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• Analytical expressions for Wigner functions, Husimi functions, and P-ones are obtained.
• The behavior of the concomitant Tsallis entropy is investigated.
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a b s t r a c t

We generate a family of phase space, thermal coherent-state’s representations, within the
framework of Tsallis’ Generalized Statistical Mechanics and study their properties. Our
protagonists are q-gaussian distributions. We obtain analytical expressions for the most
important representations, namely, the P-, Husimi-, and Wigner ones. The behavior of the
associated Tsallis entropy is investigated. It is shown that q-values close to two provide the
best performance.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Quantum phase space distributions (QPSD) constitute a subject of permanent interest, that revolves around coherent
states. QPSD are useful tools because they allow one to evaluate expectation values using quantumphase space distributions
in a manner that resembles the classical one [1]. R.J. Glauber [2] and E.C.G. Sudarshan [3] have introduced the phase
space P-distribution [1]. There are other feasible functions, such as the Husimi–Kano Q -function, which is obtained as the
expectation value of the density operator in a coherent state [4], and the celebrated Wigner distribution, with which the
whole game started in the thirties [5]. The different phase space distributions refer to specific choices of creation–destruction
operators’ ordering. The Q -, Wigner, or P-distributions are associated with antinormal, symmetric, and normal ordering,
respectively [1].

The q-gaussian is a probability distribution emerging from the q-generalization of the central limit theorem and is a
generalization of the ordinary gaussian probability distribution [6]. The usual distribution is recovered in the limit q → 1.
The q-gaussian has been applied to statistical mechanics, geology, anatomy, astronomy, economics, finance, and machine
learning. The distribution is often useful because of its heavy tails in comparison to the gaussian, for 1 < q < 3. In these
heavy tail zones, the distribution is equivalent to the Student’s t-distribution. A q-gaussian form often arises for systems
that are non-extensive.
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The purpose of this work is to generate a family of phase space quantumdistributionswithin the structures of Tsallis’ Sta-
tisticalMechanics [7–9] and investigate their properties and usefulness. For this reason, we employ q-gaussian distributions,
which are useful tools to characterize complex systems including long-range correlations, multifractality and non-gaussian
distributions with asymptotic power law behavior [10].

In order to facilitate comprehension, this paper is organized as follows. In Section 2, we collect some basic concepts
referring to q-gaussian distributions and present its construction in the phase space representation. In Section 3 we review
some notions on P,Q , and Wigner’s representations. With these tools, in Section 4 we suggest a definition of generalized
P-distribution as q-gaussians and we analyze the validity of this proposal. Sections 5 and 6 are devoted to obtain the
generalized Q and Wigner functions, respectively. In Section 7 we calculate the Shannon and Tsallis entropy for the
generalized P-function. Finally, Section 8 is devoted to concluding remarks.

2. Mathematical tools: q-gaussians

The q-gaussian probability distribution function, Gq(δ; x) introduced by Tsallis [6], is the q-generalization of the gaussian
distribution. It reads

Gq(δ; x) = Cq

√
δ

√
π
eq(−δx2), (1)

with q a real parameter and eq(x) standing for the q-exponential function:

eq(x) = [1 + (1 − q)x]
1

1−q
+ , (2)

with the notation [y]+ = max(y, 0) and obviously limq→1 eq(x) = e1(x) = ex. Furthermore, Cq is a normalization constant
that satisfies

C−1
q =

√
δ

√
π


+∞

−∞

dx eq(−δx2), (3)

so that

Cq =

(3 − q)
√
1 − q0


3−q

2(1−q)


20


1

1−q

 : −∞ < q < 1,

Cq = 1 : q = 1,

Cq =

√
q − 10


1

q−1


0


3−q

2(q−1)

 : 1 < q < 3.

(4)

For q = 1, Gq(δ, x) becomes the traditional gaussian distribution

G1(δ; x) =

√
δ

√
π
e−δx2 , δ > 0. (5)

If q < 1, this density vanishes for |x| > 1/
√

(1 − q)δ. For q > 3, normalization is not possible because the associated
integral diverges. Also, for q ≤ 5/3 the variance is finite, and for 5/3 ≤ q < 3, the variance diverges. The aspect of the
q-gaussian distribution is illustrated in Fig. 1.

