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The main goal of the present paper is to present a mathematical framework for modelling
multi-phase non-saturated soil consolidation with pollutant transport based on stress
state configurations with special emphasis in its versatility. Non-linear saturation and
permeability dependence on suction for both water and pollutant transport is regarded.
Furthermore, through the introduction of a suction saturation surface instead of simple
suction saturation curves, the implementation of the saturation–suction coupling effect
is considerably simplified. The achieved differential equation system is discretized within
a Galerkin approach along with the finite element method implementation. A widespread
set of practical situations is encompassed by simply setting certain coefficients of the
discrete system of equation according to concrete problem conditions. When the model
is coped with certain selected fringe conditions, the approach adaptability feature came
up showing a robust performance.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

Mathematical models for solving porous media consolidation stand for an issue widely studied in modern computational
mechanics. From the pioneer Biot’s work [1] to nowadays complex and robust approaches, a broad range of mechanical
situations, thermal conditions, transported fluids, boundary conditions and load types were regarded. The two-phase and
three-phase non-saturated cases were undertaken by Ai et al. [2] and Lewis and Schrefler [3] respectively. The non isother-
mal analysis in saturated models was included in Masters et al. [4], whereas in Yang et al. [5] the non-isothermal case was
extended to the unsaturated situation.

Regarding environmental geo-mechanics, different authors have taken on this issue from several standpoints with differ-
ent aspects or hypothesis under consideration. In Li and Zienkiewicz [6], the fluid transport through porous media in one or
two phases separated by an interface with no chemical reactions or components interchange between the phases was pre-
sented. In Khoei and Haghighat [7] a solution for material interfaces was brought about independently of element bound-
aries with an enhanced finite element method (FEM). In Schrefler [8], a mathematical framework assuming a multiphase
porous system with voids filled with water, water vapor, dry air and pollutant, relying on Hassanizadeh and Gray averaging
theories, see Refs. [9–11], was addressed. Therein and for non isothermal flux, see Khalili and Loret [12], the thermodynamics
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properties of the interface between the different porous media constituents were regarded (Lewis and Schrefler [3]) and, in
addition, the relationship between the interface surface tension and the capillary pressure is carefully analyzed.

Furthermore, in Dasgupta et al. [13] the finite difference method was selected for solving a problem of groundwater
contamination in a waste-disposal area in Miami, Florida. The relative permeability issue, arising in when wetting and
non-wetting phases are regarded, was addressed in Noaman and El-Khatib [14].

Mroginski et al. [15] described a kind of odd relationship that bonds the vertical displacements and the degree of
pollutant saturation.

Different degrees of heterogeneity were considered by Ai et al. [16] as well as by Su et al. [17]. In the former, a horizontal
multilayered soil with anisotropic permeability undergoing square load was analyzed whilst in the later a first order
homogenization on the Representative Volume Element (RVE) was adopted to overcome the heterogeneous issue. In
Royer and Boutin [18], the physical interpretation of the three characteristic behaviors of homogenized dual-porosity is
evaluated along with memory effects.

Regarding to the numerical solution of the boundary value problem in deformable porous media, different approaches
were presented. The coupled consolidation problem of multiphasic porous media was discussed in [6,8,15]. Mroginski
and Etse [19] propose a finite element (FE) formulation with C1-continuous interpolation functions for non-local saturated
porous media. The reference [3] presents a deep study of the numerical solution of coupled consolidation problems in par-
tially saturated soil within the FE framework.

When damage on soil structure is under consideration, [20] assess the consolidation response of a saturated porous media
in which structural damage is induced.

Concerning with the constitutive model, Alonso et al. [21] carried out a clay-type partially saturated soils development
within the framework of hardening plasticity using two independent sets of stress variables: the excess of total stress over
air pressure and the suction. A model based on suction controlled triaxial tests was presented by Sun et al. [22], whereas
Graziano and Lancellotta [23] dealt with the derivation of an evolution constitutive equation for deformable porous media.

Khalili et al. [24] presented a mathematical approach for isothermal partially saturated media grounded in a stress state
decomposition though regardless of the saturation or the induced matric suction coupling effect. For this issue was subject of
large controversial, in Di Rado et al. [25] the evidence of the highly non linear effect that saturation–suction coupling effect
renders to the constitutive model and its influence on the symmetry loss in the main system of equations for the isothermal
case, were properly settled down. Moreover, in the present manuscript, two advances are brought into consideration with
respect to ref [25]: the addition of an immiscible pollutant phase and the introduction of a surface of saturation–suction
relationships accounting for the different fluid content instead using a curve for the mixture of fluids. Additionally, a
generalization for N immiscible fluid phases is outlined.

This improved mathematical approach, besides spanning a vast sort of isothermal consolidation problems, inherits the
three phase model’s ductility (see Di Rado et al. [25]) allowing a straightforward reduction to some others problems with
a more easy-solving form, namely, the saturated case, non-saturated without suction coupling, consolidation with no pres-
ence of pollutant, consolidation with presence of pollutant but without suction coupling, etc. The aforementioned reduction
may be carried out by merely setting some coefficients to the required value.

With respect to the mechanical behavior of the soil skeleton (i.e. the constitutive tensor), the same restrictions stated in
Ref. [25] hold. One last issue must be underscored. The non-saturated soil consolidation analysis without thermal effects is of
great interest for civil constructions like buildings and earth dams, especially when the location area is placed in the north
east region of Argentine or south of Paraguay and Brazil. In these locations, many important cities are situated in ancient
river’s valleys where clay, lime-clay or even sandy soil type with degrees of saturation over 70% (generally due to the ground-
water table position) are commonly found. Along with the classical clay-type soil consolidation problem, a brand new situa-
tion arises due to the allocation of new industries: the environmental damage. This facts and the possibility of extending the
previously developed code were the principal motivations for the present work.
2. The governing equations

2.1. Introduction

For classical mechanic analyses, a continuum distribution of existent particles, either fluid or solid for which the balance
laws and constitutive relationships are valid, is frequently accepted. For the case in point, there is an omnipresent phase, i.e.,
the solid one or solid skeleton, whose voids are taken to be filled with fluid (gas or liquid) separated by a membrane called
interface. The difference between the constituents and phases should be emphasized here. On the one hand, the phases are
chemically homogeneous portions of the multiphase system which mechanical behavior is assumed to be uniform. On the
other hand, the constituents are the individual parts that give rise to the different phases but acting each one independently.

