is enough to show that Z shares an orthonormal basis of eigenvalues with X
and Y . Let ξ be an unitary eigenvector of Z such that |Z |ξ = ‖Z‖ξ . Consider the unit
sphere Sn−1 ⊂ C

n and the maps α, β : [0, 1] → Sn−1 given by α(t) = eit Z ξ ,

β(t) =
{

e2i t X ξ if t ∈ [0, 1/2]
ei X e2i(t−1/2)Y ξ if t ∈ [1/2, 1] .

In particular, α and β have the same extreme points. A simple computation shows that,
with respect to the natural Riemannian structure, Long(α) = μ and Long(β) ≤ μ. But,
since

α̈(t) = eit Z (−Z 2)ξ = −eit Z |Z |2ξ = −‖Z‖2eit Z ξ = −‖Z‖2α(t)

and Long(α) = ‖Z‖ < π , then α is the unique short geodesic of the sphere Sn−1 joining
ξ with ei Z ξ . So, Graph(α) = Graph(β) and ξ is also an eigenvalue of X and Y . Iterating
this procedure, we can conclude that X , Y and Z share a common orthonormal basis of
eigenvalues.

Theorem 11. Assume that L is strictly convex. Let X,Y ∈ H(n) with norm less or
equal than π , and Z ∈ H(n) such that ‖Z‖ < π and ei Z = ei X eiY . Consider the
geodesic segment γ : [0, b] → U(n) defined by γ (t) = eit Z/b, and the polygonal
P : [0, 1] → U(n)defined by

⎧⎨
⎩

e
i t

t0
X

if t ∈ [0, t0]
ei X e

i
t−t0
b−t0

Y
if t ∈ [t0, b]

.

for some t0 ∈ (0, b). If S(P) = S(γ ) then X = t0
b Z and P = γ .

Proof. By Proposition 1, there exist unitary matrices U and V such that

ei Z = ei(U XU∗+V Y V ∗) and |Z | ≤ |U XU∗ + V Y V ∗|,
and by the computations made in Proposition 3 [Eq. (4)]

S(P) = t0 L
(

X

t0

)
+ (b − t0)L

(
Y

b − t0

)
.

Then, using the properties of L, the hypothesis S(P) = S(γ ) implies that

S(γ ) = S(P) = t0 L
(

X

t0

)
+ (b − t0)L

(
Y

b − t0

)

= b

(
t0
b

L
(

U XU∗

t0

)
+

b − t0
b

L
(

V Y V ∗

b − t0

))

≥ bL
(

U XU∗ + V Y V ∗

b

)
≥ b L

( Z

b

)
= S(γ ).
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On one hand, this implies that Z = U XU∗ + V Y V ∗. Indeed, if W = U XU∗ + V Y V ∗
then |Z | ≤ |W |. But the above chain of identities implies that L(Z) = L(W ), and
(P2) in Proposition 2 implies that |Z | = |W |. Hence, 0 ≤ |Z | = |W | < π . Since
ei Z = ei(U XU∗+V Y V ∗) we get the desired equality. On the other hand, since L is strictly
convex if r = t0/b then

r Z = U XU∗ and (1 − r)Z = V Y V ∗.

Now, by Lemma 10 we obtain that X = U XU∗ and Y = V Y V ∗ which concludes the
proof.

Theorem 12. Assume that L is strictly convex. Let Z ∈ H(n) be such that ‖Z‖ < π .
Then, the geodesic segment δ : [0, b] → U(n) defined by γ (t) = Ueit Z/b is the unique
piecewise C1 curve in U(n) joining U to V = Uei Z , and S(δ) = bL(Z/b).
Proof. Without lost of generality we can assume that U = 1. Suppose that α is any short,
piecewise smooth curve joining 1 to ei Z . Let t0 ∈ (0, 1) and let α(t0) = ei X = ei Z e−iY ,
with ‖Y‖ ≤ π , ‖X‖ ≤ π . Consider the polygonal P : [0, b] → U(n) defined by⎧⎨

⎩
e

i t
t0

X
if t ∈ [0, t0]

ei X e
i

t−t0
b−t0

Y
if t ∈ [t0, b]

.

