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This paper describes the determination and evaluation of the major and trace element composition (Al,
As, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Pb, Sr and Zn) of Sechium edule (Jacq) Swartz fruits collected from
four different places of production in Corrientes province, Argentina. Element concentrations were deter-
mined by using inductively coupled plasma optical emission spectrometry (ICP OES) after microwave
digestion. The accuracy was confirmed with standard reference material of spinach leaves (NIST,
1570a) and spiking tests. Principal component analysis (PCA), linear discriminant analysis (LDA), k-
nearest neighbors (kNN), partial least square-discriminant analysis (PLS-DA) and support vector machine
(SVM) were applied to the results for discriminating the geographical origin of S. edule fruits. Finally, the
LDA method was found to perform best with up to 90% accuracy rate based on the following elements: Ca,
Ba, Cu, Mn, Na, Sr, and Zn.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction garden has been located. Thus the origin of a fruit product is an
Sechium edule (Jacq) Swartz fruits are appreciated for their
nutritional quality. Those fruits contain multiple phytochemicals,
as well as vitamins, minerals, and essential amino acids (Rao
et al., 1990). These nutritional characteristics and the softness of
the fruit flesh make it particularly suitable for its use as thickener
in the manufacture of baby foods or hospital diets (Aung, Ball, &
Kushad, 1990). In addition, the medicinal use of S. edule has also
been documented throughout the literature. Several properties
such as diuretic, antihypertensive, anti-inflammatory, and cardio-
vascular effects of this plant have been reported in the literature
(Gordon, Guppy, & Nelson, 2000; Ordoñez, Gomez, Vattuone, &
lsla, 2006).

The S. edule fruit is extensively produced and consumed in some
Latin-American countries such as Brazil, Peru and Mexico. This
crop can be grown with relative ease due to its adaptability to a
wide range of climatic conditions (Saade, 1996). In other regions,
including some U.S. states and Southern European countries,
S. edule fruits are only produced on a small scale, as home-grown
food crop. The characteristics of the fruit are highly depending
on the geographical region and farming practices in which the fruit
important factor, affecting its quality.
Moreover, there are several important nutritional parameters

affecting the quality of fruits. The mineral profile is an important
quality parameter of horticultural products and depends of differ-
ent factors, including soil type and environmental growing condi-
tions. Thus, the mineral composition is a powerful tool for
several types of food traceability. In this context, inductively cou-
pled plasma optical emission spectrometry (ICP OES) has com-
monly been used to determine the geographic origin of crops
(Mir-Marqués, Domingo, Cervera, & de la Guardia, 2015;
Szymczycha-Madeja & Welna, 2013). ICP OES is a powerful tool
for the simultaneous, rapid and accurate determination of metals
and non-metals (inorganic elements) in a variety of samples at
wide linear dynamic ranges (from trace to major elements). The
application of chemometric methods combined with multielement
analysis is an effective way to characterize and classify foods and
vegetables from different geographical origin, allowing to detect
the presence of fingerprint patterns in the samples (Barbosa
et al., 2014; Drivelos, Higgins, Kalivas, Haroutounian, & Georgiou,
2014; Li et al., 2014).

The aim of this work was to evaluate the major and trace ele-
ment data (Al, As, Ba, Ca, Cd, Co, Cu, Fe, K, Mg, Mn, Na, Pb, Sr and
Zn) in combination with advanced chemometric techniques to
investigate the potentiality of mineral composition as indicator
of geographical origin of S. edule fruit samples, coming from four
different Argentinean areas of production.
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2. Material and methods

2.1. Sample collection and preparation

In this paper, a total of 92 samples of S. edule fruits were ana-
lyzed for their major and trace element contents. The samples were
provided from local growers of four cities from Corrientes pro-
vince, namely: Bella Vista (Bv) (28��310S, 59�020W), Corrientes city
(CT) (27�270S, 58�460W), Monte Caseros (MC) (30�070S, 57�340W)
and Santo Tome (ST) (28�340S, 56�060W). A map of the studied sam-
pling regions is provided in the supplementary information (SI-1).
The province of Corrientes is located in the Northeast region of
Argentina. It comes in form of a wedge between Uruguay and Bra-
zil (to East), and Paraguay (to North). The Corrientes province cov-
ers a superficial area of 88.199 km2. As part of the subtropical area
of Argentine Mesopotamia, the province has humid climate, the
annual average rainfalls is 1100 mm, with only two distinct sea-
sons: summer from October to March and winter from May to
August. April and September are transitional months in which tem-
peratures are below the midsummer averages and minimums may
dip below freezing.