There are two possible levels for describing the multiphase media intergranular configuration: The macroscopic and the
microscopic level. At a microscopic level, the actual porous media structure is regarded (see Fig. 1(a)) and, due to this situa-
tion, the governing equations are established considering each constituent separately giving rise to a complicated solution,
let alone the assessing of microscopic physical and chemical properties. Considering the aforementioned reasons and adding
that the microscopic description is generally beyond the civil engineering goals (see Ref. [3]), the macroscopic description is



Fig. 1. Porous media description, (a) representative volume element; (b) general stress state.
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adopted for the present work. Consequently, when one noteworthy feature of this approach is the fact that, at each material
point, all the phases are assumed to be simultaneously present what in turn, renders to a straightforward idealization of the
whole structure. In the present paper, the general guidelines originally proposed by Khalili and Khabbaz [24] and later on
modified by Di Rado et al. [25] are followed, however, further modifications must be introduced for considering the presence
of one or more pollutant phases.

The Fig. 1(b) sketches a representative portion of porous media with its void divided in three parts with each one filled
with water, gas (normally air) and pollutant. The outer stress components r1 and r3 stand for the action of the removed
portion of soil, and p g ; pw and pp stand for the pore pressures.

For the sake of simplicity, the external stress component r2 normal to the paper plane was not drawn albeit considered.
In the next paragraph, the stress state indicated in Fig. 1(b) will undergo a convenient decomposition in several different
states that, ultimately, give rise to the underlying foundation of the whole approach.

2.2. Solid–fluid relationship. The constitutive equations

The linear momentum balance and mass conservation equations are not enough for reckoning the various pressures act-
ing in the soil portion described in Fig. 1(b). Therefore the adding of solid–fluid constitutive equations, commonly through
the widely used effective stress concept (albeit modified for unsaturated soils), is required. Hence, the pore pressures (i.e.
water, air and pollutant pressures), the total stress and the effective stress tensor balance leads to the following expression.
r0ij ¼ rij � a1pwdij � a2ppdij � a3p gdij ð1Þ
being r0ij the effective stress, pw; p g and pp the pore-water pressure, pore-air pressure and pore-pollutant pressure respec-
tively, and a1 , a2 and a3 are the effective stress parameters. In the previous, compressive stresses were regarded positive.

The existence of this basic equation is not merely based in a convenient stress split but it is grounded in porous media
thermodynamical investigations (see Diebels and Ehlers [26]). In order to assess the value of parameters a1; a2 and a3, it
is necessary to introduce some specific stress measures of utmost relevance in non saturated soil analysis and widely used
in describing its mechanical behavior (see Ref. [3,21,27]). These quantities are the matric water suction, the matric pollutant
suction [8,15] and the net normal stress given by
pcw ¼ p g � pw; pcp ¼ p g � pp; pn ¼ �r� p g ð2Þ
with �r ¼ r1 þ r2 þ r3ð Þ=3 (in principal axes). The Fig. 2 shows an additive decomposition of the stress state with one
remarkable aspect: all the aforementioned variables, i.e. pcw; pcp and pn, come up exclusively in one part of the decomposed
stress states.

These different stress states, though seemingly arbitrary are selected in order to provide a physical meaning to the sought
effective parameters. State (1) stands for a soil portion with a pore pressure equal to the water pore pressure and with an
external isotropic pressure set to the same value. States (4) and (5) are comparable to state (1) but shifting the pressure val-
ues. State (2) stands for a sample with a null water pore pressure and with a pollutant pore, an air pore and an external iso-
tropic pressures equal to the water suction, namely pcw ¼ p g � pw. In State (3), the situation is similar to State (2) because the
water pore pressure swaps its contribution with the pollutant pore pressure bringing in the pollutant suction pcp ¼ p g � pp.
States (6) shows a null pore pressure and an external isotropic pressure �r� p g whereas State (7) exhibits the same absence
of pore pressure but with external stress components ri � �r. The different components depicted hereinafter, allows writing
the volumetric strain of the soil portion in the following fashion:
eii ¼ eð1Þii þ eð2Þii þ eð3Þii þ eð4Þii � eð5Þii þ eð6Þii þ eð7Þii ð3Þ
being
eð1Þii ¼ cspw eð2Þii ¼ cmw p g � pwð Þ eð3Þii ¼ cmp p g � ppð Þ eð4Þii ¼ cspp

eð5Þii ¼ csp g eð6Þii ¼ c �r� p gð Þ eð7Þii ¼ 0
ð4Þ



Fig. 2. Decomposition.
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In Eq. (4), cmw ¼ 1=Kmw is the compressibility of the solid structure with respect to a change in water suction pcw, and
cmp ¼ 1=Kmp is the compressibility of the soil structure with respect to a change in matric pollutant suction pcp (see Pao
and Lewis [28]). For reckoning the quantities Kmw and Kmp the following expressions are suggested:
Kmw ¼
KT Ks

SwKs þ Sw
Sf

SgKT þ Sp
Sf

KT
; Kmp ¼

KT Ks

SpKs þ Sp
Sf

SgKT þ Sw
Sf

KT
ð5Þ
in which Sw; Sp; Sg are the water, pollutant and gas (air) fluid saturation degree respectively, and Sl ¼ Sw þ Sp is the liquid fluid
saturation degree. The different types of saturation may be obtained by:
Sw ¼
Vw

Vv
; Sp ¼

Vp

Vv
and Sg ¼

Vg

Vv
ð6Þ
being Vw;Vp;Vg and Vv the pore-water volume, the pore-pollutant volume, the pore-gas volume and the total void volume
respectively, bearing in mind that the identity Vv ¼ Vw þ Vp þ Vg , holds.

