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The kernel partial least squares (KPLS) method was originally focused on soft-sensor calibration for predicting
online quality attributes. In this work, an analysis of the KPLS-based modeling technique and its application to
non-linear process monitoring are presented. To this effect, the measurement decomposition, the development
of new specific statistics acting on non-overlapped domains, and the contribution analysis are addressed for pur-
poses of fault detection, diagnosis, and prediction risk assessment. Some practical insights for synthesizing the
models are also given, which are related to an appropriate order selection and the adoption of the kernel function
parameter. A proper combination of scaled statistics allows the definition of an efficient detection index for
monitoring a non-linear process. The effectiveness of the proposed methods is confirmed by using simulation

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The design of monitoring systems for supervising the operation of
industrial processes has acquired great relevance in the last decade.
This fact is essentially due to the need of more demanding operating
conditions related to security for equipments and personnel, operating
costs, and environmental restrictions. Furthermore, the increasing com-
plexity observed in the interactions between energy — and mass —
transfer processes, and their corresponding control policies, require
more sophisticated monitoring systems in aspects such as detection
rate, robustness, user friendliness, easiness of understanding, modeling
and data storage requirements, and adaptability, among others [1,2].

The multivariate statistical process monitoring is a well-known
research topic where several strategies based on projection to latent
structures have successfully been developed. Moreover, they are of
great interest in industrial applications because of their excellent prop-
erties for handling noisy and highly correlated measurements, and large
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data sets [2-4]. Some of these approaches are summarized in [4-10]
where the principal component analysis (PCA), independent component
analysis (ICA), and partial least squares regression (PLSR) methodologies
were addressed. There are also several modifications to these tools
for including issues such as dynamics, adaptation, and non-linearity
[2,8,11-16].

In this work, a non-linear version of the partial least squares (PLS)
approach — called kernel PLS (KPLS) — is addressed. KPLS is a powerful
statistical tool for obtaining multivariate non-linear relationships from
historical data. In fact, it is a non-linear regression method that com-
putes the regression coefficients in a high-dimensional space; the
input data are mapped via non-linear functions in this space and then
they are linearly related to the measured outputs. Hence, the KPLS
approach represents a suitable methodology for predicting online un-
measured quality variables in complex non-linear processes. The overall
procedure relies on classic linear algebra, similar to the linear projection
methods, and the non-linearity degree is mainly given by the selected
kernel function associated to the mapping functions [17]. Ever since
the KPLS approach appeared, some modifications as well as applications
have been published in the process monitoring area. For example, a
kernel-based PLS system linked to orthogonal signal correction has
been proposed for data preprocessing and prediction purposes [12];
and a modified PLS method of independent component regression has
been used for complex processes monitoring [8]. An application of
non-linear multivariate quality prediction based on KPLS has also been
presented [14]. In this context, new publications addressing the fault
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detection tasks based on KPLS have also appeared [18,19]. In the last
decade, KPLS or variants thereof have been applied for composition
analysis of agricultural materials [20] and foods [21], process analysis
[22], determination of structure—activity relationships [23], studies on
drug metabolism [24], and quality-related monitoring [25], among
others.

KPLS method, as well as other kernel based modeling methods [26],
is often used as a black box approach. However, in contrast to kernel
PCA (KPCA) [11,16], KPLS is able to properly determine the predictive
importance of each input variable onto the final regression model.
This result can then be used for reducing the number of inputs
and therefore the complexity of the model. For instance, Postma et al.
[27] propose a method based on the principle of pseudo-sampled trajec-
tories (representing the original variables) that help visualize and de-
termine the most important variables for regression purposes. This
method is able to detect poor predictor variables, providing the chance
for improving the KPLS structure by eliminating interfering variables
from the pre-selected inputs. The advantage of the KPLS modeling lays
in the fact that only the outputs of interest are chosen, while the inputs
are determined by their predictive importance, thus limiting the group
of variables to be monitored.

The main objective of this article is to provide a deep analysis of the
KPLS-based modeling technique and its application to non-linear pro-
cess monitoring. Initially, the classic KPLS modeling is here extended
by adding the projections of the outputs onto the latent space. The
underlying structure of the KPLS modeling is highlighted in order to
describe the functional relationships between the spaces induced by
the KPLS procedure. Moreover, some practical insights are given for
the proper selection of the number of latent variables and for setting
the kernel function parameter. In fact, the latent space dimension is
here defined by using a new balanced index designed to efficiently
quantify the squared prediction error in both the input and output
spaces. This approach is compared with the standard output prediction
error via the Wold's R criterion [ 7,14]. To deal with non-linear processes,
the kernel method is first embedded into the PLS algorithm. Then, new
specific statistics (that act on non-overlapped domains) are combined
into a single index able to detect process anomalies. Finally, the statistics
pattern is used for diagnosing faults or process anomalies. In this regard,
the present monitoring technique of non-linear processes is an exten-
sion of our PLS-based strategy originally developed for monitoring
linear processes [28]. Besides, contribution plots are frequently used to
isolate the detected faulty variables without using historical fault
patterns [26,29]. However, it is difficult to build a contribution plot for
a kernel based model [29]. In this paper, a new contribution plot
based on the KPLS model is proposed for identifying faulty variables.
The proposed supervision approach puts together the abnormal event
detection, the diagnosis, and the isolation in a single method. Besides,
a risk assessment index is also developed for online quantification of
the predictive capabilities of the KPLS inferential model. The effective-
ness of the proposed method is tested through simulated examples
taken from the literature.

The article is organized as follows: Section 2 presents the basic back-
ground of the KPLS regression. Some details about the KPLS-based
modeling approach are given in Section 3. The main contributions of
this work are presented in Sections 4 and 5, where we analyze the
KPLS model calibration (Section 4), the process monitoring and the
statistics for fault detection (Section 5.1), the diagnosis method through
the pattern of statistics (Section 5.2), the fault isolation via a contribution
analysis (Section 5.3), and the prediction risk assessment (Section 5.4).
Section 6 summarizes the simulation results and the overall conclusions
are given in Section 7.

2. Basic concepts on KPLS

Consider a process with m measured input variables plus p measured
output variables which are arranged in the vectors X = [X; ... X;,]" and

y = [y1 ... yp|’, respectively. Assume that N measurements of each vari-
able are collected while the process is operating under normal conditions.
In order to build a KPLS regression model, let us consider the calibration
data set consisting of N centered and scaled samples for the input vector
(predictor), i.e., {x; = R™}}_ 1, and the corresponding centered and scaled
samples for the response vector, {y; € RP}*_ ;.