In two dimensions, the q-gaussian distribution adopts the appearance

Gq(δ; x, y) = C ′

q

√
δx


δy

π
eq(−(δxx2 + δyy2)). (6)

For δx = δy = δ, and ρ =

x2 + y2, Gq becomes

Gq(δ; ρ) = C ′

q
δ

π
eq(−δρ2); (7)

with C ′
q a normalization factor that only depends on q, such that

C ′−1
q = δ


d2ρ

π
eq(−δρ2). (8)

We have found C ′
q = 2 − q for all q < 2-values. Thus, Gq is defined for q < 2, otherwise the integral diverges and the

function cannot be normalized. Finally, we get

Gq(δ; ρ) = (2 − q)
δ

π
eq(−δρ2); q < 2. (9)
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Fig. 1. q-gaussian distribution for some q-values. We take δ = 1.

3. Basic concepts about quantum distributions in phase space

Webegin this sectionwith some comments concerning density operators. For a pure state |α⟩, the corresponding density
operator is

ρ̂ = |α⟩⟨α|. (10)

The most important basis that we will employ in our treatment is that of coherent states |α⟩ [2]. In this sense, it is possible
to cast the density operator in a diagonal manner, i.e., as a superposition of the projection operators (10), provided that an
overcomplete basis is used [3]. This is known as the P-representation [3]

ρ̂ =


d2α

π
P(α) |α⟩⟨α|, (11)

where the function P(α) plays a role analogous to a probability density for the distribution of values of α over the complex
plane. We see that a central role is assigned to the function P . The system evolves as prescribed by the evolution of the
P distribution function. The normalization property of the density operator requires that P(α) obeys the normalization
condition [2]

Tr ρ̂ =


d2α

π
P(α) = 1. (12)

The standard coherent states |α⟩, that we will use, are those of the harmonic oscillator, which are eigenstates of the
annihilation operator â, with complex eigenvalues α, satisfying â|α⟩ = α|α⟩ [2]

|α⟩ = e−|α|
2/2

∞
n=0

αn

√
n!

|n⟩, (13)

where the Fock states {|n⟩} are a complete orthonormal set of eigenstates of the Hamiltonian Ĥ = h̄ω

n̂ + 1/2


, in which

the number operator is n̂ = âĎâ, and whose spectrum of energy is En = (n + 1/2)h̄ω, n = 0, 1, . . . . Also, the states |α⟩ are
normalized, i.e., ⟨α|α⟩ = 1, and they provide us with a resolution of the identity operator

d2α

π
|α⟩⟨α| = 1, (14)

which is a completeness relation for the coherent states [2]. Accordingly, the expectation value of an observable Â in such
representation is given by [11]

⟨Â⟩P = Tr(ρ̂Â) =


d2α

π
P(α) ⟨α|Â|α⟩. (15)

In this context, the average particle-number acquires a simple form that, according to Eq. (11), can be cast in the
fashion [2]

⟨n̂⟩P = Tr(ρ̂âĎâ) =


d2α

π
P(α) |α|

2, (16)

indicating that the average particle number is the mean squared absolute value of α.
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Now, from (11) we can calculate the diagonal matrix elements of ρ̂ by multiplying on the left and right by the Fock state
|n⟩, so that

ρnn = ⟨n|ρ̂|n⟩ =


d2α

π
P(α) |⟨n|α⟩|

2, (17)

or, making use of Eq. (13)

ρnn =
1
n!


d2α

π
P(α) |α|

2n e−|α|
2
, (18)

an important expression that we will use in following section for checking out the validity of our procedure. In addition
to the P-function, there exists an infinite family of alternative distribution functions, but we will concentrate efforts only
on the so-called Q -function, and on the celebrated Wigner’s W -function. For an arbitrary density operator, the connection
between Q -and P- functions is given by [12]

Q (α) =


d2z
π

P(z) e−|z−α|
2
, (19)

and in this case, the antinormal-ordered average of n̂ in the Q -representation is

⟨n̂⟩Q =


d2α

π
Q (α) |α|

2
− 1. (20)

From P we can getW using the transformation [12]

W (α) = 2


d2z
π

P(z) e−2|α−z|2 , (21)

and the mean value of n̂, for symmetric ordered operators, is now [12]

⟨n̂⟩W =


d2α

π
W (α) |α|

2
−

1
2
. (22)

Independently of the representation chosen, the three mean values coincide with the quantum average ⟨n̂⟩ = Tr(ρ̂ n̂), this
is, ⟨n̂⟩ = ⟨n̂⟩P = ⟨n̂⟩Q = ⟨n̂⟩W .