The other quantities involved in Eq. (4) are: cs ¼ 1
Ks

, the compressibility of the soil grains; c ¼ 1
KT

, the drained compress-

ibility of the soil structure; KT ¼ 1� að ÞKs , the bulk modulus of the overall skeleton (see Ref. [3]) in which ‘‘a’’ is the Biot
constant (see Ref. [1]). Substituting Eq. (4) in Eq. (3) and rearranging terms, yields
eii ¼ cspw þ cmw p g � pwð Þ þ cmp p g � ppð Þ þ cspp � csp g þ c �r� p gð Þ þ 0 ð7Þ
Whereas the deviatoric tensor is exactly the same for total and effective stresses, Eq. (1) may be rephrased in terms of
volumetric stresses straightforwardly:
�r0 ¼ �r� a1pw � a2p g � a3ppð Þ ð8Þ
Taking the product with the drain compressibility of the soil structure in both members of the previous equation, lead to:
c�r0 ¼ c �r� a1pw � a2p g � a3ppð Þ ð9Þ
The first member involves the product between soil structure volumetric stress (effective) and the drained compressibil-
ity giving the total volumetric strain, then:
eii ¼ c �r� a1pw � a2pp � a3p gð Þ ð10Þ
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Comparing Eq. (7) with Eq. (10), the effective stress parameters a1; a2 and a3 may be re-interpreted as functions of the soil
parameters, and they are given by:
a1 ¼
cmw � cs

c

a2 ¼
cmp � cs

c

a3 ¼ 1þ cs � cmw � cmp

c

ð11Þ
Then, expressing the compressibility coefficients cs and c in terms of Ks and KT , respectively, as well as cmw according to
Eq. (5), a simple connection between the effective stress parameters above reached and the well known Biots coefficient, a,
may be attained (for the sake of brevity, algebraic manipulation were omitted):
a1 ¼
cmw � cs

c
¼ aSw

a2 ¼
cmp � cs

c
¼ aSp

a3 ¼ 1þ cs � cmw � cmp

c
¼ aSg

ð12Þ
In order to render the approach more familiar to soil mechanics experts, the relationships put forward in Eq. (12) will be
forwarded whenever it is possible.

2.3. Mechanical equilibrium

In order to extend the conclusions arisen in the previous paragraph to the differential equation for lineal momentum bal-
ance, it is crucial to consider that Fig. 1 sketches a small portion of the soil skeleton. Taking time derivative of Eq. (1) however
disregarding the time derivatives of coefficients a1; a2 and a3, the following equation is obtained:
_r0ij ¼ _rij � a1 _pw þ a2 _pp þ a3 _p gð Þ ð13Þ
In the previous, the coefficients a1; a2 and a3 were taken as tangent modulus and in consequence actualized after each
time iteration. Now, the introduction of Eq. (12) in Eq. (14), leads to the pursued solid–fluid constitutive expression.
_r0ij ¼ _rij � adij Sw _pw þ Sp _pp þ Sg _p g
� �

ð14Þ
The classical quasistatic linear momentum balance is given by
_rij
� �

;j þ _Fi ¼ 0 ð15Þ
being Fi the components of the total body force. Replacing Eq. (14) in Eq. (15):
Cijkl _ekl
� �

;j þ a1 _pw
;i þ a2 _pp

;i þ a3 _p g
;i þ _Fi ¼ 0 ð16Þ
where, Cijkl is the tangent constitutive tensor and _ekl is the rate of linear deformation tensor.

2.4. Liquid flux model

To obtain the law that rules the fluids flow through porous media, the next equations are deemed (see [3,27]):

1. Momentum balance of the fluids constituents regarding the interaction forces and the quasi-static situation:
rl
ij;j þ nlqlbi þ p̂l

i ¼ 0 ð17Þ

In the above equation, rl
ij is the fluid stress tensor, nl is the fluid porosity, ql is the fluid effective density, bi is the body

force and p̂l
i is the unit local interaction force between constituents.

2. Constitutive equations for fluid phase.
rl
ij ¼ �nlpldij þ r;l

ij ð18Þ

p̂l
i ¼ pl nlð Þ;i þ p̂;li ð19Þ

Eq. (18) follows the same guidelines stated for Eq. (1), being r;l
ij the stress tensor due to frictional fluid properties. In

Eq. (19), p̂;li is the viscous drag force. Depending on the given typical length of the solid–fluid problem, either p̂;li or r;l
ij

are dominant and the other negligible (see Ehlers et al. [29]): for the case in point, the following expressions are
obtained:
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r;l
ij ¼ 0 ð20Þ

p̂;li ¼ �nl llK�1
ij v l

j ð21Þ

Above, ll is the relative effective viscosity, Kij is the intrinsic anisotropic permeability tensor and v l
j is the fluid discharge

velocity. For the presence of more than one fluid is considered in the present model, the permeability tensor must be
modified in order to reflect the fluids interaction (see Fetter [30]). Mostly, this interaction is brought about introducing
a dimensionless coefficient, i.e. the relative permeability that may be assessed following any of the many proposed
models (see Corey [31]). Replacing Eq. (18) in Eq. (17) and considering Eqs. (20) and (21) as well as the identity
nlpldij
� �

;i ¼ nlpl
;idij þ plnl;idij, the well-known Darcys law is attained however modified by the presence of more than one

fluid, is given by:

v l
i ¼ �

kijk
l

cl
pl
;j � qlbj

� �
ð22Þ

In Eq. (22), the relationship Kl
ij ¼ ll=cl

� �
kijk

l with cl being the fluid specific weight, kij is the Darcys permeability coeffi-

cient and kl is the relative permeability, was regarded. This expression holds providing that the permeability tensor is in

principal axes, namely Kl
ij ¼ 0 if i – j.

3. Fluid mass balance:
� qlv l
i

� �
;i ¼

@

@t
nlql
� �

ð23Þ

Replacing Eq. (22) in Eq. (23) and disregarding the effect of mass forces, leads to (see Ref. [24])

� 1
ql

ql
Kl

ij

ll
pl
;j

 !
;i

¼ �nlcl _pl þ 1
V

_Vl ð24Þ

Herein, V is the total volume and cl is the fluid compressibility. In Eqs. (17)–(24), l stands for any of the present immiscible
liquid fluids, aqueous and non aqueous. If water is under consideration, l will be replaced by w and in the case of
pollutant, a p symbol will be used.