Then, by Proposition 3 and Theorem 7 applied to each segment,

S(γ ) ≤ S(P) ≤
∫ t0

0
L(α̇) dt +

∫ b

t0
L(α̇) dt = S(α) = S(γ ),

Hence S(γ ) = S(P), and by Theorem 11 we get that X = t0
b Z .

This settles Problem 2 when the Lagrangian is strictly convex: the geodesic segments
are optimal and unique as functions. Regarding the second question of that problem, we
have the following result that settles this problem when the Lagrangian is nondegenerate
(for instance, if L is a strictly convex norm on a linear space, Remark 9): in this case,
geodesic segments are optimal and unique modulo a reparametrization of the path, that
is, they are unique in a geometrical sense.

Theorem 13. Assume that L is nondegenerate. Let Z ∈ H(n) be such that ‖Z‖ < π .
Then, if α : [0, b] → U(n) is an optimal path of the minimization problem given by
L with given endpoints U, V , α must be a reparametrization of the geodesic segment
γ : [0, b] → U(n) defined by γ (t) = Ueit Z/b.

Proof. We assume that U = 1 and V = ei Z . Let t0 ∈ (0, 1) and let α(t0) = ei X =
ei Z e−iY , with ‖Y‖ ≤ π , ‖X‖ ≤ π . Arguing as in the proof of Theorem 11, convexity
of L and minimality of α imply that Z = U XU∗ + V Y V ∗. Now, nondegeneracy of L
implies also that there exists s ≥ 0 such that

U XU∗

t0
= s

V Y V ∗

b − t0
.

Now we take s0 = st0
b−t0

≥ 0 and r = (1 + s0)
−1. Note that r ∈ [0, 1] and also that

r Z = U XU∗, (1 − r)Z = V Y V ∗. Invoking once again Lemma 10, it follows that
X = U XU∗, Y = V Y V ∗. Thus α(t0) = eir Z and then α must be a reparametrization
of the geodesic segment γ .
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Regarding uniqueness of paths when ‖U −V ‖ = 2 (or equivalently, when V = Uei Z

and ‖Z‖ = π ), this property is not expected since taking n = 1, U = 1, V = −1 shows
that there are two geodesic segments in the circumference (= U(1)) joining U, V , and
the situation worsens as n gets bigger.

4. Rectifiable Distances in U(n) and Angular Metrics in the Grassmann Manifold

In this section, we focus in the particular case where L is a unitarily invariant norm.
In that case the action S defines a length of curves and the length of the optimal path
defines a distance in U(n).

4.1. Unitarily invariant norms and symmetric gauge functions. One of the most relevant
properties of the uniform norm of matrices is the following: given two unitary matrices
U and V , then ‖U T V ‖ = ‖T ‖. This property is shared by many other norms defined
in Mn(C).

Definition 14. A norm ‖| · ‖| defined in Mn(C) is called unitarily invariant if for every
matrix T and every pair of unitary matrices U and V it holds that ‖| U T V ‖| = ‖| T ‖| .

As a consequence of the singular value decomposition, ‖| T ‖| = ‖| |T | ‖| , and

‖| T ‖| = ‖T ‖φ = φ(s(T )), (6)

where φ is a symmetric gauge function, that is, a rearrangement invariant norm on R
n ,

and depends only on the moduli of the coordinates of the vectors. The next theorem [5]
will be useful in what follows:

Theorem 15. There is a bijection between symmetric gauge functions φ on R
n, and

unitarily invariant norms ‖ · ‖φ on Mn(C) given by Eq. (6) above.

4.2. Rectifiable metrics in the unitary group. By considering as a Lagrangian a unitarily
invariant norm ‖ · ‖φ , the action S can be interpreted as the length of curves Lφ , and the
rectifiable distance between U, V ∈ U(n) is

dφ(U, V ) = inf
{

Lφ(γ )| γ : [a, b] → U(n) joins U to V in U(n)} ,
where we assume that γ is piecewise smooth.

The function dφ is in fact a distance: reasoning as in [4, Theorem 3.2], it follows that
√

1 − π2

12
dφ(U, V ) ≤ ‖U − V ‖φ ≤ dφ(U, V )

for any U, V ∈ U(n), hence both distances are equivalent and moreover (U(n), dφ) is a
complete metric space. One of the main features of this metric is that it is invariant for
the action of the unitary group U(n), in fact it is a bi-invariant metric

dφ(U V1W,U V2W ) = dφ(V1, V2)

for U,W, V1, V2 ∈ U(n).
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4.2.1. Minimality of one-parameter subgroups As a direct consequence of Theorem 7
and Theorem 13, we obtain the following result, which generalizes [4, Theorem 3.2] for
the p-norms (p ≥ 2), see also [11].