3.1. Thermal state

For a thermal state of harmonic oscillator, for which the density operator is of the form prescribed by the canonical
ensemble’s celebrated distribution, we have [13]

ρ̂ = (1 − e−βh̄ω) e−βh̄ωâĎ â, (23)

where β = 1/kBT and T is the temperature, while the corresponding thermal diagonal elements of ρ̂ read

ρnn = (1 − e−βh̄ω) e−βh̄ωn. (24)

The quantum phase space distributions for this typical density operator are the following gaussian expressions [12]

P(α) =
1

⟨n̂⟩
exp


−

|α|
2

⟨n̂⟩


, for P-functions, (25)

Q (α) =
1

⟨n̂⟩ + 1
exp


−

|α|
2

⟨n̂⟩ + 1


, forQ -functions, (26)

W (α) =
1

⟨n̂⟩ + 1/2
exp


−

|α|
2

⟨n̂⟩ + 1/2


, forW -functions, (27)

while the average particle-number is given by [2]

⟨n̂⟩ =
e−βh̄ω

1 − e−βh̄ω
, (28)

which depends on the temperature T .
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4. Pq-phase space representation

4.1. Pq-escort distribution

We propose here to introduce a possible q-generalization of the phase space probability distribution P(α), that one can
write according to Eq. (9), in phase space variables, as follows:

pq(α) = (2 − q)δ eq(−δ|α|
2), (29)

i.e., the phase space q-gaussian distribution pq(α). The normalization property is
d2α

π
pq(α) = 1, (30)

where for the inverse variance one has δ = 1/⟨n̂⟩ = eβh̄ω
− 1. If we take the limit q → 1 in Eq. (29) we immediately obtain

p1(α) = P(α) = δ e−δ|α|
2
, (31)

which recovers the expression (25).
However, pq(α) is not the only function that goes over to P(α) in the limit in which q tends to unity. Any q-escort

distribution of pq(α) shares this property, as we will show next. Let us formally introduce now the escort distribution of
order q associated to the basic distribution pq(α) [14]

Pq(α) =
pq(α)q d2α
π

pq(α)q
, (32)

so that Eq. (29) yields

Pq(α) = δ eq(−δ|α|
2)q, (33)

provided δ > 0, for all temperatures T and q > 1. In addition, the inverse q-variance of the distribution Pq is by definition

σ−1
q =


d2α

π
Pq(α) |α|

2, (34)

so that performing the pertinent integral we get

σ−1
q =

1
(2 − q)δ

, (35)

with the condition that 1 < q < 2 and δ > 0. Thus, Pq(α), in terms of σq, can be also written as

Pq(α) =
σq

(2 − q)
eq


−

σq |α|
2

(2 − q)

q

. (36)

When q goes to unity, σ1 = δ and then P1(α) = P(α), as anticipated at the beginning of this section.

4.2. Generalized density operator

We pass now to generalize Eq. (11) by proposing a certain q-dependent density operator ρ̂q that we suppose admits the
following diagonal coherent state representation

ρ̂q =


d2α

π
Pq(α) |α⟩⟨α|. (37)

Note that (37) reduces to (11) when q tends to unity, since ρ̂1 = ρ̂ and P1(α) = P(α). With the aim of checking the validity
of (37), we evaluate the matrix elements of the density operator ρ̂q in the basis {|n⟩}. One has to satisfy

ρ(q)
nn = ⟨n|ρ̂q|n⟩ =


d2α

π
Pq(α) |⟨n|α⟩|

2. (38)

By using Eqs. (13) and (33) one has then to tackle

ρ(q)
nn = ⟨n|ρ̂|n⟩ =

δ

n!


d2α

π
eq(−δ|α|

2)q e−|α|
2
|α|

2n. (39)
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Fig. 2. ρ
(q)
nn in terms of temperature T for q = 1.00 (red), q = 1.20, 1.40, 1.60, and 1.80, (black). We take n = 0, 1, 2 (left) and n = 3, 4, 5 (right). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In order to deal with the above integral, we appeal to an integral representation [15], based on the definition of the Euler
Gamma function. This is