The key idea of the KPLS approach is to map the input data x; € R™ to
a high-dimensional space R® that corresponds to a reproducing kernel
Hilbert space, where the non-linear structure in the input space is
more likely to be linear, and thus a linear PLSR can be applied [17].
The non-linear mapping is not implemented through an explicit
function, ¢(*) : R™ — R, instead a kernel function k(-,") is proposed
for computing the following inner products,

k(xj,xr):go(xj),(p(x,), with j=1,...,N ,...,N. (1)

Thus, by replacing each inner product ©(x;)'¢(x,) with k(xj, X;), both
the explicit non-linear mapping and the inner product computation can
be avoided [17]. The kernel function k(-,*) cannot arbitrarily be selected,
but it must satisfy the Mercer's theorem conditions [17]. A specific
choice of the kernel function implicitly determines the associated map-
ping ¢(+) and the space R€. Note that the dimension ¢ may be arbitrarily
large and can even be infinite.

The KPLS approach only uses the inner product values for

performing the non-linear regression. From Eq. (1) the so-called Gram
kernel matrix, K € RN * N, can be obtained:

K=0®, with ®=[o(X),...,0(xy)] SRV 2)

Similar to PLSR, the non-linear KPLS model includes zero-mean
variables. The mapped input vectors ¢(x;) are centered as follows:

o(x)) = o(x)) e 3)

where e is a column vector with all its entries equal to 1 /N [17]. In this
way, ® = [@(X;),...,0(Xy)]" is the centered version of ®. Now the
centered Gram kernel matrix is given by

K=® & = I-EK(I-E) (4)

where E is a (N x N) matrix with all its entries equal to 1 /N [17] and
E(xj,xr) = (E(xj),(o(xr) is the element (j,r) of K.

From the centered data matrices K and Y = [y, ..., yn|’, a KPLS
calibration algorithm can be developed by modifying the steps of the
NIPALS algorithm [17] as shown in Algorithm 1. Specific details about
the parameter setting for the kernel function and the optimal selection
of the number of latent variables, A, are given in Section 4.

The prediction of the response variables by using the calibration data
is given by [17]:

Y = By = PU(TKU) 'TY =KU(TKU) 'TY=TTY=TC (5)

where the matrices T = [ty, ..., t4] and U = [uy, ..., u,] are orthonormal
by columns. Note that, although the regression coefficients matrix Bp;s
might exist (for @ (.) € R® when ¢ # ), the KPLS algorithm does not
calculate these values explicitly, i.e. the kernel substitution avoids this
evaluation.

Eq. (5) shows that the response variables (outputs) can be obtained
from the inner products of the mapped vectors. Hence, for a new obser-
vation x of the predictor vector, the outputs are estimated by

Y =Bps®(x) = YT {U(T’RU) “] 'K(x) = CVK(x) (6)
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where k(x) = {T((xl,x), ...,E(xN,x)]l is the vector of centered kernel
functions evaluated in the pairs (x;x) forj = 1, ..., N. Note that matrices,
T, C, and V are outputs of the KPLS algorithm.

From Egs. (4) and (3) the following relationships can be defined,

K(x) = ®B(x) = (I—E)(k(x)—Ke) = k(x)—Ke—EKk(x) + EKe (7)

where Kk(x) is the vector of non-centered kernel functions and is defined
analogously to k(x).

Let us consider the latent vector structure. From Egs. (5) and (6), it is
obtained,

!

t =t;,....t] =0X)R=K XV, with V=v,,...v,] (8)

where R = ®'U(TKU) ' = [ry,...
Eq. (5)) with its components given by r, = ZL a@(xj>, with o € R.

,1,] is the PLS weight matrix (see

Each latent variable can be estimated independently (i.e. t, = K (X)v, in
Eq. (8)), thus the prediction is computed as,

y=Ct with C=]cy,...,Cal. 9)
Note that, given a new observation x with absolute units the predic-
tion also can be written as,

y=D,cVk(D (x—X)) +¥ (10)

estimated standard deviations for predictor and response variables, re-
spectively. On the other hand,Xandy are the corresponding mean values.

3. Modeling based on KPLS

This section presents a KPLS-based extension of the PLSR modeling
described in Godoy et al. [28], where three different residues are

defined. The first residue ?1 represents the internal model error and

the other two (® and ?2) are associated to the external model error as
detailed below. The KPLS algorithm induces both an internal and an ex-
ternal model. By analogy of KPLS with PLSR [28], it is assumed here that
there is an internal linear relationship between t, and u,. Furthermore,
since the KPLS algorithm scales these score-vectors to unit norm, the
following internal model can be obtained,

U=T+U. (11)

Algorithm 1. KPLS training via NIPALS steps

Data: centered matrices K, Y = Vi, V)
Result: T, U, C,V = U(T'KU)

. Seta= 1,K1 :K,Y1 =Y;

2. Initialize the score-vector u, (N x 1) of the latent variable u, of Y, as
the maximum-variance column of Y;

3. Compute the score-vector t, (N x 1) of the latent variable t, of &y, as:
to = Koug/| Ko |, (It = 1;

4. Regress the columns of Y, on t,: ¢, = Y,/t,, where ¢, is a weighting
vector;

5. Calculate the new score-vector: u, = Yq€./||YoCdl|, [lug]| = 1;

6. Repeat the steps 2 to 4 until the convergence of t,;

7. Deflate the matrices: Ky = (I—tqt,) Ko (I—t.t;) and Y1 = Yo—tq
t, Yo,

8. Save data in matrices: T < t, U < u,, C < ¢g;

9. Seta = a + 1 and return to step 2. Stop when a > A, being A the

selected number of latent variables.

-

where the a-th column of U represents the t, — u, regression residuals.
The induced external model decomposes ® and Y into latent vari-

ables and residual matrices (% and Y,), via the following expressions:

D=TP +, (12)

Y =UC +Y,, (13)

where P = ®'T = ®'KV and C = YKV. For new ® and Y matrices, by
means of R = (P’)” and D = (C’)~ where (-)~ denote the pseudo in-
verse operator (i.e. PPR = I and C'D = I), the predictions of T and U
can be represented as follows,

T = TR, (14)

U=YD, (15)

since the row space of ® (?2) belongs to the null space of R (D), then
®R=0 (?ZD = 0). By means of kernel substitution in Eq. (14), the
prediction of T also is given by T =KV. Note that, the external
model in Eqs. (12) and (13) relates latent variables with responses
and mapped inputs. On the other hand, the internal model in
Eq. (11) links latent variables only. By combining both models, a pre-
diction model based on kernel is obtained as shown in Eq. (16).

Y=KVC +UC +Y, =Y+Y, +Y,, (16)

where Y, = Y=—YDC and Y, = YDC'—Y are the projection and trans-
formation error matrices, respectively. It is particularly noteworthy
that the KPLS algorithm does not compute the matrices R and P,
which would be computationally troublesome for typically high-
values of c. Summarizing, the internal model is represented by
Eq. (11), the external relationships are displayed in Eqs. (12) and
(13), and finally the non-linear regression model is shown in
Eq. (16).