2.5. Air flux model

The Fick’s law is commonly used to describe the air flow through unsaturated soils. According to this law, the rate of mass
transfer for a diffusing substance across a unit area (Jgi) is proportional to the concentration gradient of the diffusing sub-
stance (C) [32]. This definition renders the following expression:
Jgi ¼ �D�ijC;j ð25Þ
where D�ij is a function of the volume-mass properties, the air density and the diffusion coefficient. For isothermal conditions
and satisfying the conservation of air mass, using a similar procedure than the one employed for the water phase, the fol-
lowing expression is obtained (see Ref. [24]):
� 1
q g

D�ijp
g
;j

� �
;i
¼ �ng

P
_p g þ 1

V
_Vg ð26Þ
with P being the absolute pressure and ng ¼ Vg=V stands for the relative air porosity and V is the total volume.

2.6. Relating variables by stress states consideration

Eqs. (24) and (26) are the governing differential equations describing flow of liquids and air through unsaturated porous
media, respectively. These, along with Eq. (16), denote an apparently under-determined system of equations, namely, the
unknowns pl; p g ;rij; _Vl and _Vg exceeds the number of independent equations, requiring hence relating the volume variables
with the displacement and pressures unknowns (ultimately the primary unknowns).

In the upcoming paragraph, a stress state-based relationship as well as the addition of an adequate constitutive equation
in terms of the displacement field will be addressed. Hence Eqs. (16), (24) and (26) could be solved simultaneously.

2.6.1. Scheme 1
The state (1) of Fig. 3 corresponds to an external isotropic pressure, dr, an internal pore-water pressure dpw, an internal

pore-pollutant pressure dpp and an internal pore-air pressure dpg . State number (2) shows a tantamount internal (i.e. water,
air and pollutant pores) and external pressure, all set to water pore pressure value. Finally, state (3) stands for a portion of
soil alike the precedent but with water pore pressure set to zero. All aforementioned idealized stress states, allow to apply



Fig. 3. Set of soil states required for relating Vw . All differential volumes are assessed by recurrent application of Eq. (10).
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Betty’s reciprocal law to the states [(1)–(2)], [(1)–(3)], and [(2)–(3)]. This valuable mathematical tool lets unveiling the hid-
den connections between unknowns (the one relating Vw). Accordingly:
dV � dVw � dVg � dVp
� �

dpw ¼ Vcsdpwdr� nwVcsdpwdpw � ngVcsdpwdp g � npVcsdpwdpp ð27Þ
dV � dVg � dVp
� �

dpw ¼ Vcmwdpwdr� ngVcmwdpwdp g � dVIII
w dpw � dVIII

p dpp ð28Þ
Vcmwdpwdpw � ngVcmwdpwdpw � dVIII
w dpw � dVIII

p dpw ¼ Vcsdpwdpw � npVcsdpwdpw � ngVcsdpwdpw ð29Þ
Subtracting Eqs. (28) and (29) from Eq. (27), gives:
dVw

V
¼ cmw � csð Þdr� cmw 1� ng

� �
þ cs np � 1� nw þ ng

� �
� npcmw

� �
dpw � ng cmw � csð Þdp g � np cmw � csð Þdpp ð30Þ
Considering the differential form of Eq. (10), introducing n ¼ ng=Sg ¼ nw=Sw ¼ np=Sp and after some algebraic manip-
ulation, Eq. (30) becomes:
dVw

V
¼ aSwdeii � Sg þ Sp

� �
a� nð Þ 1

Kmw
� 1

Ks

� 	
þ a� nð Þ Sw

Ks


 �
dpw þ Sg a� nð Þ 1

Kmw
� 1

Ks

� 	
 �
dp g

þ Sp a� nð Þ 1
Kmw

� 1
Ks

� 	
 �
dpp ð31Þ
Substituting Eq. (31) in Eq. (24) with l equal to water, taking the time derivative and considering the chain rule
_Sw ¼ dSw

dpcw _pcw; _Sp ¼ dSp
dpcp _pcp along with some algebraic elaboration, leads to:
1
qw

qw
Kw

ij

lw
pw
;j

 !
;i

þ aSw _eii � Sw
n

Kw
þ a� nð Þ

Ks
Sw �

Csw

n
dpw þ Csw

n
dp g þ Csp

n
dp g � Csp

n
dpp

� 	


� a� nð Þ
KT

�Csw

n
dpw þ Sw � 1ð Þ þ Csw

n
dp g þ Csp

n
dp g � Csp

n
dpp

� 	�
_pw

� Sw
a� nð Þ

Ks
Sg �

Csw

n
dp g þ Csw

n
dpw � Csp

n
dp g þ Csp

n
dpp

� 	


� a� nð Þ
KT

Csw

n
dpw � Csw

n
dp g þ Sg �

Csp

n
dp g þ Csp

n
dpp

� 	�
_p g � Sw

a� nð Þ
Ks

Spð Þ �
a� nð Þ

KT
Spð Þ


 �
_pp ¼ 0 ð32Þ
in the above,
Csw ¼ n
dSw

dpcw ; Csp ¼ n
dSp

dpcp ð33Þ
Setting out these coefficients implies further consideration which will be accounted for in Section 2.7.1.
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2.6.2. Scheme 2
Likewise the preceding section, the following combination of states is regarded towards finding relationships involving Vp

(see Figs. 4, 5).
Applying Betty’s reciprocal law to the states [(1)–(5)], [(4)–(5)] and [(1)–(4)], the subsequent relationships are addressed:
1
qp qp Kp

ij

lp pp
;j

 !
;i

þ aSp _eii � Sp
n

Kp
þ a� nð Þ

Ks
Sp �

Csp

n
dpp þ Csp

n
dp g þ Csw

n
dp g � Csw

n
dpw

� 	


� a� nð Þ
KT

�Csp

n
dpp þ Sp � 1ð Þ þ Csp

n
dp g þ Csw

n
dp g � Csw

n
dpw

� 	�
_pp

� Sp
a� nð Þ

Ks
Sg �

Csp

n
dp g þ Csp

n
dpp � Csw

n
dp g þ Csw

n
dpw

� 	


� a� nð Þ
KT

Csp

n
dpp � Csp

n
dp g þ Sg �

Csw

n
dp g þ Csw

n
dpw

� 	�
_p g � Sp

a� nð Þ
Ks

Sw �
a� nð Þ

KT
Sw


 �
_pw ¼ 0 ð34Þ
2.6.3. Scheme 3
The next combination of states was selected towards finding the link involving Vg .
As can be viewed, in state (6) all pore pressures and the external pressure are equal to dp g . Meanwhile, in State (7), the gas

pressure is set to zero being this fact the only difference with regards to the previous state. Applying Betty’s reciprocal law to
the states [(1)–(6)], [(6)–(7)] and [(1)–(7)], gives:
dVg