∞

0
dt tν−1 e−tη

= η−ν 0(ν), (40)

for ℜ(η) > 0 and ℜ(ν) > 0 (see for instance Ref. [16, p. 342]). In our case we need to write

gq q/(1−q)
=

1

0


q

q−1

 
∞

0
dt t

q
q−1 −1 e−tgq , (41)

with the restrictions that (i) gq = (1−(1−q)x)1/(1−q) be positive and (ii) q > 1 [17]. Introducing the integral representation
into Eq. (39) one arrives at

ρ(q)
nn =

δ

n! 0


q
q−1

 
∞

0
dt tde−t


d2α

π
|α|

2n e−γq(t)|α|
2
, (42)

with

d =
1

q − 1
, (43)

and

γq(t) = 1 − (1 − q)δt. (44)

The solution of the integral in the above expression is
d2α

π
|α|

2n e−γq(t)|α|
2

= 0(n + 1) γq(t)−1−n, (45)

with 0(n + 1) = n!. Substituting (45) into (42), we arrive at the equation we are interested in

ρ(q)
nn =

δ

0


q

q−1

 
∞

0
dt γq(t)−1−n tde−t , (46)

with the restrictions 1 < q < 2 and δ > 0. Eq. (46) complies with the normalization condition Trρ̂q =


n ρ
(q)
nn = 1. The

formal solution of (46) is

ρ(q)
nn = δ [(q − 1)δ]q/(1−q) U


q

q − 1
;

q
q − 1

− n;
1

(q − 1)δ


, (47)

where U(a; b; z) is the confluent hypergeometric function of the second kind or also, in an alternative notation,
1F1(a; b; z) [18]. Illustrative examples of the diagonal matrix elements of ρ̂q, as a function of temperature T for several
values of n and the parameter q, are given in Figs. 2 and 3.

4.3. Remarks on the hypergeometric functions

Special functions play an important role in mathematical physics, being generally employed to simplify the original
problem by transforming its mathematical description from a rather involved form into a much simpler one. The physical
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Fig. 3. ρ
(q)
nn as a function of n, for q = 1.00 (red), 1.40 and 1.80 (black circles). We take T = 1 (left) and T = 5 (right). Units employed correspond to

h̄ω/kB = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

stage is thereby made more transparent and the solutions of the simplified problem tractable, with their most relevant
qualitative features represented in terms of the pertinent parameters. Indeed, a large amount of basic research is available
that studies the differential equations obeyed by special functions. Emphasis is placed on connections with problems
emerging in all kinds of physical theories.

The hypergeometric and confluent hypergeometric functions (h.f. and c.h.f. respectively) are of special great interest, be-
ing used with regard to almost all the solutions of exactly solvable problems in quantum mechanics. As examples one may
cite those solutions related to the linear and p-dimensional harmonic oscillator, hydrogen-like, Pöschl–Teller,Woods–Saxon,
Hulthen,Morse, Eckart, and Scarf potentials, amongst others. In these circumstances, the standardmechanism takes into ac-
count appropriate transformations of the concomitant variables and functions from the Schrödinger into an hypergeometric
or confluent hypergeometric equation (h.e. and c.h.e. for the last two respectively) [19,20].

4.4. Mean value of n̂

We generalize the mean value of n̂ given by Eq. (16) as follows:

⟨n̂⟩q =


d2α

π
Pq(α) |α|

2, (48)

so that in the limit q → 1 we recover ⟨n̂⟩1 = ⟨n̂⟩. Replacing Pq given by (33) into Eq. (48) we then find

⟨n̂⟩q = σ−1
q =

1
δ(2 − q)

, (49)

provided that 1 < q < 2 and δ > 0. Further, the quantum mean value of the particle-number n̂ is defined as

⟨n̂⟩q = Tr(ρ̂q n̂) =


n

n ρ(q)
nn =

1
δ(2 − q)

, (50)

where we have used the fact that
∞
n=0

n
[1 − (1 − q)δt]1+n

=
1

δ2(q − 1)2t2
, (51)

together with the definition of the Euler Gamma function (40), and the Gamma function’s relation 0[n] = (n − 1)0[n − 1]
for all positive integers n. One arrives at the identity