The samples were obtained between September and October
2014. After collection the samples were immediately stored in
the dark at 4 �C (refrigerator) until analysis. All fruits were first
cleaned and washed with deionized water. The fresh fruits were
processed in order to separate the seed and skin. The edible part
of the fruits was weighed and mixed, and immediately after the
samples were crushed and homogenized with a domestic mixer,
and finally frozen at �20 �C in a freezer. Afterwards, they were
freeze-dried for a minimum of 48 h at a chamber pressure of
0.05 mbar. The dried samples were pulverized with a domestic
mixer, and the powered samples were stored in polyethylene dry
containers until analysis.
2.2. Reagents

Ultrapure deionized water (18.2 MX cm�1) was obtained from a
Milli-Q Pluswater purification system Millipore (Molsheim,
France). Analytical reagent grade HNO3 65% and ultra-pure grade
30% (m/m) H2O2 were acquired from Sigma (St. Louis, MO, USA).
Nitric acid was additionally cleaned by sub-boiling distillation.
Prior to use, all plastic containers were soaked in 10% v/v sub-
boiling HNO3 for at least 24 h and then rinsed extensively with
ultrapure deionized water. All types of glassware were avoided
to prevent metal releases. All plastic containers, polyethylene
flasks, pipette tips, PFA Teflon digestion vessels, and reagents
exposed to samples, or standards, were tested for contamination.
2.3. Instrumentation

The samples were digested by microwave-assisted digestion
using an Ethos One microwave system (Milestone, Chicago, USA),
equipped with programmable power control (maximum power
1600W) and segmented rotor HPR 1000/10 s (operating pressure
up to 35 bar maximum; operating temperature 260 �C maximum)
with 10 reaction vessels. Measurements were carried out with a
Vista Pro (Varian, Australia) optical emission spectrometer with
inductively coupled plasma and axial viewing configuration,
equipped with a solid-state detector, Sturman-Masters mist cham-
ber, and V-groove nebulizer. Selected emission wavelengths for the
analysis were chosen according to previous interference studies
(Larrea-Marín, Pomares-Alfonso, Gómez-Juaristi, Sánchez-Muniz,
& de la Rocha, 2010). The lines that exhibited low interference,
high analytical signal and background ratios were selected. These
wavelengths were as follow: Al 309.271 nm, As 193.691 nm, Ba
455.403 nm, Ca 373.690 nm, Cd 226.499 nm, Co 228.615 nm, Cu
324.754 nm, Fe 238.204 nm, K 766.491 nm, Mg 285.213 nm, Mn
260.569 nm, Na 588.995 nm, Pb 220.350 nm, Sr 421.534 nm, and
Zn 213.855 nm.

2.4. Sample digestion

Digestion of the samples and standard reference material (SRM)
was carried out by weighing 500 mg of freeze-dried sample
directly in the digestion vessels and adding 5 mL of sub-boiled
HNO3 (65%) and 2 mL of H2O2 (30%). Then, they were left open
for 15 min for reacting in order to reduce the built up of gases
which could increase the pressure inside the vessels. The power
of the microwave for each digestion step was optimized, from
500 up to 1000 W. In all cases, the lowest power that provided
the required temperature was selected. The digestion was com-
plete in all cases, as checked by the analysis of SRM and recovery
studies. After cooling at room temperature, all the digestion solu-
tions were quantitatively transferred into plastic containers and
diluted to 25 mL with ultrapure deionized water. A digestion blank
was carried out in the same way. All samples (digest and blank
solutions) were measured in triplicate.

2.5. Quality control

Reagent blanks were made regularly together with each batch
of sample digestion. SRM was digested and measured together
with the different sample batches in order to control the trueness
of data found. Additionally, control standards were measured for
every series of ten independent sample measurements.