3.1. Underlying decompositions

After synthesizing an “in-control” KPLS model, the measured vectors
©(x) and y can implicitly be decomposed in their projections (following
the PLSR decomposition presented in [28]), as described bellow. Note
that given a new mapped vector ¢(x) the following theoretical decom-
positions would be valid:
(X) = X) +o(x), R
(x) = PR@(X) =Pt, <W,, =Span{P}cR" (17)
(X) = (1—PR')¢>(x), EW, = Span{R}*cR®

c

GGG

where PR’ (I — PR’) is the projector on the model subspace Wy, (Wx)
along the residual subspace Wy (Wy,). Here, (-)* represents the orthog-
onal complement. The oblique projections in Eq. (17) decompose the
high-dimensional space R in two complementary subspaces W), and
Wk [28].

On the other hand, generalizing the results presented in [28], the
response space can be decomposed (via KPLS) in two complementary
oblique subspaces as shown in Eq. (18),

Vv p
y=yY+V¥,. ER
v ,
y=CDy,

y, = (I-CD)y,

ESyy = Span{C}cR” (18)

ESgy = Span{D}* cR”
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P(x =(1-PR)B(x)

Fig. 1. Underlying KPLS-decomposition of the input space and its relation to output subspace together with control zones.

where S,y and Sgy denote the model subspace and residual subspace of
RP, respectively.
The model subspaces, W), and Syy, are related via Eq. (19) as follows,

y=Y+¥i, B € Swy
y = CR'@(x) = CV'k(x), € Syy (19)
¥y, = (D'y—CV'k(x), € Swy

wherey; is the linear transformation error (f)(x) —yandy represents the

predictable part of y from (f)(x).

Fig. 1 shows the underlying decomposition in the KPLS procedure.
The gray areas represent the so-called “in-control” or “normal operating”
zones. The functional relationships among several spaces are shown in
this figure, i.e,, the links among input, high-dimensional, model, residual,
and output spaces.

4. Calibration of the KPLS model

There are two main issues in any kernel-based latent structure
approach: 1) the selection of the kernel function and its parameters,
and 2) the determination of the latent space dimension (number of
latent variables). Both decisions play a significant influence in the
KPLS model performance for prediction as well as monitoring purposes.
In this section, we select the kernel function and propose a method to fit
its parameters, and then we define how to determine the number of
latent variables.

A specific kernel function implicitly defines the mapping ¢ and fea-
tures the high-dimensional space. Moreover, the monitoring character-
istics are strongly influenced by the parameter settings of the selected
kernel function, as shown in [15] for KPCA. Similarly, in KPLS these pa-
rameters determine the ability for detecting and identifying abnormal
situations from the measurements [30]. How to select the proper kernel
function for a specific application is still an open problem, however the
most used kernel function is the Gaussian k(x;, X) = exp(—||x; — x|[*/h)
[26], which we use in our implementations. This suitable choice is
driven by the observation that most functions can be approximated
fairly well by a sum of Gaussians. Indeed, mixture models and radial
basis function (RBF) neural nets [31] are based on this observation,
and they are a testimony of the power of Gaussians in fitting data too.
However, a poorly chosen h will lead to a poor KPLS model [26]. A
critical drawback of the KPLS model is the difficulty for selecting the
parameter h.

The occurrence of an abnormal event in the process will alter the sta-
tistical behavior of the measurement vector: X = [xg ... X; ... Xp,]’. Such
event will significantly be propagated to the high-dimensional space

(see Fig. 1), provided that the expected value of k(x) (see Eq. (7))
exhibits a meaningful change. Additionally, the expected value of the
Jj-th element of k(x), k(x;x), will be sensitive to the presence of an
abnormal event when a relevant change is observed in the expected
value of its argument, ||x; — xX|[?/h. Therefore, an appropriate selection
of h becomes important because: i) a high value of h could turn the
argument too low, with the risk that an actual event is not detected
when measuring the projection norms in Eqs. (17) and (19); and ii) a
low value of h could excessively increase the argument, with the risk of
producing a false alarm during a normal process operation. To circumvent
this problem, we here propose to adopth =2 Y ™_  V ar(x;). Since x; is a
standardized variable, Var(x;) = 1 and consequently h = 2m. In what
follows, we will prove that such selection of h provides us with a robust
decision criterion for detecting the presence of a process fault. In fact,
note that:

h 2m

m 2
() el )’} s - s
m

_ [=1/2,if x; and x belong to the same in—control process
~ | >1/2, if at least one x; is a (fixed) disturbed variable

(20)

where X; is the j-th sample of the calibration data set, x;; is the i-th
element of x;, and ; is considered an estimate of x;;. To interpret the use
of Eq. (20) in some practical cases, assume first a normal process
operation (i.e., with null bias and unit variance in all variables x;). Then,
Eq. (20) yields E{.} = 1 / 2, thus indicating no evidence of process fault.
On the other hand, consider the presence of an offset in the i-th sensor.
Such fault will induce on the variable x; a meaningful bias Ax; with respect
to its normal value. Then, Eq. (20) predicts: E{.} = 1/2(1 + Ax¥/m) > 1/2,
thus alerting on the presence of a fault in the process.

On the other hand, the number of latent variables retained (A) is an
important parameter in any approach based on latent structures. In the
KPLS methodology this parameter can be determined by considering
monitoring as well as prediction purposes. In fact, the KPLS approach
models both, the “x-y” relationship and the correlations within x and
y. Hence, the ultimate number of latent variables to be retained should
be determined by the simultaneous adjustment of the prediction- and
correlation models. Therefore, the modeling error is evaluated through
the following total mean square error:

MSETéE{ | ]é(x)Hz} +E{|ly=YI’ } = MSEq) + MSE,. 1)
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In the present work, we use a generalization of the adjusted Wold's R
criterion [7], which is given by R(a + 1) = MSEr(a + 1) / MSEr(a),
where MSE7(a) is the criterion in Eq. (21) parameterized by the first
“a” latent variables. The inclusion of new latent variables into the
model finishes when the ratio R(a + 1) exceeds a predefined threshold
(e.g.0.9) and hence A = a. In other words, an additional latent variable
will not be included in the KPLS model unless this variable significantly
improves the predictions (or explicated variability). Generally, the
inclusion of an excessive number of latent variables produces an over-
fitted (or overtrained) non-linear model with poor predictive ability.
Hence, to reliably determine the number A, the historical data set is
divided in two subsets called calibration and validation data, respectively.
Thus, the MSEr(a) is tested on both subsets in order to check for differ-
ences between the MSEr(a) values when the R(a + 1) criterion deter-
mines the KPLS model order.