V
¼ Sg aeii �

a� nð Þ
Ks

SwdpwSpdpp þ Sgdp g� �
� a� nð Þ

KT
Swdpcw þ Spdpcp� �
 �

ð35Þ
Substituting Eq. (35) in Eq. (26),taking time derivative, and carrying out similar modifications than those performed in the
other fluid phase, yields:
1
q g

D�ijp
g
;j

� �
;i
� a� nð Þ

Ks
Sg Sw þ

Csw

n
dp g � dpw� �� 	

þ a� nð Þ
KT

Sg �Sw �
Csw

n
dp g � dpw� �� 	
 �

_pw

� a� nð Þ
Ks

Sg Sp þ
Csp

n
dp g � dpp� �� 	

þ a� nð Þ
KT

Sg �Sp �
Csp

n
dp g � dpp� �� 	
 �

_pp

� nSg

P
þ a� nð Þ

Ks
Sg Sg �

Csw

n
dp g � dpw� �

� Csp

n
dp g � dpp� �� 	


þ a� nð Þ
KT

Sg Sw þ Sp þ
Csw

n
dp g � dpw� �

þ Csp

n
dp g � dpp� �� 	�

_p g ¼ 0 ð36Þ
A further revision of Eqs. (32), (34) and (36), leads to the acknowledgment that all of them as well as Eq. (16), rely on the
primary unknowns same variables. Thus, the seemingly under-determined system becomes now a determined system.

2.7. Coupling of the mechanical equilibrium with flux

Gathering Eqs. (16), (32), (34) and (36), and introducing a group of parameters with the aim of turning the system lighter
and easy-to-handle, it is rendered:
Fig. 4. Set of soil states required for relating Vp .



Fig. 5. Set of soil states required for relating Vg .
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Cijkl _ekl
� �

;j þ a1 _pw
;i þ a2 _pp

;i þ a3 _p g
;i þ _Fi ¼ 0

a1 _eii � a11 _pw � a12 _pp � a13 _p g þ 1
qw

qw
Kw

ij

lw
pw
;j

 !
;i

¼ 0

a2 _eii � a21 _pw � a22 _pp � a23 _p g þ 1
qp qp Kp

ij

lp pp
;j

 !
;i

¼ 0

a3 _eii � a31 _pw � a32 _pp � a33 _p g þ 1
q g

D�ijp
g
;j

� �
;i
¼ 0

ð37Þ
All the coefficients involved in Eq. (37) are written out in A.
Eqs. (37) stand for a system of partial differential equations for the solution of soil consolidation problems with pollutant

transport derived out of a combination of a collection of stress situations applied to a soil system. This formulation leads to
non symmetrical matrices when the finite elements method is applied and may be straightforward reduced to any other
situations therein encompassed (i.e., the saturated case, non-saturated without pollutant, etc.) by manually adjusting
selected coefficients (regarding on the degree of saturation of each phase). The simplicity of this fact rules out any possibility
of conceptual drawbacks at the time that increases computer resources optimization. However, some of the coefficients
require a more detailed inspection, e.g. Csw and Csp.
2.7.1. Suction–saturation and relative permeability coefficients
Both Csw and Csp involve a derivative of the water saturation and the pollutant saturation with respect to its respective

suction. Therefore, functions relating, on the one hand, Sw with pcw and, on the other hand, Sp with pcp are required. Di
Rado et al. [25] presents a general guidelines on how to cope with these kind of functions towards the Csw determination.
Therein, saturation–suction curves (SSC) gave the experimental support to the mathematical approach (see Fredlund and
Xing [32]). However, those curves were sketched out when the only present fluid was water. When the soil structure is
permeated with pollutants, the interactions between both fluids and the air phase, bring forth a family of pollutant SSC
for each state of water saturation and conversely (see Mroginski et al. [15] and Arega and Hayter [33]). Along with this family
of functions, the relative permeability coefficient must be evaluated.

An effective strategy was brought about in Hicks and Grader [34] in which, resting on reduced saturation spaces obtained
through experimental testes in which one partial saturation is held constant whilst the others vary, the relative permeability
coefficients for the three-phase system are assessed. Regarding the suction saturation curves for the aforementioned system,
a tactic somehow analogous to Hicks and Grader [34] may be addressed here by redesigning the experimental test under-
lying the ternary diagrams:

(a) Csw: Maintaining the same basic variables for the plane triangle, namely the different degree of saturation of each
phase, a different additional dimension is regarded, viz. the water matric suction. The experimental test must be con-
ducted setting the pollutant saturation to constant values and therefore evaluating the suction changes with water
saturation (see Fig. 6(a)). With the SSC hereby obtained and following similar guidelines to those given in Ref. [32],
Csw may be reckoned. Furthermore, once Csw is evaluated for several points on segments parallel to the gas saturation
side of the basic triangle (i.e., lines of constant gas saturation), isolines may be sketched rendering a Csw map,
admitting that some suitable mathematical model is adjusted (see Fig. 6(a)).

(b) Csp: This coefficient may be attained in a process tantamount to the previous one with a single however
fundamental shift: The laboratory tests must be managed holding the water saturation unaltered, see Fig. 6(b)
(see Refs. [35] [36,37]).
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3. Multiphase flow. Generalization to N mutually immiscible fluids

The multiphase flow problem may be straightforward taken over by merely setting out the coefficients showed up in Eq.
(37). In fact, one of the remarkable features of the approach introduced hitherto is the adaptability through clear-cut manip-
ulation of the abovementioned equations.

3.1. Solid phase

The Eq. (16), when rephrased for multiphase flow, becomes:
Cijkl _ekl

� �
;j þ

X
K¼1;Nþ1

aK _pK
;i þ _Fi ¼ 0 ð38Þ
Where aK ¼ aSK with K ¼ 1; . . . ;N þ 1 for N immiscible aqueous and non aqueous fluids and one gaseous phase.