The accuracy of the method was proved by analyzing a SRM:
NIST 1570a (spinach leaves), obtained from the National Institute
of Standards and Technology (Gaithersburg, MD, USA). This mate-
rial was analyzed under the same conditions as the samples. More-
over, due to the Fe content was not certified in the NIST 1570a
SRM, the accuracy of the determination of Fe was also evaluated
by analysis of standard water solution for ICP, TraceCERT�

obtained from Sigma (St. Louis, MO, USA). In addition, in order to
further evaluate the proposed method, spike recovery studies were
performed for all analytes in randomly selected samples.

Calibration curves were obtained at five different concentration
levels in triplicate. Calibration ranges were modified according to
the expected mineral concentration ranges. Limits of detection
(LOD) and limit of quantification (LOQ) achieved with considered
sample preparation procedure were calculated as three point three
and ten times of the standard deviation of ten replicates of blank
solutions, which were prepared in the same way as those of fruit
samples.

The precision of the proposed procedure was also evaluated by
measuring the repeatability and reproducibility. In the repeatabil-
ity test (within-day precision), a digested sample was analyzed
three times within one day; and in the reproducibility test (day-
to-day precision), sample digestion and ICP OES analysis were
studied by triplicate analyses of three samples on three days for
a period of three weeks.

2.6. Multivariate data processing

Evaluation of the geographical origin of fruits can be facilitated
using multivariate approach. Different chemometrics techniques
were applied in order to visualize the data structure and to classify
the samples according to their origin and to detect corresponding
markers, namely principal component analysis (PCA), linear dis-
criminant analysis (LDA), k-nearest neighbors (kNN), partial least
square-discriminant analysis (PLS-DA) and support vector machine
(SVM). All basic statistic and multivariate analysis were carried out
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using R software version 3.2.0 (R Core Team, 2014) with caret
package (Kuhn, 2008).

3. Results and discussion

3.1. Method validation

Although the analytical procedure we adopted is well estab-
lished, it is important to validate the entire procedure. The accu-
racy of the procedure was made by analyzing a SRM (NIST
1570a) Spinach Leaves, for Al, As, Ca, Cd, Co, Cu, K, Mn, Na, Sr,
Table 1
Limit of detection (LOD) and quantification (LOQ) of elements achieved with ICP-OES,
average precision for repeatability of solutions (RSD) and recoveries for spiked S. edule
fruit samples (n = 5) digested by microwave-assisted wet digestion.

LODb

(mg/kg)
LOQb

(mg/kg)
RSD
(%)

Recovery
(%)

Al 0.5 1.6 5.4 98
As 0.1 0.30 0.9 100
Ba 0.02 0.08 4.4 103
Caa 1.4 4.6 1.5 96
Cd 0.03 0.10 2.7 95
Co 0.02 0.05 4.2 102
Cu 0.02 0.05 5.3 105
Fe 0.5 1.5 4.3 99
Ka 2 7 6.2 98
Mga 0.5 1.7 2.5 100
Mn 0.3 0.90 1.6 102
Naa 0.1 0.50 3.3 104
Pb 0.16 0.55 3.4 102
Sr 0.03 0.09 1.8 95
Zn 0.03 0.10 2.9 98

a Major elements were spiked at 5.0 mg/kg, others were spiked at 0.5 mg/kg.
b LOD and LOQ are referred to dry sample taking into account the sample mass

0.5 g and dilution carried out for measurement.

Table 2
Major and trace element concentrations of S. edule samples from Corrientes province (Arg

Element
[mg/kg]

Corrientes
n = 19

Al Mean 3.7
Range 2.0–6.2

As <LOQ

Ba Mean 3.2
Range 1.2–6.0

Ca Mean 193
Range 183–201

Cd <LOQ

Co Mean 0.25
Range 0.22–0.50

Cu Mean 0.37
Range 0.20–0.66

Fe Mean 2.9
Range 2.2–4.2

K Mean 1860
Range 1670–2000

Mg Mean 202
Range 156–236

Mn Mean 0.7
Range 0.4–1.0

Na Mean 10.7
Range 9.0–12.0

Pb <LOQ

Sr Mean 2.4
Range 2.0–3.5

Zn Mean 4.4
Range 2.5–6.5
and Zn. Good agreement was achieved between the data obtained
by the present method and certified values. The mean recoveries of
elements ranged from 97% to 105% and standard deviations were
less than 10%. In addition, the method was also validated for Fe
determination with satisfactory results (97.5%).