5. Process monitoring based on KPLS

Once an “in-control” KPLS model is developed using process data
under normal operating conditions, the process state can be supervised
by using the proper statistics on the current measurements. Similar to
the KPCA approach [16], the main idea behind the KPLS methodology
is mapping and projecting the input and the response measurements
respectively, into the R? latent space to get a linear distribution of
the modeled data. These transformations are useful to perform the
detection of abnormal events and the diagnosis by inspecting appro-
priate statistics. In this work, a combined index is proposed for mon-
itoring both, the model and the residual subspaces. The diagnosis is
performed by inspecting the pattern defined by the statistics once
the anomaly is detected. Furthermore, a variable contribution analy-
sis completes the diagnostic tasks allowing the isolation of disturbed
variables.

5.1. KPLS-based fault detection

The “in-control” KPLS model is used for analyzing the current state
of the process. By mapping and projecting the current measurements,
©(x) and y, on the subspaces Wy, Wg, Suy, and Sgy, the corresponding
deviations are quantified and compared with their appropriate control
limits. However, there are no explicit expressions for the projections
é and @ in Eq. (17). This trouble promotes the development of new
statistics based on kernel substitution for estimating the measures
needed for the monitoring task.

For detecting a significant change in the W), subspace, the following
Hotelling's statistic can be used:

TE =t A 't = (N—1)K (x)VV'K(x) (22)

where A= (N — 1)7'T'T = (N — 1) 'L Recall that this measure
(Eq. (22)) accounts for the process correlations.

When new events occur (not considered for the in-control model),
the new mapped observation @(x) will move out from W), towards
Wh. In this case, the square prediction error (SPE) is used for quantifying
the distance from the model in Wy,

SPE- = [[ 60| = [[@e0—em)|
= (%) P(X)—20(X) G(X) + G(X)' G(X) (23)

= k(x,X)—2K (x)KVt + t TKTt.

Thus, the SPE~ statistic can be used for detecting changes in Wk.
[

When the process is under normal operation, the SPE~ index represents
©

the fluctuations that cannot be explained by the KPLS model. On the
other hand, the distance from the regression model in S,y is defined as

~ , p— 2
SPEy, =[] = |[cDy—cV'k)||
= yDCCD'y—2y' DC CVK(x) + K (X)VC CV'k(x).

(24)

Similarly, the distance from the model in Sy for detecting changes
in Sry is

SPE,, = ||¥,||* = || (1—CD")y|[*. (25)

) Furthermore, the correlation matrices R and Ry are singular because

¢ and y typically have colinear variables, as can be inferred from
Egs. (17) and (9). In this context, the generalized Mahalanobis distance
is considered for measuring these projections as follows:

> = @ (R, Q(x), (26)

Dy =yRyY, (27)
where the correlation matrices are given by,

Ry = (N-1)"'Y'Y = (N—1)"'CT'TC = (N—1)"'CC, (28)

R, = (N—1)"'®®= (N-1) 'PTTP' = (N—1)"'PP" (29)

The following statement shows that not vall these statistics are inde-
pendent. More specifically, the statistics on ¢(x),y, and t are equivalents
(see Proof in Appendix A), i.e.,

Dy=T; =D,

y (30)

é'

The above identity suggests that the behavior of the response
variables y can be monitored by a KPLS-based statistic applied to the
input variables x. Therefore, the monitoring of the complete measure-
ment space can be implemented by four independent KPLS statistics:
7, SPE;_;, SPEy,, and SPEy,, each of them acting on different subspaces

W, Wk, Smy, and Sgy, respectively. Consequently, these statistics nor-
malized by their control limits are combined together into a unified
index called Iyp;s as shown in Eq. (31). The scalars 74, &, 6;,, and 65,
are the corresponding control (confidence) limits.

12 SPE- SpE  SPE
+

Iipis(X,y) = =% +—% B2

= Ty (X) + Iwg(X) + Igy1 (X, Y) + Igy2 (Y)- (31)
(=) (o) . ()
'0'- 0

Fig. 2. Measurements decomposition based on mapping and projections onto the
subspaces created by a KPLS model.
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The four statistics in Eq. (31) probably have non-Gaussian distribu-
tions due to the process non-linearities. Hence, their control limits are
estimated via a kernel density estimation (KDE) approach [32-34].
This methodology is based on the approximation of the probability
density function (PDF) of an index, e.g. T?, by the sum of Gaussian
basis functions. In this way, the 100(1 — «) % confidence limit for T is
given by 72 = G~ (1 — «), where G~ ! is the inverse of the cumulative
density function G(T?). The KDE strategy is a well-known procedure for
estimating the PDF when applied to univariate random processes [34].

In case that Igp;s belong to a multidimensional elliptic region, it
would be compatible with the assumption of multi-normal data. There-
fore, the number of false alarms and undetected faults for this combined
index is significantly reduced with respect to the performance typically
given by the separated statistics [2,4,9].

5.2. Anomaly class diagnosis through its statistics pattern

The Ixps index (Eq. (31)) is useful for simultaneous monitoring of
product quality, process changes, and sensor problems. An anomaly is
detected when a meaningful change in the measurements triggers the
alarm condition given by: Ixp.s > I, Where I, denotes the 100(1 — )%
confidence limit obtained through the KDE approach. Once an anomaly
is detected, the diagnosis is made by comparing the patterns produced
by the normalized statistics composing the combined index. Note that
these statistics actuate on different domains and are affected by different
scaling factors. In this way the significance level of each normalized
statistic is 1. In summary, it is assumed here that each class of anomaly
is characterized by a specific pattern of significant statistics.

Let us consider 6 different classes of anomalies: 1) faults in sensors
associated to x; 2) faults in sensors associated to y; 3) changes in the
non-linear correlation structure of x; 4) changes in the internal latent re-
lationships; 5) changes in the correlation structure of y; and 6) changes
in the process population parameters. Ideally, each anomaly will produce
an independent pattern of the statistics that compose Ixps; and there-
fore, a proper analysis of the measured statistics would allow the unam-
biguous identification of the anomaly. These anomalies can qualitatively
be grouped into 3 categories: sensor fault (classes 1 and 2), change in
the process correlations (classes 3, 4, and 5), and change in the process
population parameters (class 6).

An artificial process was created to determine the characteristic
patterns (see Appendix B). This process models the generation of ideal
data obeying to a predetermined correlation/functional structure, in
the absence of anomalies. Then, each of the 6 anomalies was indepen-
dently analyzed by assuming localized pure disturbances and then
observing the mismatch with the available model. Fig. 2 indicates how
a disturbed measurement (in X or y) goes through the KPLS model and
generates a warning signal (in @(x), ¥;, ¥, or t).