Theorem 16. Let U, V ∈ U(n) and V = Uei Z , with ‖Z‖ ≤ π , Z ∈ H(n). Then, the
curve δ(t) = Ueit Z is shorter than any other piecewise smooth curve γ in U(n) joining
U to V , when we measure them with the norm ‖ · ‖φ . In particular, dφ(U, V ) = ‖Z‖φ .
If ‖U − V ‖ < 1 (equivalently, if ‖Z‖ < π ), then this δ is the unique short path joining
U, V in U(n) provided the norm is strictly convex.

Remark 17. A question related to the uniqueness of geodesics, is if we can ensure that
the points in U(n) are aligned when the distance is additive. That is, if

dφ(U, V ) = dφ(U,W ) + dφ(W, V ).

implies that there exists t0 ∈ [0, 1] and X0 ∈ H(n) with ‖X0‖ ≤ π such that

V = Uei X0 , while W = Ueit0 X0 .

The previous theorem implies this when ‖U −V ‖ < 2. However, the question always
has an affirmative answer (provided the norm is strictly convex), with a simpler proof.

Theorem 18. Assume that the norm ‖ · ‖φ is strictly convex, and let U, V,W ∈ U(n)
be such that

dφ(U, V ) = dφ(U,W ) + dφ(W, V ).

Then U, V,W are aligned in U(n).
Proof. We can assume that U = 1, V = ei Z , W = ei X with X, Z of norm less or equal
than π . Let Y ∈ H(n) such that ‖Y‖ ≤ π and ei Z = ei X eiY . Then the hypothesis is that

‖Z‖φ = ‖X‖φ + ‖Y‖φ.
Consider the smooth path α(t) = eit X eitY . Then α joins the same endpoints that δ(t) =
eit Z in U(n), thus

‖X + Y‖φ = Lφ(α) ≥ Lφ(δ) = ‖Z‖φ = ‖X‖φ + ‖Y‖φ.
Since the norm is strictly convex, there exists λ ≥ 0 such that Y = λX . Pick X0 =
(1 + λ)X and t0 = (1 + λ)−1 to finish the proof.

4.3. The Grassmannian. The Grassmannian Gn is the set of subspaces of C
n , which can

be identified with the set of orthogonal projections in Mn(C). If we consider in Mn(C)

the topology defined by any of all the equivalent norms, the Grassmann space endowed
with the inherited topology becomes a compact set. However, it is not connected. Indeed,
it is enough to consider the trace tr , which is a continuous map defined on the whole
space Mn(C), and restricted to Gn takes only positive integer values. In particular, this
shows that the connected components of Gn are the subsets Gm,n defined as:

Gm,n := {P ∈ Gn : tr(P) = m}.
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Each of these components is a submanifold of Mn(C) [18, p. 129], and connected
components are given by the unitary orbit of a given projection P such that tr(P) = m:

Gm,n = {U PU∗ : U ∈ U(n)}.
The tangent space at a point P ∈ Gm,n can be identified with the subspace of P-
codiagonal Hermitian matrices, i.e.

TPGn = {X ∈ H(n) : X = P X + X P} .
In particular note that TPGn has a natural complement NP , which is the space of Her-
mitian matrices that commute with P , that is, the P-diagonal Hermitian matrices. The
decomposition in diagonal and codiagonal matrices defines a normal bundle, and leads
to a covariant derivative

∇V Γ (P) = ΠTP ||NP

d

dt
Γ (α(t))

∣∣∣∣
t=0

, (7)

where Γ is a vector field along the curve α : (−ε, ε) → Gm,n that satisfies α(0) = P
and α̇(0) = V . So, we have a notion of parallelism, and the geodesics in this sense are
described by the following theorem:

Theorem 19 (Porta-Recht [13]). The unique geodesic at P with direction X is:

γ (t) = e it X Pe −i t X .