3.2. Fluid phase

The govern equation for N immiscible fluids, with I ¼ 1; . . . ;N , J ¼ 1; . . . ;N , K ¼ 1; . . . ;N þ 1 and L ¼ N þ 1 is:
aI _eii �
X

K¼1;Nþ1

aIK _pK þ 1
qI

qI
KI

ij

lI
pI
;j

 !
;i

¼ 0 ð39Þ
being
aII ¼ SI
n
KI
þ a� nð Þ 1

Ks
� 1

KT

� 	
SI þ

X
J¼1;N

CsJ

n
dpL � dpJ
� � !

þ a� nð Þ
KT

" #

aIJ ¼ SISJ a� nð Þ 1
Ks
� 1

KT

� 	
 �
8 I – J

aIL ¼ SI a� nð Þ 1
Ks
� 1

KT

� 	
SL �

X
J¼1;N

CsJ

n
dpL � dpJ
� � !" # ð40Þ
and
CsJ ¼ n
dSJ

dpcJ ð41Þ
3.3. Gaseous phase

Considering multi-fluids, the governing equation for the gaseous phase is:
aL _eii �
X

K¼1;Nþ1

aLK _pK þ 1
qL

D�ijp
L
;j

� �
;i
¼ 0 with L ¼ N þ 1 ð42Þ
Fig. 6. (a) Map of estimated matrix suction using linear interpolation, (b) 3D graphics of the matrix suction.
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with
aLJ ¼ a� nð Þ 1
Ks
� 1

KT

� 	
SL SJ þ

CsJ

n
dpL � dpJ
� �� 	
 �

aLL ¼
nSL

P
þ a� nð Þ 1

Ks
� 1

KT

� 	
SL SL �

X
J¼1;N

CsJ

n
dpL � dpJ
� � !

þ a� nð Þ
KT

" # ð43Þ
Considerations emphasized for Csw and Csp are likewise valid for CsI . However, provided that multiphase flow involves in
advance an elevated number of fluids, clearly, evaluating these coefficients is too complex an experimental task.
4. Versatility

One turning point of any mathematical model is its capacity to withstand those situations in which the outcomes respond
to a well-known pattern whether quantitative or qualitative. To validate Eqs. (38), (39) and (42), different fringe cases were
suggested and the adaptability of the model is put forward under consideration.

4.1. Fully saturated case

Considering the saturated case, it entails setting N ¼ 1; Sw ¼ 1; Sg ¼ 0. Attending these prerogatives, the relevant
coefficients have the following values:
Sw ¼ 1) a1 ¼ a ^ a2 ¼ a12 ¼ a21 ¼ a22 ¼ 0 ^ a11 ¼
nSw

Kw
� a� nð Þ

Ks
ð44Þ
and the full system for one fluid, i.e. Eq. (37), converge to the same model presented in Ref. [24]

4.2. Non saturated without pollutant phase

Considering the absence of a pollutant phase (Sp ¼ 0 and Sw þ Sg ¼ 1), the full system size is straightforward reduced to
the one presented in Ref. [25], with the vanishing of the following coefficients:

� a2 ¼ a12 ¼ a22 ¼ a23 ¼ a32 ¼ 0
� a1; a3; a11; a13; a31 and a33 amount those presented in Ref. [25]

When the saturation change with suction is disregarded (a soil with high or low water saturation) the system is further
reduced to a symmetric one with coefficients a13 ¼ a31 as well as a noteworthy simplification of a11 and a33 is endured,
everything in accordance with Ref. [25]
5. A consistency check: two tantamount fluids with air presence

Consider the situation in which two immiscible phases with identical physical and chemical characteristics and
an additional gaseous phase. The overall behavior of the system should equal the solution in Ref. [24] which, in
turn, should lead to a reduction in the system of Eq. (37) according to Ref. [24]. In order to undertake this
endeavor, the following quantities must be introduced: Sw ¼ bSl; Sp ¼ cSl;w ¼ p and bþ c ¼ 1.

Being Sl the total liquid fluid saturation, and being b and c the proportional coefficients that add up to one. Due to the fact
that both fluids were almost equivalent, Eq. (37) may be reformulated consequently.

5.1. Solid phase

With the assumption of tantamount liquid phases, being both phases water for example, there are no reason for suppos-
ing that pp and pw will bring forth different values throughout the consolidation process. Then, it would be mandatory to set
pp ¼ pw. Now, the first equation of the Eq. (37) conveys:
Cijkl _ekl

� �
;j þ a1 þ a2ð Þ _pw

;i þ a3 _p g
;i þ _Fi ¼ 0 ð45Þ
with
a1 þ a2 ¼ aSw þ aSp ¼ a Sw þ Spð Þ ¼ a bSl þ cSlð Þ ¼ aSl ð46Þ
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5.2. Water phase

Again, if are to be two waters, pp ¼ pw is introduced and:
a1 _eii � a11 þ a12ð Þ _pw � a13 _p g þ 1
qw

qw
Kw

ij

lw
pw
;j

 !
;i

¼ 0 ð47Þ
where
a1 ¼ aSw ¼ abSl ð48Þ

a11 þ a12 ¼ Sw
n

Kw
þ a� nð Þ 1

Ks
� 1

KT

� 	
Sw þ

Csw

n
dp g � dpw� �

þ Csp

n
dp g � dpp� �� 	

þ a� nð Þ
KT


 �

þ SwSp a� nð Þ 1
Ks
� 1

KT

� 	
 �
ð49Þ
with
Csw ¼ n
dSw

dpcw ¼ n
dSl

dpcw
Sw

Sl
; Csp ¼ n

dSp

dpcp ¼ n
dSl

dpcp
Sp

Sl
ð50Þ
In the previous, both b and c were considered constant throughout the process. Putting Eq. (50) in Eq. (49) and after some
algebraic work, it is obtained
a11 þ a12 ¼ Sw
n