Table 1 summarizes the main results obtained in Appendix B, and
can be seen as a generalization of the results in [28]. The symbols “-”
and “+” respectively represent a “negligible” or a “high” value of the
corresponding statistic. More specifically, the symbols “+” indicate
the statistics that are activated as soon as the measurements (X,y)
bring information about a localized model mismatch. The patterns in
Table 1 can facilitate the fault diagnosis tasks. Furthermore, when some
statistic is above its control limit a contribution analysis can be performed
to identify the disturbed variables in x or y [29]. Unfortunately, the statis-
tic patterns for classes 1 and 3 are coincident (see Table 1). However, a
further contribution analysis can be used to determine the proper class,
bearing in mind that, unlike class 3, class 1 leads a significant contribution
in the faulty variable.

5.3. Isolation of disturbed variables
In order to localize a faulty sensor, the identification of the involved

variables becomes helpful. A preliminary classification of the anomalous
event according to Table 1 enables us to restrict the searching problem

Table 1
Patterns of significant statistics to be used for diagnostic purposes.

Normalized statistic

Event type Tym Lk Igys Irys
Class 1 - > u -
Class 2 - - - +
Class 3 - > i -
Class 4 - - W -
Class 5 - - i i
Class 6 + - - -
Associated subspace Wy, Wy Swy Sky

to one or two statistics. To isolate the abnormal events, the correspond-
ing statistics can then be analyzed in their variable contributions, as
typically proposed by several authors [29].

A generic strategy for decomposing a quadratic index as a sum of
variable contributions is given by [28]

10 = 3 ($25%0) = 3y 32)

i=1 i=1

where x; represents the i-th variable of the current vector x and Is can be
Twm Twr, Iryr OT Igys. Since each normalized statistic has a significance
level of 1, then the significance level of their contributions is also
adopted equal to 1 [28]. This decomposition is exact for Izy, because it
is a quadratic function of y. On the other hand, Iy, Iwg and Izy; are qua-
dratic expressions of the non-linear function vector k(x), but not of x.
However, around a given point X, its second order Taylor approximation
has a quadratic form on x. Consequently, even in the case that the
decomposition in Eq. (32) is an approximation, we can define the
contribution of the variable x; to a normalized statistic as

als(x)

X;
CIS(XI'):EI ox:
i

(33)

where Is = Iwm, Iwg, Iry1, Iry2. The contributions of the variable y; to
the component statistics Iry; and Iry, are also defined by Eq. (33), but
replacing x; by y;. The partial derivatives of Iy, Iwg, Iry1, and Iy, are
detailed in Appendix C.

In summary, when an alarm in Igp;s is detected, the significant statis-
tics that compose Ixprs (I Iwr, Iry1, OT Iry2) are used for classifying the
abnormality through Table 1. Then, depending on the classification, the
variable contributions of any particular statistic with significant signal
are analyzed for determining the fault source.

5.4. Risk assessment about the prediction accuracy

When the process outputs cannot be measured online, we can still
use Eq. (10) to predict quality variables y from the measurements x.
The prediction reliability depends on the accuracy of both, the inferen-
tial model (Eq. (10)) and the measurements X. Hence, it is convenient
to validate online the prediction accuracy. An index based on an in-
control KPLS model that depends only on x, can be used for supervising
the prediction reliability. In this case, the normalized statistics Iy, and
Iwg depend on the x information only. Hence, recalling Eq. (31) the
following combined inferential index is suggested,

I.(X) = Ly (X) + Ly p(X), (34)



82 J.L. Godoy et al. | Chemometrics and Intelligent Laboratory Systems 135 (2014) 76-89

In-control input zone

X %

Output-input correlations

Fig. 3. In-control input zone and output-input correlations.

and the risk assessment metric for the predictions can be stated as

I.(x
Irisk = # (35)
@

where I, is the confidence limit for I in Eq. (34). Thus, when ;5. > 1 the
KPLS predictions are no longer reliable. Faults of class-1, class-3 and
class-6 (see Table 1) trigger an alarm when I, > 1. The risk index
depends on the KPLS model and therefore it is not reliable when the
model is over-fitted or improperly calibrated.

In this work the KPLS-based online prediction is complemented with
an additional control chart of I ;5 to guarantee the reliability.

6. Simulation results
6.1. Case study no. 1. Soft-sensor with prediction risk assessment

A non-linear numerical simulation example is presented here for
evaluating the proposed calibration and supervised prediction approach
under several abnormal events. In fact, the multivariate simulation case
used in Zhao et al. [13] and Zhang et al. [14] is reproduced here for the
sake of comparison. The system is defined as follows,

X; = —t+ 148 =fi(t)+¢
X =1 X, = sin(t) +& =f,(t) + &
X3 = +t+e5=f3(t) + €3 (36)

y= X% +X1Xy +3€0S(X3) + (€4) = f4(t) + &4

where tand ¢; (i = 1,2,3,4) are uniformly distributed variables between
[—1,1] and [—0.1,0.1], respectively. The variables ¢; are the noise
components. The data set generated from 300 samples is divided in
two subsets for calibration (the first 200 samples) and validation
(the latest 100 samples) purposes. Eq. (36) shows that inputs and
output are functions of the internal variable t (f;(t) to f4(t)). Fig. 3
shows the in-control input zone, which depends on data and is related
to the output range 0-6. Fig. 3 also shows that the output is non-
linearly correlated with the inputs.

Fig. 4 displays the procedure for calibrating the KPLS model based on
the Wold's R criterion by using both validation and calibration data. In
this case, two scenarios for obtaining the optimal number of the latent
variables (model order) are compared. In fact, Fig. 4(a) and (b) summa-
rizes the mentioned criterion computed based on the MSEr and MSE,
indexes, respectively. The first one is the combined input and output

prediction error suggested here in Eq. (21), and the second metric is
the classical output prediction error MSE, proposed by Zhang et al.
[14], where the standard error is given by %RMSE, = 100./MSE,. For
the sake of comparison, the same settings as suggested in [14] are
used here for the MSE,-based approach: a Gaussian kernel function
with h = 0.06 and a threshold of 0.9 for the Wold's R criterion. The
MSEr-based methodology with h = 2m = 6 is shown in Fig. 4(a)
which clearly gives the most parsimonious model with a + 1 = 8§,
hence the number of latent variables retained in the KPLS model is
A =7.0nthe other hand, the MSE,-based approach in Fig. 4(b) suggests
A = 11 as the best model order [14]. The over-fitting during the order
selection is supervised by using the validation data set (lines with “V”
in Fig. 4).