As the unitary group acts transitively in these components via U ·P = U PU∗, they are
also homogeneous spaces of U(n). They can be distinguished from other homogeneous
submanifolds of U(n), because the map

P �→ SP = 2P − 1

embeds them in U(n), and the map S is two times an isometry. The images SP are
symmetries, i.e. matrices that satisfy S∗

P = SP = S−1
P .

4.3.1. Finsler metrics on the Grassmannian. For a given symmetric norm, the Grass-
mann space carries the Finsler structure given by

‖X‖P = ‖X‖φ
for X ∈ TPGn , and with this structure, the Grassmann component {U PU∗ : U ∈ U(n)}
is isometric (modulo a factor 2) to the orbit of symmetries {U SPU∗ : U ∈ U(n)}. In
the particular case when ‖ · ‖φ is the Frobenius norm, this connection is the Levi-Civita
connection of the metric, since the P-diagonal matrices are the orthogonal complement
of the P-codiagonal matrices with respect to this Riemannian metric.

A straightforward computation shows that, if X = X P + P X , then ei X SP = SP e−i X .
This simple observation enables to use our results in the unitary group, to prove mini-
mality of geodesics in the Grassmann manifold:

Theorem 20. If P, Q ∈ Gm.n then there exists X ∈ TPGn such that Q = ei X Pe−i X and
‖X‖ ≤ π

2 , unique when ‖P − Q‖ < 1. The geodesic γ (t) = eit X Pe−i t X is shorter than
any rectifiable path in Gn joining P, Q and

dφ(P, Q) = ‖X P − P X‖φ = ‖X‖φ.
If the norm is strictly convex and ‖P − Q‖ < 1, the geodesic is the unique short path
joining P, Q ∈ Gn.

Author's personal copy



Optimal Paths for Symmetric Actions in the Unitary Group

Proof. The existence of X follows from Halmos [8] or Davis and Kahan [7]. Since
e2i X = SQ SP , if ‖Q − P‖ < 1 this X is unique. Since

Sγ (t) = 2γ (t)− 1 = eit X SP e−i t X = e2i t X SP = SP e−2i t X ,

and S is two times an isometry, the minimality of γ follows from Theorem 16,
and the same applies to the uniqueness in the strictly convex case. Finally, Lφ(γ ) =
‖X P − P X‖φ , and on the other hand, since P X P = 0 then

|X P − P X |2 = |X P + P X |2 = |X |2,
thus dφ(P, Q) = Lφ(γ ) = ‖|X P − P X |‖φ = ‖|X |‖φ = ‖X‖φ .

Remark 21. In the situation of the previous theorem, it is not hard to see that if k ∈ Z, then
P X2k = X2k P , P X2k+1 = −P X2k+1. Then P|X | = |X |P = |X P| and (1 − P)|X | =
|X |(1 − P) = |P X |. Moreover

Q = P cos2 X + (1 − P) sin2 X − i

2
P sin 2X +

i

2
(1 − P) sin 2X,

and then |P Q|2 = P Q P = P cos2 X , which leads to |P Q| = P cos X = cos |X P|,
and likewise |Q P| = (1 − P) cos X = cos |P X |. Thus if Y ∈ TpGn is any other matrix
as X , it follows that P cos X = P cos Y or equivalently,

cos |X P| = |P Q| = cos |Y P|.

4.4. The angular metrics. Let X and Y be two m-dimensional subspaces of C
n , and

let PX and PY be the orthogonal projections onto X and Y respectively. The principal
angles between X and Y are the angles θ1(X ,Y), . . . , θm(X ,Y) ∈ [0, π/2) whose
cosines are the m greatest singular values of PX PY , see [9].

In [10] Li, Qiu, and Zhang used the principal angles to define metrics in the compo-
nents of Gm,n . Given a symmetric norm ‖·‖φ , they define for P, Q ∈ Gm,n the following
distance:

ρφ(P, Q) = ‖ arccos |P Q|‖φ.
These distances are called angular metrics, because if φ is the symmetric gauge function
associated to ‖ · ‖φ then

ρφ(P, Q) = φ(θ1(X ,Y), . . . , θm(X ,Y), 0, . . . , 0).

where X = R(P) and Y = R(Q). The definition of these metrics was motivated
not only by pure mathematics but also by engineering applications. For example, in
robust control, a linear time-invariant system can be described by a subspace valued
frequency function, and the description of an uncertain system needs a suitable distance
measure between subspaces. The reader is referred to [10], where other motivations and
applications of these metrics are described.