On the other hand, spike tests were also executed to evaluate
the accuracy of the proposed method. The recoveries, depicted in
Table 1, were in the range of 95%–105% with relative standard
deviation (RSDs) lower than 6.5% in all cases (n = 5). The obtained
recoveries confirmed that no significant elemental losses occurred
during the digestion process.

The capability of the method to detect the studied elements was
estimated through the determination of the LODs and LOQs exper-
imentally (Table 1). As can be seen, all LODs and LOQs were suffi-
ciently below the typical levels of interest for the studied samples.

Finally, inter-day and intra-day repeatability data were
obtained using the described procedure for all the analyzed ele-
ments. The inter-day data were generated on different days using
new instrument settings and new calibrations curves. The relative
standard deviations (RSD) were lower than 10.3 and 6.8% for all the
elements for inter- and intra-day data, respectively.

3.2. S. edule fruits mineral contents

Table 2 summarizes the results obtained for mineral concentra-
tions determined in S. edule fruit samples, according to their geo-
graphical origin. Each sample was independently microwave
digested, and analyzed in triplicate. The levels of potentially toxic
trace elements (Al, As, Cd, and Pb) were very low or even below
the LOQ in all S. edule samples, except Al, which was measured
from 2.0 mg/kg up to 8.5 mg/kg.

From the results, it is clear that K is the most abundant element
in all S. edule fruit samples, followed by Mg, Ca, and Na as the
entina).

Bella Vista
n = 17

Monte Caseros
n = 30

Santo Tomé
n = 26

3.7 5.0 5.5
2.5–5.0 2.0–7.8 2.2–8.5

<LOQ <LOQ <LOQ

2.3 6.7 5.4
1.0–5.2 3.0–7.2 1.2–10.5

168 162 187
144–192 139–183 165–210

<LOQ <LOQ <LOQ

0.22 0.25 0.25
0.20–0.55 0.20–0.58 0.20–0.50

0.40 0.35 0.44
0.32–0.60 0.25–0.68 0.20–0.72

3.0 4.7 4.9
2.3–4.1 2.7–6.9 2.8–6.6

1850 1640 1690
1620–2120 1345–2075 1350–2190

175 165 198
125–208 121–225 112–223

0.6 0.4 0.4
0.2–1.2 0.2–0.5 0.2–0.8

10.9 8.4 7.5
9.5–12.0 5.7–10.5 5.7–9.5

<LOQ <LOQ <LOQ

2.0 3.2 3.8
1.2–3.2 2.5–5.0 3.0–4.7

3.7 6.6 5.3
2.5–5.8 3.0–9.8 2.5–8.1
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second, third and fourth major minerals, respectively. In general,
fruits are considered as a good source of these major elements,
especially K. In line with most of the previous studies, our results
were at similar order than K, Ca, Mg, and Na levels determined in
S. edule fruits collected from Colombian Andes (Leterme, Buldgen,
Estrada, & Londoño, 2006) and Mexico (USDA (U. S. Department
of Agriculture), 2014). On the other hand, in comparison with other
commonly consumed fruits, the major element concentrations (K,
Ca and Mg) in S. edule edible part (flesh) were lower than those
determined in bananas from Tenerife Spain (3500–7500 mg/kg
for K; 180–200 mg/kg for Ca; 320–680 mg/kg for Mg) (Hardisson
et al., 2001), or apples from Croatia (3850–4590 mg/kg for K;
210–540 mg/kg for Ca, 1520–4190 mg/kg for Mg) (Juranović
Cindrić et al., 2012). The Na concentrations in S. edule fruits were
at levels similar to other four cucurbit fruits (the same plant family
of S. edule), such as: caigua, pumkin, cucumber and watermelon
(Oliveira et al., 2014).