Fig. 4(b) (top) displays some evidence that the predictive ability of
the model may be quite poor. In fact, the calibration and validation
% RMSE, deviate from each other, thus displaying the so-called over-
fitting of the KPLS model. This fact is basically given by two simultaneous
effects in the Zhang's procedure [14]: 1 — they adopted h = 0.06, implic-
itly assuming a very low average variability in the data set, and 2 — the
MSE, criterion does not consider the input modeling, nor the validation
data for supervising the fitting reliability. Notice that the existence of
over-fitting is observed by contrasting the % RMSE, using the calibration
data with the one based on validation data (see Fig. 4(b)). This result
shows that the methodology proposed in Section 4 improves the KPLS
model calibration producing more reliable models as observed in
Fig. 4(a).

Different faults affecting the normal process are simulated to test the
ability of the risk index for warning a loss of prediction reliability. In this
case, five types of abnormal events are considered as shown in Table 2
with low and high magnitudes in each case. In fact, this table summa-
rizes three types of offset faults for the variables x4, x,, and x3. The fourth
abnormal event considers a non-linear correlation change for the vari-
able x; in the time period [110-120]. Finally, the uniformly distributed
variable t is considered to be fixed at a given value between samples
140 and 150, representing a process upset. The in-control input zone
in Fig. 3 is related to an ellipsoidal zone in the latent space R’ which
determines the control volume of T%.

The output squared prediction error SPEy = Hy—i{Hz and the risk
assessment index ;5 are displayed in Fig. 5 during the simulation of
the anomalies listed in Table 2. Fig. 5(a) and (b) summarizes the risk
assessment performance of the KPLS models calibrated via the MSEr
and the MSE, methodologies, respectively. Note that, an alarm condition
is triggered when the index I,;5, exceeds the unitary threshold,
i.e. Iis > 1. Fig. 5(a) shows that the I;5, index timely alerts on intervals
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Fig. 4. Selection of the KPLS model order — case study no. 1. (a) MSE-based approach with h = 2m = 6. (b) MSE,-based approach with h = 0.06.

where the process is affected by abnormal events. In such intervals
the predictions given by the model are unreliable and should not be
considered. Hence the MSE-based criterion produces reliable KPLS

models. On the other hand, the MSE,-based criterion provides models
that are unable to detect anomalies in the process (Fig. 5(b)). In fact,
the ;5 index remains below the threshold along the simulation time,

Table 2
Simulated abnormal events — case study no. 1.
Fault type Location Low magnitude High magnitude
Offset in x;-sensor k = 20...30 Ax; = —0.34F Ax; = —10
Offset in x,-sensor k = 50...60 Axy = 027+ Ax; = 10
Offset in x3-sensor k = 80...90 Ax3 = 049" Axs =10
Correlation change k = 110...120 =15 —t+1+¢g =3 —-t+1+g
Process upset k = 140...150 t = 1.1 (fixed) t = 1.5 (fixed)

+ Equivalent to 0.5 in standardized units, hence E{*} = 1/2(1 + 0.5%/3) > 1/2.
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Fig. 5. Squared prediction error and prediction risk assessment during low and high magnitude faults for KPLS model calibration based on: (a) MSEy, and (b) MSE,.

erroneously indicating a normal operation and reliable predictions.
Fig. 5(b) shows the insensitivity of I,;5 to the abnormal events. In
such cases k(x) = 0, causing a constant low value in I;;5 due to the
wrong selection of h and the model over-fitting. However, in our
approach the index saturation occurs for the high magnitude faults,
but above the threshold efficiently indicating the presence of the faults
(see Fig. 5(a)).

6.2. Case study no. 2. Fault detection and diagnosis

An additional example is simulated for better understanding of the
proposed methodology as a monitoring tool. The normal operation of
the chosen non-linear process includes a uniform distribution in the in-
ternal variables. The “measurements” of the external variables, x and y,
are generated by adding zero-mean Gaussian random noises to the KPLS
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Fig. 6. Scatter plots of the responses vs predictor variables using calibration data set — case study no. 2.

correlation structure characterized by the arbitrarily-selected process
parameters and functions as follows:

X1 :2t§+t§+81
X, =5 +265 + &,

x=ft)+e={ x; =3t; +t, +&
X4 = —t? + 3tf—t2 +&4
Xs = —t + 35—t + & (37)

y=Ct+n=tic; +t,¢,+n with ¢ =c;/||cf]|
¢, =[1.5,0.01,—0.1,0.01,0.05,0.01,2,0.01,0.5)
¢, = [0.1,—1.5,0.01,0.01, —0.05,2.5,0.01, —0.5,0.01]

where € = [&1, ..., &’ with & ~ N(0, 0.005%) and 1) = [1, ..., o]’ with
7~ N(0, 0.005%) are independent noises, and t = [t;, t,]’ are the internal
variables every one distributed uniformly in the range [0.01,4].

This model was used to simulate multivariate observations under
‘normal conditions’, and the generated (100 samples) data set was
used to fit the KPLS model and calculate the control limits. Fig. 6 shows
the linear or non-linear correlations between the predictor variables
(x1) and the responses (y;). For example, the correlations between x3
and yj,..., Yo are linear, while most of the remaining correlations x; — y;
are clearly non-linear. Fig. 6 illustrates the high level of non-linearity
present in the data. Fig. 7 shows the calibration technique proposed in
Section 4, where a model order A = 4 is selected.

The abnormal data set (250 samples) is also generated by using
Eq. (37) and considering the six fault scenarios displayed sequentially
in Table 3. This Table shows the six anomalies (one for each class in
Table 1) simulated as follows: a) the bias faults of classes 1 and 2 are
simulated by disturbing the measurements x and y; b) the anomalies
of classes 3, 4, and 5 are implemented by modifying the process param-
eters or functions; and c) the anomaly 6 consists in adding up a mean
change At; = 1 to t;. Each fault is simulated during 20 consecutive
samples and immediately canceled thereafter.

Fig. 8 shows the time evolution of the detection index Ixp;s normal-
ized by its control limit I, determined by the KDE approach, and the sta-
tistics composing the index Ixps in order to interpret the anomaly class.
In Fig. 8, the alarm condition is triggered at a given sample k, when the
normalized global index overpasses the limit, i.e. when Iyp;s(k)/Io > 1.
The inspection of such a figure leads to conclude that monitoring
based on Ixp;s(k) proved to be effective for detecting all simulated
anomalies. The patterns presented by the contributing statistics in
Fig. 8 along with the information given in Table 1 allow an unambiguous
diagnosis of each kind of anomaly, except for the first two cases
(see Table 3). As it was anticipated, the faults of class-1 and class-3 pro-
duce the same pattern, hindering the discrimination between them.
However, the x3-sensor fault causes a unique significant contribution
to Iy due to the variable x3 (Fig. 9). By contrast, a correlation change
in x causes several significant contributions to Iy, allowing discrimina-
tion from the previous case. Table 3 summarizes the classification of
each detected abnormal event according to pattern of alarms in the
statistics shown in Fig. 8. Fig. 9 shows the variable contributions to the
statistics Iyg and Igy,, at the alarm locations k = 31 and k = 151.
Fig. 9 identifies the perturbed variables (x3 and y3) from the major
(positive) contributions that more significantly affect the statistic show-
ing alarms (clywg and clgys, respectively), thus correctly reporting
the faulty sensors. The analysis of the contributions to each statistic
(at alarmed locations) allows the identification of broken relationships
between the process variables. Consequently, the main contributions
in clyr and clry, characterize the correlation changes in x and y, respec-
tively, thus indicating major changes in the original external correlations.