A legitimate question at this point is if these distances are related to an infinitesimal
structure on the manifold Gn , that is, if the angular distance among P, Q ∈ Gm,n can
be computed as the infima of the lengths of the rectifiable arcs joining P, Q. Note that,
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by Remark 21, if X is as in Theorem 20, then the angular distance among P, Q can be
computed as

ρφ(P, Q) = ‖ arccos |P Q|‖φ = ‖X P‖φ
and this computation does not depend on the particular X . Then, one can be tempted to
endow the Grassmannian with the Finsler metric (i.e. tangent norm) given by ‖X‖P =
‖X P‖φ for X ∈ TPGn . The problem with this definition is that it is not clear how to
extended it to the whole Mn(C) in order to obtain an unitarily invariant norm there.

To this end, it suffices to consider the case m ≤ n/2. Let φ be the symmetric gauge
function associated to ‖ · ‖φ (see Theorem 15), and define ‖ · ‖ψ in the following way:

‖A‖ψ = φ
(
1/2(s1 (A) + s2 (A) , . . . , s2m−1 (A) + s2m (A) , 0, . . . , 0)

)
, (8)

where s1 (A),. . .,sn (A) denotes the singular values of A counted with multiplicity and
ordered in non-increasing way.1 Straightforward computations show that ‖ · ‖ψ is a
symmetric norm, and also that, for any Q ∈ Gm,n and Z ∈ TQGn it holds

‖Q Z‖φ = ‖Z‖ψ.
The following theorem gives the link between the rectifiable distances and the angular

metrics:

Theorem 22 (Davis-Kahan [7]). Let P, Q ∈ Gm,n, and denote X = R(P) and Y =
R(Q). Then, if X ∈ H(n) is P-codiagonal with ‖X‖ ≤ π/2 and Q = ei X Pe−i X , its
spectrum counted with multiplicity is( ± θ1(X ,Y), . . . ,±θm(X ,Y), 0 . . . , 0

)
.

Consider the rectifiable distance dψ associated to the norm given in (8), and take
P, Q, X as in Theorem 20. Then

dψ(P, Q) = ‖X‖ψ = φ

(
1

2
(s1 (X) + s2 (X) , . . . , s2m−1 (X) + s2m (X) , 0, . . . , 0)

)

= φ
(
θ1(X ,Y), . . . , θm(X ,Y), 0 . . . , 0

)
= ρφ(P, Q),

by Theorem 22, and this establishes the following (obtained by Neretin in [12] with
another proof):

Theorem 23. Let ‖ · ‖φ be a symmetric norm, and ρφ its corresponding angular metric
in Gm,n. Then, there exists an induced symmetric norm ‖·‖ψ such that the corresponding
rectifiable distance dψ coincides with ρφ .

Remark 24. In [10, Section 4], the authors prove that when the norm ‖ · ‖φ is strictly
convex, if the distance among P, Q, R ∈ Gm,n is additive, then there exists a direct
rotation from X to Z through Y , where X = R(P),Y = R(Q) and Z = R(R). This
last assertion is equivalent to the notion of being aligned as introduced in Remark 17.
Thus the proof of this fact follows immediately from Theorem 18.
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1 The arithmetic mean can be replaced by any positive mean.
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A. Appendix: Compact Operators

The results of the previous sections can be extended to the infinite dimensional setting
as follows. Let H be a complex separable Hilbert space, B(H) the algebra of bounded
operators with the supremum norm, K(H) the algebra of compact operators, U(H) the
group of unitary operators. Let ‖ · ‖φ : B(H) → R ∪ {∞} be a symmetric norm, that is
a norm such that

‖AX B‖φ ≤ ‖A‖‖X‖φ‖B‖ (9)

for A, X, B ∈ B(H) (both sides can equal ∞). In particular, it is unitarily invariant,
thus it only depends on the singular values of the operator, and as in Theorem 15, there
is a symmetric gauge function φ : R

∞ → R≥0 related to this norm; the relationship is
somewhat subtle so we refer the reader to Simon’s book [14] for full details on these
symmetrically normed ideals.