The concentrations of trace elements in all S. edule samples
were in general at similar order of magnitude than the observed
by other authors in these fruits (Leterme et al., 2006; Modgil,
Modgil, & Kumar, 2004). Iron and Zn were the most abundant ele-
ments relatively to Mn and Cu contents. However, Fe and Zn con-
tents were significantly lower than those reported in other fruits,
such as banana, apples, citrus, quince or pear fruits (Hardisson
et al., 2001; Juranović Cindrić et al., 2012; Özcan, Harmankaya, &
Gezgin, 2012).
3.3. Differentiation among S. edule fruits of different geographical
origin

To verify the significance of the different geographical origin of
samples, the results were evaluated by using multivariate tools. As
preliminary stage, prior to classification modelling, PCA was car-
ried out for exploratory analysis. This technique was used to visu-
alize the distribution of samples in a reduced-dimensional space,
in order to explore the presence of groups, outliers or trends in
the data. PCA is a multivariate technique that allows an easy visu-
alization of all the information contained in the data set, retaining
most information of the original data set. Prior to the multivariate
processing, the data matrix was standardized (autoscaled) because
the element concentrations were at different orders of magnitude.
Fig. 1. Plot of the first principal component (PC1) versus the second principal componen
edule fruit samples identified according to geographical origin.
In addition, the data matrix was also tested by applying Grubb’s
test (Grubbs, 1969) detecting no outliers.

The results for elemental concentrations in 92 samples were
arranged as a whole data matrix (92 � 12) using the element con-
centration as column and the samples as rows. The potentially
toxic trace elements As, Cd and Pb, were not considered for multi-
variate analysis because of their non-detectable levels in all sam-
ples. At first, PCA was carried out on the whole data matrix,
three principal components with eigenvalues exceeding one were
extracted, which explains up to 64.3% of the total variance. The
loadings of the original variables on the first two principal compo-
nents (PCs) and the variance explained by each PC are shown in
Fig. 1a.

As can be seen, the first principal component was strongly asso-
ciated with the values of Ba, Fe, Mn, Na and Sr. On the other hand,
Mg, Ca and Na were the dominant variables in the second principal
component. The third principal component incorporates informa-
tion from the remaining less abundant elements.

The score plot of two first PCs (Fig. 1b) retained 44.8% of the
variability of the system. Despite the low explained variability
retained in the two first PCs, this explorative analysis stage is cru-
cial to check if the analytical technique is able to collect informa-
tion on the geographical origin of samples (Li Vigni, Durante, &
Cocchi, 2013). The results given in Fig. 1b showed a tendency of
groupings between samples of the same origin. This figure clearly
shows the systematic separation of samples in two principal
groups according to PC1, the first group consisting of MC and ST
samples, and the second group of Bv and CT samples. The MC
and ST samples showed negative scores on PC1 indicating higher
concentrations of Ba, Sr and Fe; furthermore, Bv and CT samples
showed positive scores on PC1 indicating higher concentrations
of K, Mn and Na. Then, the addition of the information resumed
on PC2, allowed us to resolve the score projection in four groups
corresponding to each selected site of origin with some overlap-
ping among groups. Samples with negative scores on PC2 corre-
spond to high concentrations of Ca and Mg; and positive scores
to high concentrations of Na.

In summary, good separation among the samples of four regions
was observed, inferring that they had inherent compositional dif-
ferences and classifying samples from different geographical ori-
gins was feasible.
t (PC2) results: (a) the 2D loading plot, and (b) corresponding score plot for the 92 S.
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PCA showed a natural grouping of the samples according to
their geographical origin. As a result, we consider that the multi-
variate classification analysis can be performed by using as factor
the geographical origin of samples. The goal of supervised pattern
recognition techniques is to create classification rules. Training set
with known class memberships is used to calculate a classifier. A
test set, containing objects not included in the training and also
with known class memberships, serves to validate the model built.
In this work, we selected a training data set randomly (75% of the
objects of the whole data matrix) and used the derived classifica-
tion rule to predict the group membership of the remaining data.
The random sampling was done according to the geographical ori-
gin of samples in order to balance the class distributions within the
splits (stratified sampling). Since the results obtained in each split
of whole matrix depend on the choice of the test data, the proce-
dure was repeated 100 times. This procedure gave a distribution
for the misclassification rate, allowing comparison between the
different discriminatory methods tested. LDA, PLS-DA, kNN and
SVM were used to construct models to classify S. edule fruits
according to its geographical origin.