In these simulations, small deviations with respect to the normal
behavior were adopted only, in order to evaluate the ability of the data-
driven control volume associated to Ixps for detecting the simulated
faults.

In summary, the proposed KPLS-technique for fault detection
and diagnosis in strongly non-linear processes has proven capable of:
i) detecting an anomaly through a single combined index, ii) diagnosing
the anomaly class from a pattern presented by the four contributing
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Fig. 7. Calibration based on proposed methodology — case study no. 2.

statistics as compared to their respective confidence levels, and
iii) identifying the disturbed variables based on the analysis of the
main variable contributions to each significant statistic.

It is worth noting that if the normal operating range of t in Eq. (37)
decreases, the non-linearity of the system is less meaningful. Indeed,
for the case study no. 2, when [y, t;]’-operating zone is reduced to
[0.01, 2] x [0.01, 2], the previous suggested methodology for selecting
the KPLS model order gives A = 2. Moreover, if the same data set is
used for developing a PLSR model [10,28] the order is A = 2 once
again, i.e., both methods converge to the same order (or number of
latent variables). In summary, when the non-linearity of the process is
rather weak, we conclude the following: i) the linear PLSR approach is
preferable when the model would mainly be used for monitoring pur-
poses; and ii) the non-linear KPLS approach is preferable when the
model would mainly be used for prediction purposes. The reason for
i) is that we would only need to know when the process moves out
from the model; and in such a case, the PLSR technique unambiguously
differentiate classes 1 and 3. In contrast, the reason for ii) is the greater
generalization ability of the KPLS method.

7. Conclusions

Monitoring techniques based on KPLS models designed under in-
control conditions are especially useful for supervising strong non-linear
processes. In general, the results obtained in this work suggest that the
proposed calibration strategy provides a comprehensive methodology
for the systematic development of non-linear KPLS models.

Table 3
Simulated fault scenarios — case study no. 2.

Meaningful deviations of the measurements from their expected
behaviors are useful for detecting and diagnosing process anomalies.
The proposed detection index Ixp s combines several statistics of properly
scaled metrics. This index represents a statistical distance that considers
the linear/non-linear correlation structure of the process as well as
three Euclidean distances to the model. Unlike other existing data-
driven techniques, the here proposed Ixp; s index allows a simultaneous
monitoring of the process and the quality variables.

When an anomaly occurs in a process, the combination of alarm sig-
nals in the statistics composing Ixp;s is efficiently used for classifying the
perturbation source. Such preliminary diagnosis is then completed
through an analysis of contributions that allows the identification of
the disturbed variables. Besides, the risk assessment index I ;5 proved
to be effective for validating the reliability of the KPLS predictions. The
numerical simulations included in this study verify the effectiveness of
the presented methodology and suggests the potential application of
the presented monitoring techniques to real production systems.
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Fault type (class) Samples Magnitude Alarmed statistics Diagnosed class
Offset in x3-sensor (1) 20 to 40 Ax3 =5 Iwg and Iry; 1/3

Correlation change in x (3) 60 to 80 XY = (x3)'% + & Iwg and Igy; 13

Process upset (6) 100 to 120 =t +1 Twn and Iyg 6

Offset in y3-sensor (2) 140 to 160 Ays = 0.03 Iry2 2

Correlation change iny (5) 180 to 200 Ac¢; = 001[—1,1,0,—1,1,0,— 1,0, 1] Iryr and Igy, 5

Intrinsic gain change (4) 220 to 240 Al = 0.7,ui® = 1.7t Irv1 4
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Fig. 8. Time evolution of the index Ixp s normalized and of its component statistics.

Appendix A. Proof of Eq. (30)

By substitution of Egs. (9) and (28) into Eq. (27), we have Dy =
(N=1)t'C'(CC’)~ Ct. Then, using the singular value decomposition of
the matrix C(p x A) (with full-column rank) given by: C' = V[3 0]W,
where 3(A x A) is a non-singular diagonal matrix, and the matrices
W(p x p) and V(p x A) are orthonormal, we have

3

c(cc) c=V[z oW <w[§]v’w2 0]w’> 7w[ O]V’ = VIS5V =l

(A1)

Therefore, Dy = (N—1)t't = TZ. Furthermore, by replacing é =Pt
(Egs. (17)) and (29) into Eq. (26), it results: Dg = (N—1)t'P'(PP') " Pt.
Similarly, given that P is full-column rank can also be proved that
P'(PP’)"P = I(A x A), hence D(j, =(N=-1)tt= Tf. The above relation-
ships indicate that

XY
Il
O

(A2)

i.e,, the statistics on (i)(x), y, and t are equivalents.
Appendix B. Determination of statistics pattern

In order to characterize the anomaly from the pattern of statistics
composing Ixprs, an artificial process system (identified with the sub-
script 0) is created for generating ideal data obeying to a predetermined
correlation/functional structure. This artificial process is defined via the
KPLS parameters such as Ay, Co, and fy(*), which represent a non-linear
model of the system under operating normal conditions. In this proce-
dure, a random score vector to € R® ~ N(0, /) is taken as an

independent variable that models the associated input and output
vectors through,

Xo = fO(tO) ERmv , (B.1)
Yo = Coto € R°~N(0, (CoAeCo)) '

where yo € Syy = Span{Co} = R and fy(") is associated to @ (which is
the inverse function of fy in the in-control domain), such that ¢(x,) =
0(fo(ty)) = PotyE W), =Span{Py}cR". Hence, Eq. (B.1) considers
the common-cause variations only. Since these data stand for an ideal
perfect model, the residuals é(xo), y;, and y, are null, and there are

no differences between model predictions and the data, i.e. é)(xo) =Py
Ro®(Xg) = P(Xo),¥ = CoDpYo = Yo and ¥ = CoRoP(Xg) = Yo

Then, several alternatives to the normal condition are analyzed by
assuming localized pure disturbances and observing the mismatch
with the available model (Ao, Co, and fo(*)). The sketch in Fig. 2 helps
to visualize how a warning signal (at ¢(x), ¥, ¥, or t) is generated as
the disturbed measurements (x or y) go through the KPLS model. In
this context, the following classes of anomalies can be discriminated:

* (lass 1 (sensor faults associated to x): these faults are represented by a
shift signal Ax producing x-vector readings out of the pattern identi-
fied by the KPLS model. In this case, the input vector can be written as,
X =X, + AX (disturbed measurements) (B.2)

where Xg is the fault-free part of the input measurements. More

specifically, let us assume that Ax is such that @(x) is moved out of

W), and towards Wk. Then, using the first order Taylor approximation

of @(x) we have:

@(x) = PoRo®(X)=PRy (P(Xo) + AX V(X)) = B(Xo)

y

é(x) = O(X)—Q(X)=AX'V @ (Xo) # 0 € Wy (disturbance detection)
Vi = V=¥ = CDiYo—CoRop(x) = 0
Y2 =Y—Y=Yo—CoDoy, = 0.
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Variable contribution to 7, o at k=151

clryy

| | | |

Y3

Y7

Fig. 9. Contribution analysis at two alarmed locations (significance level = 1).