Let I ⊂ K(H) stand for the ideal of operators with finite norm, which will be assumed
to be complete with respect to its norm, and let Uφ = {u ∈ U(H) : u − 1 ∈ I}. This
is a Banach-Lie group, whose Banach-Lie algebra can be readily identified with the
anti-Hermitian part of I, that we will denote with iIh . A straightforward computation
using the functional calculus and the fact that I is an ideal shows that if ‖Z‖ ≤ π is
self-adjoint and ei Z = U , then Z ∈ I.

A.1. The special unitary groups. The length functional on Uφ is defined accordingly as

Lφ(α) = ∫ 1
0 ‖α̇‖φ , and the distance dφ is defined as the infima of the lengths of curves

in Uφ joining given endpoints; in order to prove minimality of geodesic segments, we
will need the following extension of Thompson’s formula, its proof can be found in
[2, Theorem 3.2]:

Theorem 25. Given X,Y ∈ K(H)h, there is an isometry w ∈ B(H) (w∗w = 1), and
unitary operators U and V such that

ei wXw∗
ei wYw∗ = ei U (wXw∗)U∗+i V (wYw∗)V ∗

.

Theorem 26. Let U, V ∈ Uφ , Z ∈ I such that V = Uei Z and ‖Z‖ ≤ π . Then, the
curve γ (t) = Ueit Z is minimal among rectifiable curves α ⊂ Uφ joining U, V , with
respect to the distance induced by the length Lφ , and dφ(U, V ) = ‖Z‖φ . This curve is
unique if the norm is strictly convex and ‖U − V ‖ < 2 (equivalently, ‖Z‖ < π).

Proof. If Z ∈ I is such that ei Z = ei X eiY and ‖Z‖ ≤ π (where we can assume that
X,Y ∈ I), then eiwZw∗ = eiwXw∗

eiwYw∗
for some isometry w ∈ B(H) by Theorem

25. With the same proof as Corollary 2, we obtain

|wZw∗| ≤ |U (wXw∗)U∗ + i V (wYw∗)V ∗|.
Due to (9), it follows that

‖Z‖φ = ‖w∗wZw∗w‖φ ≤ ‖wZw∗‖φ ≤ ‖X‖φ + ‖Y‖φ
sincew is an isometry thus ‖w‖ = 1. Now the rest of the proof of minimality of segments
follows as in Sect. 3. The uniqueness when the norm is strictly convex can be proved
invoking Theorem 25, and arguing as in the proof of Theorem 13.
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A.2. The restricted Grassmannians. The same considerations hold for the special Grass-
mannian manifold, whose components can be regarded as unitary orbits of self-adjoint
projections P ∈ B(H), with the action of these special unitary groups:

Gφ(P) = {U PU∗ : U ∈ Uφ}.
Since U − 1 ∈ I, then the orbit is contained in the affine space P + I. Then tangent
spaces are identified with

TPGφ(P) = {X ∈ Ih : X P + P X = X}.
A well-known result of Halmos [8] says that if P, Q ∈ B(H) are self-adjoint projections
in generic position, then there exists a P-codiagonal X such that ‖X‖ ≤ π

2 and

Q = ei X Pe−i X . (10)

This may be false in the general case. However, in our setting it is possible to construct
a P-codiagonal X ∈ I such that (10) holds for any P, Q ∈ Gφ , even in the non-generic
case. The reader is referred to [1, Theorems 4.11 and 4.12] where the proof is given
for the ideal of Hilbert-Schmidt operators. That proof can be adapted verbatim to any
symmetrically normed ideal (see also [6, Lemmas 2.13 and 2.14]).

Corollary 27. If P, Q ∈ Gφ(P) then there exists X ∈ TPGφ(P) such that Q =
ei X Pe−i X and ‖X‖ ≤ π

2 , unique when ‖P − Q‖ < 1. The geodesic γ (t) = eit X Pe−i t x

is shorter than any rectifiable path in Gφ(P) joining P, Q and

dφ(P, Q) = ‖X P − P X‖φ = ‖X‖φ.
If the norm is strictly convex and ‖P − Q‖ < 1, the geodesic is the unique short path
joining P, Q ∈ Gφ(P).
Remark 28. When I is the ideal of Hilbert-Schmidt operators, the special Grassmannian
defined above is known as the Sato Grassmannian or the restricted Grassmannian. The
proof of minimality of one-parameter groups in this Riemann-Hilbert setting was given
in [1] with a different technique.
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