0


2−q
q−1


0


q

q−1

 =
(q − 1)2

2 − q
, (52)

that we use to demonstrate (50). Therefore, via Eqs. (50) and (53), one is in a position to assert that

⟨n̂⟩q = Tr(ρ̂q n̂) =


d2α

π
Pq(α) |α|

2. (53)

Hence, by inspection of Eqs. (36) and (49), we note that Pq(α) can also be rewritten as

Pq(α) =
1

(2 − q)⟨n̂⟩q
eq


−

|α|
2

(2 − q)⟨n̂⟩q

q

, (54)

which is an obvious generalization of Eq. (25). If q tends to unity, then ⟨n̂⟩1 = ⟨n̂⟩ = 1/δ. We illustrate in Fig. 4 the behavior
of ⟨n̂⟩q in terms of the temperature, for different values of the parameter q. In the next section, we are going to calculate the
associated Qq-phase space function.
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Fig. 4. ⟨n̂⟩q as a function of T for q = 1.00 (red), 1.20, 1.40, 1.60, 1.80 (black). Units employed correspond to h̄ω/kB = 1. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

5. Qq-phase space representation

From Eq. (37), it is possible to obtain the relationship between Qq and Pq with the help of the overlap between the states
|α⟩ and |z⟩, given by |⟨α|z⟩|2 = exp(−|z − α|

2), with |z − α|
2

= |z|2 + |α|
2
− α∗z − z∗α. One has

Qq(α) =


d2z
π

Pq(z) e−|z−α|
2
, (55)

that we baptize as the q-function Qq(α). In the limit q → 1 we recover the usual expression, where Q1(α) = Q (α) and
P1(α) = P(α). Introducing the escort distribution (33) into (55), we immediately find

Qq(α) = δ


d2z
π

eq(−δ|z|2)q e−|z−α|
2
. (56)

By recourse to the integral representation (41), and integrating on the variable z with the help of
d2z
π

e−γq(t)|z|2 ezα
∗
+z∗α

= γq(t)−1 eγq(t)−1
|α|

2
, (57)

we finally get the q-function, whose form is

Qq(α) =
δ

0


q

q−1

 
∞

0
dt γq(t)−1 td e−t e

−
γq(t)−1
γq(t) |α|

2
, (58)

where we remember that γq(t) was defined previously in Eq. (44). It is easy to check that this q-function is normalized in
accordance with

d2α

π
Qq(α) = 1. (59)

The mean value of n̂ (antinormal-ordered average) is given by (20), so that, inserting (58) into (20) we again find that

⟨n̂⟩q =
1

δ(2 − q)
, (60)

where we have made use to the integral
∞

0
dt γq(t) td−2e−t

= (1 + (d − 1)δ(q − 1)) 0(d − 1), (61)

together with the relationships (52) and (57).

6. Wq-phase space representation

TheWq-function can be obtained from the Pq-function from the generalized relation [12]

Wq(α) = 2


d2z
π

Pq(z) e−2|α−z|2 , (62)
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Fig. 5. Pq distribution (left), Qq distribution (center) and Wq distribution for q = 1.00 (red), 1.20, 1.40, 1.60 and 1.80 (black). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

that recovers its usual form (21) when q → 1. Following the same procedure as in the previous section we reach

Wq(α) =
2δ

0


q

q−1

 
∞

0
dt (1 + γq(t))−1 td e−t e

−
2(γq(t)−1)
1+γq(t) |α|

2
, (63)

with γq(t) defined in expression (44). The mean value of n̂ for symmetric ordered operators (whose form is given by (22))
is found as in the previous sections. Thus, inserting (63) into (22) we obtain

⟨n̂⟩q =
1

δ(2 − q)
, (64)

which is seen to be the same result for our three representations, that coincide with the quantum average as well. In Fig. 5
we appreciate the behavior of the Pq,Qq, andWq distributions as a function of |α|, for several values of q.