In this work, the models for discrimination of S. edule fruits
according to their geographical origin were constructed by using
different supervised pattern recognition techniques. The selected
chemometric methods were as follow:

Linear discriminant analysis (LDA) is a linear classification tool
used to differentiate groups of samples as a function of one or
several combinations of experimental variables (Bevilacqua
et al., 2013; Lavine & Rayens, 2009). Discriminant functions
(DFs) are linear combinations of original variables. This method
maximizes the variance between groups and minimizes the
variance within categories.
Partial least square discriminant analysis (PLS-DA) is a linear clas-
sification method that combines the properties of partial least
squares regression with the discrimination power of a classifi-
cation technique (Ballabio & Consonni, 2013). The major advan-
tage in PLS-DA comes from its flexibility, especially when
coping with situations, unforeseen in traditional statistics,
where the number of variables far outnumbers the samples
(Brereton & Lloyd, 2014). Within caret package, the number of
significant PLS components (model dimensionality) is deter-
mined by ten-fold cross-validation.
K-nearest neighbor analysis (kNN) is a distance based non-
parametric approach. This method assigns an object into the
class most common among its k-nearest neighbors in terms of
distance. This method is easy to implement and is computation-
ally fast. The optimal size of neighbor k is estimated by a cross-
validation procedure (Bevilacqua et al., 2013).
Support vector machines (SVM) classify the data by constructing
a separate hyperplane in n-dimensional space, which maxi-
Table 3
The discrimination results of different models for the test sets.

Groups Number of samples LDA PLS-DA
(VLs = 2)a

Training set Test set Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Bv 13 4 100 100 75
CT 14 5 100 100 100
MC 22 8 100 93 86
ST 19 7 83 100 83

Mean accuracy (%) 89.1 84.7

a VLs: number of latent variables.
b k: number of k neighbors.
c C: penalty factor; e:e-insensitive loss function.
mizes the margin between classes. A detailed description of
the theory of SVM can be referred in several excellent books
and tutorials (Kivinen, Smola, & Williamson, 2004; Steinwart
& Christmann, 2008). The SVM method has a number of inter-
esting characteristics, including an effective prevention of over-
fitting, which improves its ability to build models using large
numbers of variables with relatively few experimental samples
in the training set.

PLS-DA, kNN and SVM need to optimize several parameters in
such a way that a suitable number of parameters are selected to
build the model. In this work, the choices of number of latent vari-
ables (LVs) for PLS-DA; number of neighbor k for kNN; penalty fac-
tor C, e of the e-insensitive loss function and kernel type for SVM,
were calculated by using ten-fold cross-validation technique by
which maximum accuracy is selected. In addition, we ran the
SVMwith four types of kernel function: linear, radial basis, polyno-
mial and sigmoid. The best results were obtained when the radial
kernel function was used for SVM.

Once selected the optimal values for each model, the sensitivity
(samples belonging to the class and classified correctly in this
class), specificity (samples not belonging to the modeled class
and correctly classified as not belonging), and the mean accuracy
rate were considered for evaluation of the classification achieved
with the multivariate methods (Marcelo, Martins, Pozebon,
Dressler, & Ferrão, 2014). Table 3 summarizes the results obtained
after the application of the different classification models.

Through the above analysis, we can see that the four models
displayed different degrees of success. Of the four techniques, the
performance of the LDA was the best, with a success rate of
89.1% in the test set and better sensitivity for Bv, CT and MC
groups. The order of successful identification rates was as follows:
LDA > SVM > PLS-DA > kNN (Table 3). Moreover, the search time
spending on LDA model was shorter. So it was an ideal model for
discriminating different geographical origins of samples studied.

Then, in order to evaluate the performance of LDA technique,
LDA algorithm was applied to the entirely data set, and their accu-
racy was analyzed. The objective of this process is not to lose infor-
mation, although the system obtained is more complex.