Kw
þ a� nð Þ

Ks
Sw þ dp g � dpw� � dSl

dpcw þ Sp

� 	
� a� nð Þ

KT
dp g � dpw� � dSl

dpcw � Sg

� 	
 �
ð51Þ
5.3. Pollutant phase

With pp ¼ pw, it is obtained
a2 _eii � a21 þ a22ð Þ _pp � a23 _p g þ 1
qp qp Kp

ij

lp pp
;j

 !
;i

¼ 0 ð52Þ

a2 ¼ aSp ¼ acSl ð53Þ

a21 þ a22 ¼ Sp
n

Kp
þ a� nð Þ 1

Ks
� 1

KT

� 	
Sp þ

Csp

n
dp g � dpw� �

þ Csw

n
dp g � dpp� �� 	

þ a� nð Þ
KT


 �

þ SwSp a� nð Þ 1
Ks
� 1

KT

� 	
 �
ð54Þ
Again, regarding Eq. (50) and doing some algebraic duty, it is obtained
a21 þ a22 ¼ Sp
n

Kw
þ a� nð Þ

Ks
Sw þ dp g � dpw� � dSl

dpcw þ Sp

� 	
� a� nð Þ

KT
dp g � dpw� � dSl

dpcw � Sg

� 	
 �
ð55Þ
5.4. Gaseous phase

For this phase, all manipulation is constrained to add up coefficients a31 and a32 and to include Eq. (50) in the resulting
addition as well as in a33. Then
a31 þ a32 ¼ a� nð Þ 1
Ks
� 1

KT

� 	
Sg Sl þ dp g � dpw� � dSl

dpcw

� 	
 �
ð56Þ

a33 ¼
nSg

P
þ a� nð Þ 1

Ks
� 1

KT

� 	
Sg Sg � dp g � dpw� � dSl

dpcw

� 	
þ a� nð Þ

KT


 �
ð57Þ
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5.5. The combination

Adding Eqs. (51) and (55), it is obtained:
a11 þ a12 þ a21 þ a22 ¼ Sl
n

Kw
þ a� nð Þ

Ks
Sl þ dp g � dpw� � dSl

dpcw

� 	
� a� nð Þ

KT
dp g � dpw� � dSl

dpcw � Sg

� 	
 �
ð58Þ
Adding the second and third equations of Eq. (37) and substituting: w ¼ p ¼ l; kfi ¼ kwi þ kpi yields
a1 þ a2ð Þ _eii � a11a12 þ a21 þ a22ð Þ _pl � a13 þ a23ð Þ _p g þ 1
ql

ql
Kl

ij

ll
pl
;j

 !
;i

ð59Þ
Both Eqs. (58) and (59) are equivalent to a11 and to the second of Eq. (34) in Ref. [25] respectively. That is, starting from a
four phase system of Eq. (37) and after introducing simply an additional relationship among two unknowns (i.e. pw ¼ pp)
from a concrete practical situation (both fluids might be indeed equal and no longer immiscible), the model boils down
to the one addressed in the aforementioned reference which stood for a three phase scheme with only one fluid phase.
This is too important a conclusion, all the more because the convergence of the four phase system to the simpler case of
Ref. [25] when only one fluid is present, allows validating not only the equations regarding relative permeability along with
the ensuing mathematic but also all those stress states that involve the pollutant pore pressure, putting forward the consis-
tency of the present extension
6. Finite element implementation

Applying the Galerkin method to the system of Eq. (37) and using the finite element technique, it is obtained the follow-
ing system of ordinary differential equations:
K _�uþ Csw
_�pw þ Csg

_�p g þ Csp _�pp ¼ _Fs

Cws
_�uþ Pww

_�pw þ Cwg
_�p g þ Cwp _�pp þHww �pw ¼ _Fw

Cgs
_�uþ Cwg

_�pw þ Pgg
_�p g þ Cgp _�pp þHgg �p g ¼ _Fg

Cps
_�uþ Cpw

_�pw þ Cpg
_�p g þ Ppp _�pp þHpp�pp ¼ _Fp

ð60Þ
All the matrices involved in Eq. (60) are summarized in B.
7. Numerical example

In order to validate the numerical model attained in the previous paragraph as well as to give a numerical foothold to the
discussion addressed in Section 5, the same one dimensional consolidation problem selected in Lewis et al. [38] was solved
via the finite element based open code FECCUND (developed by the authors in Ref. [15,19,25,39]) using isoparametric ele-
ments with eight nodes for displacements and four for pore pressures.

The original soil column was assumed to be unsaturated with initial water saturation Sw equal to 0.52. The initial pore
water pressure pw was taken equal to 0.280 kPa and the boundary pore water pressure was instantaneously changed to
420 kPa at the surface. The column height was taken equal to 1 m. The material parameters were: Young’s modulus
E = 173000 kPa, Poisson’s ratio m = 0.4, Permeability k = 0.11456 m/day, Void ratio e = 0.4, and the parameters for the sat-
uration suction relationship (according to [32]) are: a = 427; n = 0.794; m = 0.613; pc

r = 3000 kPa and S0
w = 1.0.

In Fig. 7a the geometry, the finite element mesh, the load and the boundary conditions were shown as well as the points
where displacements and water saturation evolution were analyzed. The following value for the boundary conditions are: (1)
Lateral surface: u = 0.0; (2) Bottom surface: v = 0.0; (3) Top surface: pw = 420 kPa, p g = atmospheric pressure.

Now, the inclusion of the pollutant phase was carried in two ways: setting the pollutant saturation equal to 22% and
water saturation equal to 30% (both summing up to 52%, the very value of the original column) and adopting different sat-
uration suction curves for each other. Fig. 7(b) shows the vertical displacement vs. time for some selected points. Two impor-
tant conclusion may be drawn here: (1) The present model in the absence of a pollutant phase (Sp ¼ 0) bring forth a plot that
properly adjusts to Lewis et al. [38]; (2) When both liquids are simulated but the same saturation suction curve is regarded,
the situation is tantamount to two waters (or two pollutants) and the displacement curve fits exactly the one simulated in the
previous point and thereby validating the convergence condition outlined in Section 5.

Fig. 8 shows how air, water and pollutant pore pressure change with time at a depth of 0.5 m within the same column. For
the sake of simplicity the only difference in the genus of the saturation–suction curve for water phase and pollutant phase is
the value of parameter m. For the water phase, m is maintained at 0.613 whereas for pollutant it is varied between 0.213 and
1.013. A remarkable fact is that, when m is the same for pollutant and water, both pore pressure curves merge into one
which, in fact, matches the outcomes when Sp = 0 and Sw = 52%. Another noteworthy feature is the meager variation of water
pore pressure when the pollutant characteristic curve is altered.