7. Entropy in phase space

7.1. Shannon entropy

For a continuous probability distribution function f (x), the Shannon entropy is [21]

S1[f ] = −


∞

−∞

f (x) ln f (x)dx. (65)

In the case of the 2-D PDF Pq(α), Eq. (29), the entropy becomes

S1[Pq(α)] = −


d2α

π
Pq(α) ln Pq(α). (66)

One finds analytically that

S1[Pq] = q − ln(δ), (67)

which depends on T through δ = 1/⟨n̂⟩ = eβh̄ω
− 1. We appreciate the fact that the critical temperature at which the

entropy becomes negative decreases when q increases (see Fig. 6). Since, ideally, one would wish Tc = 0, one could speak
of a certain superiority of the q-generalized phase space distribution over the ordinary one (at q = 1).

7.2. Tsallis entropy

The Tsallis entropy is a generalization of the standard Boltzmann–Gibbs entropy. It was introduced in 1988 by
Constantino Tsallis [7–9], in the form (for a continuous probability distribution function f (x))

Sκ =
1

κ − 1


1 −


dx f (x)κ


, (68)

where f (x) is a probability density function and κ any real number. In the limit κ → 1 one recovers the Shannon S1 entropy.
The analysis of the properties of Tsallis entropy for escort distributions has been exhaustively performed, for one variable,
in Ref. [22].
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Fig. 6. S1[Pq] vs. T , for q = 1.00 (red) and q = 1.20, 1.40, 1.60, and 1.80 (black). Units employed correspond to h̄ω/kB = 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Sκ (Pq) vs. T for κ = 0.50 (left) and κ = 1.50 (right). Black lines correspond to q = 1.00, 1.20, 1.40, and 1.60. Units employed correspond to
h̄ω/kB = 1. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Here we are interested in a Tsallis’s entropy expressed in phase space variables. One has

Sκ [Pq] =
1

κ − 1


1 −


d2α

π
Pq(α)κ


, (69)

where κ denotes a real parameter. Integrating over all phase space, we obtain

Sκ [Pq] =
1

κ − 1


1 −

δκ−1

1 + q(κ − 1)


, (70)

with κ > q − 1 and q > 1. We can see in Fig. 7, that the smaller the κ is, the lower the critical temperature. Thus, Tsallis
entropy Sκ with κ < 1 allows for a wider range of temperatures with positive entropy than Shannon’s one.

We note that the entropy Sκ ≥ 0, whenever T ≥ Tc , where the critical temperature is

Tc =
h̄ω/kB

ln[1 + eκ(q)]
; κ ≠ 1, (71)

and

Tc =
h̄ω/kB

ln(1 + eq)
; κ = 1. (72)

We can see how the quantity Tc depends on both q and κ in Fig. 8.

8. Conclusions

In this paper we have studied a possible generalization of quantum distributions in phase space to a nonextensive
scenario by proposing, as a first step in such a direction, a q-gaussian distribution as a feasible P-function, that we call Pq.
Thus, instead of the P-function for the harmonic oscillator for a thermal state we have a q-gaussian function Pq for a system
that reduces to the harmonic oscillator when the parameter q tends to unity. There is a whole family of q-distributions that
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Fig. 8. Tc vs. q for κ = 0.50, 1.00 and 1.50. Units employed correspond to h̄ω/kB = 1.

tend to P(α) in this limit, whose members are the well-known escort distributions of order q. The range of validity of this
formulation es 1 < q < 2. This generalized function Pq, which is analytically tractable, allows us to calculate the other two
generalized quantum distributions, Qq-andWq-functions, respectively, by means of transformations frequently used in this
kind of approach.

Our results are expressed in terms of confluent hypergeometric functions, frequent in diverse areas of theoretical physics.
A connection between these functions and a Tsallis environment is reported in Ref. [23].

In addition, we have shown that the definition of Pq is consistent with the associated diagonal representation of the
generalized density operator ρ̂q. Furthermore, we also noted that our three distributions do lead to the correct quantum
average of the particle number operator.

Finally, we have calculated the entropy for an escort distribution in phase space, discovering that the entropy is negative
if the temperature is smaller than a critical value. This last quantity depends on the parameter q and reaches its minimum
value for q approaching the value 2, and the corresponding maximum at q = 1. Nonextensive entropy exhibits, in a way of
speaking, ‘‘larger positivity regions’’ when the parameter κ decreases.

Our approach sheds new light on possible future applications to statistical nonextensive systems.
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