Two DFs whose Eigenvalues were greater than 1 were obtained
from the data. The first two canonical discriminant functions
explain 98.7% of the variance. Fig. 2 shows the distribution patterns
of all Sechium fruit samples according to their geographical origins
in the plot defined by the first two DFs. This figure showed a good
discrimination between the two principal groups formed by sam-
ples from CT + Bv (negative scores on DF1), and ST + MC (positive
scores on DF1). This spatial distribution of samples in the score plot
corresponding to the first two DFs, is compatible with the short
distance (in terms of longitude) and similar geo-climatic character-
istics among the studied areas.
k-NN
(k = 5)b

SVM
(C = 1; e = 0.053)c

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity
(%)

100 50 100 75 100
100 100 88 100 94
86 71 100 100 100
93 100 87 100 100

82.0 87.0



Fig. 2. Linear discriminant analysis of S. edule samples according to their
geographical origin. Scatter plot representing the projection of the point of all S.
edule samples and of each geographical origin separately on the plane formed by
the first two discriminant functions.

Table 4
Mean daily intake and contribution to the daily requirements of essential elements
for adult men and women from one serving of S. edule fruit (264 g/person/day).

Element DRI
(mg/day)

Intake
(mg/day)

Contribution
to the DRI (%)

Major elements
Ca 1000a 46.8 4.7
Mg 320–400a 48.8 13.5–12.2
K 4700b 465 9.8
Na 1500b 2.4 0.16

Trace elements
Cu Male 0.9a 0.10 11.4

Female 0.9a 11.4
Fe Male 8a 1.02 12.8

Female 18a 5.6
Mn Male 2.3b 0.14 6.1

Female 1.8b 7.7
Zn Male 11a 1.32 12.0

Female 8a 16.5

a Recommended dietary allowances (RDAs).
b Acceptable intakes (AIs).
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It was found that the average prediction accuracies for all 92
samples were 88.2% for Bv samples, 100.0% for CT samples, 96.7%
for MC samples and 96.2% for ST samples. As such, this method
is sufficiently accurate to employ this technique as a screening
method for discrimination of S. edule fruits according to their geo-
graphical origin.

In the final step, we looked to select a reduced number of chem-
ical variables necessary to achieve good discrimination of fruit
samples according to their geographical origin. Thus, we reduced
or eliminated irrelevant information, selecting those parameters
which are important for geographical classification by forward
stepwise LDA (S-LDA). After application of the S-LDA to the data,
most of the samples (93.5% and 90.7% after cross-validation) were
correctly classified selecting the following variables: Ca, Ba, Cu,
Mn, Na, Sr, and Zn. These results indicate that the major and trace
element content in S. edule fruit samples make it possible to clas-
sify them according to the geographical origin reasonably well
(above 90%), by using only seven major and trace element
concentrations.

3.4. Mineral contribution by S. edule fruits

Table 4 summarizes the average daily essential element intakes
based on a 264 g/person/day S. edule consumption and their contri-
bution to the dietary reference intakes (DRI) for adults (Institute of
Medicine & Food and Nutrition Board, 2006). In general, the contri-
bution to the essential mineral intakes for the consumption of one
serving of two S. edule fruit a day may fulfill approximately 9–16%
of the DRIs of several essential elements (Cu, Fe, K, Mg, and Zn).
However, it is important to emphasize that the intake of Fe for
adult women does not exceed 6.2% of DRI established.

In addition, the intake of one serving of S. edule fruits would not
contribute significantly to dietary Na intake. Sodium is essential to
humans but in excess dietary Na can lead to hypertension, the pri-
mary risk factor for cardiovascular disease. Even at the upper end
of the range, the Na content of the samples studied was very low
as expected for fruit contents.

4. Conclusions

In this paper, 15 major and trace elements were determined in
samples of S. edule fruits by using ICP OES after microwave diges-
tion. The multivariate analysis of the major and trace element data
demonstrated that there is an impact of geographical origin on ele-
ment concentrations in S. edule fruit. The variations in certain ele-
ment concentrations (Ca, Ba, Cu, Mn, Na, Sr, and Zn) may serve as a
classifier for determining geographical origin. A higher number of
samples should be analyzed to have robust classification models,
but multivariate analysis performed in the present work suggests
a great potentiality of mineral composition for geographical trace-
ability of S. edule fruits. Finally, the overall concentrations of minor
and essential trace elements for S. edule fruits were found to have
good nutritional contribution in accordance to RDA. The contribu-
tion of the toxic trace elements Al, As, Cd and Pb to the overall
intake from the analyzed fruits was very low and could not pose
any threat to the consuming population.
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