Fig. 7. Soil column: (a) geometry and boundary conditions; (b) displacement vs. time for selected points.
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8. Final remarks

A general formulation and its finite element implementation and numerical solution for non-saturated soils consolidation
with the presence of a pollutant phase were presented as well as a tentative extension to multi phase flow. The non-linear
saturation suction and permeability-suction functions for both water and pollutant phase were incorporated along with the
Galerkin-based finite element model. The governing equation, in terms of displacement and fluid pressures, result in a
coupled non-linear partial differential equation system. Some of the coupling factors, i.e., those due to the rate of
suction-saturation relationship, can be straightforward decoupled by merely setting certain coefficients to special values
when facing conditions of high liquid saturation which in turn, leads to simple symmetric formulations as indicated by
Di Rado et al. [25]. Widely,

1. The stress state-base combination model can be straightforward extended to encompass a wider set of diverse fluids
heading always to a flexible mathematical framework in the sense of its coupling–decoupling capability with the ensuing
waning of computational requirements.

2. Simple expressions for the compressibility of solid structure with respect to a change in water suction along with the
compressibility of solid structure with respect to a change in pollutant suction were introduced.

3. For evaluating the coefficients relating fluid saturation rates with respect to suction, i.e. Csw and Csp, (Eq. (33)), a revision
of the classical laboratory test was introduced. Furthermore using the upshots thereby drawn and adding a suitable
interpolation methods, a handy ternary map for both Csw and Csp, may be outlined.
Fig. 8. Pore pressure at 0.5 m of depth for: (a) gaseous phase; (b) water phase; (c) pollutant phase.
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4. An extension of the mathematical approach to ‘‘N’’ immiscible pollutant phases was outlined. However, some forewarn-
ings towards Csi evaluation were posed.

5. In view of the herein introduced framework encompass that given by [25], all the noteworthy features depicted for that
model naturally hold for the present case.

6. The mathematical framework validation shows an appealing behavior and wide adaptability when fringe selected situa-
tion are induced.

Appendix A. Coefficients involved in Eq. (37)
a1 ¼ aSw; a2 ¼ aSp; a3 ¼ aSg

a11 ¼ Sw
n

Kw
þ a� nð Þ 1

Ks
� 1

KT

� 	
Sw þ

Csw

n
dp g � dpw� �

þ Csp

n
dp g � dpp� �� 	

þ a� nð Þ
KT


 �

a12 ¼ SwSp a� nð Þ 1
Ks
� 1

KT

� 	
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a13 ¼ Sw a� nð Þ 1
Ks
� 1

KT

� 	
Sg �

Csw

n
dp g � dpw� �

� Csp

n
dp g � dpp� �� 	
 �

a21 ¼ SpSw a� nð Þ 1
Ks
� 1

KT

� 	
 �

a22 ¼ Sp
n

Kp
þ a� nð Þ 1

Ks
� 1

KT
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Sp þ

Csp

n
dp g � dpp� �

þ Csw

n
dp g � dpw� �� 	

þ a� nð Þ
KT


 �

a23 ¼ Sp a� nð Þ 1
Ks
� 1

KT

� 	
Sg �

Csp

n
dp g � dpp� �

� Csw

n
dp g � dpw� �� 	
 �

a31 ¼ a� nð Þ 1
Ks
� 1

KT

� 	
Sg Sw þ

Csw

n
dp g � dpw� �� 	
 �

a32 ¼ a� nð Þ 1
Ks
� 1

KT

� 	
Sg Sp þ

Csp

n
dp g � dpp� �� 	
 �

a33 ¼
nSg

P
þ a� nð Þ 1

Ks
� 1

KT

� 	
Sg Sg �

Csw

n
dp g � dpw� �

� Csp

n
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 �
Appendix B. Finite element matrix in Eq. (60)
_ui ¼ Nu _�u _�p g ¼ Np _�p g _pw ¼ Np _�pw _pp ¼ Np _�pp m ¼ 1;1;1;0;0;0f g

K ¼
R

X BuT DBu dX Pww ¼ �
R

X a11NpT Np dX

Ppp ¼ �
R

X a22NpT Np dX Pgg ¼ �
R

X a33NpT Np dX

Csw ¼
R

X a1BuT mNp dX Cws ¼
R

X a1NpT mBu dX

Csp ¼
R

X a2BuT mNp dX Cps ¼
R

X a2NpT mBu dX

Csg ¼
R

X a3BuT mNp dX Cgs ¼
R

X a3NpT mBu dX

Cpw ¼ �
R

X a21NpT Np dX Cwp ¼ �
R

X a12NpT Np dX

Cgw ¼ �
R

X a31NpT Np dX Cwg ¼ �
R

X a13NpT Np dX

Cgp ¼ �
R

X a32NpT Np dX Cpg ¼ �
R

X a23NpT Np dX

_Fw ¼ �
R

Cw
NpT _qw dC Hww ¼

R
XrNpT Kw

lwrNp dX

_Fp ¼ �
R

Cp
NpT _qp dC Hpp ¼

R
XrNpT Kp

lprNp dX

_Fg ¼ �
R

Cg
NpT _qg dC Hgg ¼

R
XrNpT D�

P 1� Swð ÞnrNp dX

_Fs ¼
R

X NuT _b dXþ
R

Cg
NuT _t dX



P.A. Beneyto et al. / Applied Mathematical Modelling 39 (2015) 6880–6896 6895
where:
Nu
 :
 Vector containing the interpolation functions of the displacements components.

Np
 :
 Vector containing the interpolation functions of the water and gas pressures.

Bu
 :
 Matrix relating strain and displacement components.

D
 :
 Constitutive matrix.

b
 :
 Body force vector acting on the element domain.

t
 :
 Surface force vector acting on the element boundary.

rN
 :
 Gradient of the interpolation functions.

qw
 :
 Water flux through the boundary element.

qp
 :
 Pollutant flux through the boundary element.

qg
 :
 Air flux through the boundary element.
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