On thg other hand, if assuming that Ax is such that AX'V @¢(xy)EW,,
then @(x) =PyRy (G(Xy) + AX'V §(Xg)) # O(X,) affecting a different
residue as follows:

Ox) = (I=PoR)G(X) = (I PoR;) (@(Xo) + AX VE(X)) = 0
V1 = CoDyyo—CoRy0(X) = —CoRHAX' V(X)) # 0 €S,y (disturbance detection).

(B4)

Furthermore, since 73 > 63 then D, / 2 <|[5(x)[|/62 when ||¢(x)[|> =
|[@(x)|[%, hence the statistic Iy is not affected. Therefore, the residues
é(x) and y; are used to detect this disturbance.

Class 2 (sensor faults associated to y)

Yy =Yo+Ay (disturbed measurements) (B.5)
where yj is the fault-free part that follows the normal correlation
structure. The disturbance is analyzed by assuming that Ay € Sgy
[28]. Hence, the disturbance track from generation to detection is as
follows:

y= CoDoy = CoDoYo + CoDoAY = Yo
Vo =Y—Y=Yo + Ay—y, = Ay # 0 Sy, (disturbance detection)
(B.6)

thus, a measurement disturbance is sent to the residual space Sgy.
Note that, t = R,@(X) = t, then $(x) = 0 and §; = y—C,t = 0.
Class 3 (changes in the non-linear correlation structure of x): a change in

the correlations of x can be thought as an unknown functional change
A( ) =1£() —fo(), ie.

x = f(ty) = £,(ty) + Af(ty) = xo + Af () (disturbed measurements).

(B.7)

Now the Taylor approximation of the mapped measurements is given
by

P(x) = P(xo + Af(ty)) =B(xo) + Af(ty) VO(X). (B8)

The changes in @(x) shown in Eq. (B.8) can belong to both subspaces
Wy and Wy, thus generating the following no-null residual values

®(x)=(I-PgRy) (B(%o) + Af () V B(X))
= (I-PgRy) Af(ty) VO(Xg)) # 0 € Wy

V12Y—CoRy (B(xo) + Af(ty)'V O(xXp))

= —CoRyAf(ty) VE(Xo) # 0 ESyyy.

(B.9)

Since 74 3> 8% then D, /7, << [|@(x)|*/6; when |ig(x)][> = [[o(x)]*,
hence the statistic Iy is not affected. Then, the residues qlo(x) and
y; are used to detect the disturbance.

Class 4 (changes in the intrinsic relations): the identity matrix I in Fig. 2
is the core place where the KPLS model ties up input with output
internal variables. Let us assume that an unknown change occurs in
this relationship, i.e.

y= Co(I1+ Aty =y, + CoAlt, (disturbed measurements) (B.10)

while x = f(ty) = Xo. Analyzing the effects on the statistics

Vi = ¥-¥ = (Vo + CoAlty) —CoR,P(X)
= CoAlty #0E S,y (disturbance detection),

(B.11)

while the remaining statistics are not affected.
Class 5 (changes in the correlation structure of y): let us assume an
unknown change in the matrix Co, i.e.

y = (Cy + AC)t, =y, + ACt, (disturbed measurements). (B.12)

Hence, the disturbance detection is characterized by

V= CoDj (Yo + ACtg) = ¥ + CoDpACK,
Vo = (Vo + ACty)— (Yo + CoDACEy) = (I—CoDp) ACt, # 0 € Sgy
V1 = (o + CoDpACty) —CoRoP(X) = CoDACy # 0 € Syyy .
(B.13)
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* Class 6 (significant change in the process population parameters): this
anomaly produces measurements that follow the correlation struc-
ture captured by the KPLS model, and can be represented by changes
in the original process parameters ty ~ N(0, /). Let us assume a
displacement of E{to} from O to p¢ # 0, or a significant change in the
variability from /Ay to A, thus producing an arbitrary distribution
N(u, /). Hence, the abnormal event produces,

t =ty + At~N(u,, A,)(disturbance detection) (B.14)

with a magnitude such that the T? = || Ag 2t = || Ag 2 (to + Ab)|? >
72 (disturbance detection).

The previous analysis is summarized in Table 1, where the highlighted
discrimination patterns indicate the statistics that are activated as
soon as the measurements (X, y) bring information about a localized
model mismatch.

Appendix C. Partial derivatives of the contributions
The partial derivatives of Iy, Iwg, and Iry,, are the following:

My (N—1)2-, , 0K(x)
a—;ci’Tk VY 5 (C.1)

Olwg 1 ( o 0KX) o oo OK(X) o s OK(X)

axi_53< 2e o 4K (x)KVV ox +2k(x)V1‘l(TVTxi ,
(C2)

Oy 1 [ e o OK(X) | o s OK(X)

o, % 2y'DCCV ox, +Kx)vCc o, ) (C3)

where 3k(x)/dx; = [9k(x;,X)/0x, ..., 0k(xy, %)/3x; . Given that E(x i x> -
k(xj,x)—k’ (X]-)e—k'(x)e +€e'Ke (see Eq. (7)), the elements of this
vector are given by,

ok(x;,x)  Ok(x;,x) 1 XN 0k(x;,x
(1) )y

(C.4)

where ak(xj,x>/8x‘_ = (—Z/h)(xjv,-—x> exp(—ij—tz/h> for a
Gaussian kernel function. The partial derivatives of Izy; and Igy, with
respect to y; are given by,

Olgy1 _ % <2§§DC'CD/y—2§;»DC/CV/F(x))7 (C5)
a)’i 63’1

Olry _ %g; (I-CD')' (1-CD)y, (C6)
aJ/i 8)’2

where & = [0,..1, ..., 0] is a vector with zero entries except for the
location i, which takes a unitary value. Then, the contributions of any
variable x; or y; to the component statistics are computed via Eq. (33)
and are denoted by clwp, Clwr, Clry2 and clgy; respectively.
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