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ABSTRACT

Active control over a backward-facing step flow is studied experimentally by means of plasma

based devices. The Reynolds number based on the step height h is 1520. An electrohydrodynamic

actuator (EHD), dielectric barrier discharge(DBD) type, is flush-mounted to the step wall. The

DBD configuration adds momentum locally, normal to the separated shear layer thus producing

strong modifications downstream. The actuation is periodic and its frequency and amplitude

are scrutinized to characterize the flow behavior under forcing. Measures of velocity fields for

these flows are obtained from particle image velocimetry (PIV). As reported by previous works,

the reattachment length shows an important reduction for an optimum forcing frequency. This

value closely matches the shear layer flow natural frequency. On the other hand, the flow is

less sensitive to the forcing amplitude though the analysis allows us to optimize the actuation in

order to save power consumption.

Nomenclature

EHD Electrohydrodynamic.

BFS Backward facing step.

∗Correspondence author jdadamo@fi.uba.ar
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Re Reynolds number.

U∞ Upstream free flow velocity.

h Backward facing step height.

x,y,z Streamwise, transversal and spanwise spatial coordinates.

∆x PIV spatial resolution.

xr Recirculation bubble length.

H Channel height.

W Channel width.

Er Expansion ratio.

KH Kelvin Helmholtz.

fS Pitot measures sampling frequency.

θ Momentum thickness.

δω Vorticity thickness.

f f Forcing frequency.

St Strouhal number, St = f h/Um.

fEHD Frequency of the DBD signal.

TEHD Period of the DBD signal.

DC% Electrical Duty cycle.

TBurst Burst period to modulate the DBD signal.

TON Time corresponding to DBD signal operating.

G DBD induced flow rate.

U j DBD induced jet velocity.

ux,uy,uz Streamwise, transversal and spanwise velocity components.

U Velocity modulus: U =
√

u2
x +u2

y .

(̄) Time average operator, i.e. ūx = 1/T
∫ T

0 uxdt.

U1,U2 Streamwise velocity for two uniform streams in a pure shear layer problem.

Um Mean streamwise velocity for two uniform streams in a pure shear layer problem, Um = (U1 +

U2)/2.

∆U Streamwise velocity differ for two uniform streams in a pure shear layer problem, ∆U =U1−U2.
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R Velocity ratio for two uniform streams in a pure shear layer problem, R = ∆U/(2Um).

Lω Length scale accounting for vorticity thickness spatial changes.

Ψ Eigenfunction associated to the Rayleigh equation.

k Wavenumber k = kr + iki.

ω Complex frequency ω = ωr + iωi.

fn Natural frequency issued from Rayleigh equation fn = ωr/2π.

f+ Non dimensional forcing frequency f+ = f f / fn.

Q Second invariant of ∇uuu.

Ω Vorticity.

λ Wavelength of the wave perturbation λ =Um/ f f

1 Introduction

Separated flows appear in many examples in nature and engineering systems. Study and control of

separation phenomena has been addressed in the fluid mechanics community in the past decades. In par-

ticular, the flow over a backward facing step (BFS) represents a prototype of separated flows because of

its simple geometry (see Fig. 1(a)) and the fact that the separation point is fixed. The Reynolds number

(Re) may be defined with the upstream velocity U∞ and the step height h. The flow is initially stationary

for low Re, where diffusion dominates (Re < 750). A recirculation bubble region develops and its length

xr grows linearly with Re(Armaly et al., 1983). As studied by Thangam and Knight (1989), the factor of

proportionality depends on the expansion ratio Er = (H −h)/H, where H is the height of the channel.

Complex behaviour of the reattachment phenomena arises from a global three dimensional centrifugal

instability (Barkley et al., 2002; Beaudoin et al., 2004) which takes place at moderate Reynolds num-

bers up to ≈ 750. For greater Re numbers (> 1200), the Kelvin Helmholtz(KH) instability becomes the

predominant mechanisms for flow destabilization due to the increase of the thickness of the shear layer.

The velocity gradients in the y−direction generate a vorticity sheet that eventually rolls-up to produce

the characteristic vortex shedding of this kind of instability. This phenomenon is similar to the free mix-

ing shear layer flow and share some features of its dynamic behavior as studied by Troutt et al. (1984).

The proper scales of the flow are the momentum thickness (θ) or the vorticity thickness δω rather than

the step height h, as pointed out by Hasan (1992).
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On the other side, another unsteady phenomenon called flapping motion was reported by several re-

searchers (see a comprehensive discussion by Spazzini et al. (2001)). First reported by Eaton and John-

ston (1982), the flapping motion is a low frequency instability that is associated to the oscillation of the

recirculation bubble length.

Many works have addressed the problem of controlling separated flows. Actuators include: sound waves

(Bhattacherjee et al., 1986), used to force locally (Chun and Sung, 1996); synthetic jets studied exper-

imentally (Yoshioka et al., 2001; Yamada et al., 2011) or numerically (Dandois et al., 2007; Mehrez

et al., 2010); inlet flow fluctuations studied in (Tihon et al., 2010); use of vortex generators (Duriez

et al., 2006), etc. Even for turbulent flow, the vortex structures generated by the KH instability per-

sist and it is then suitable to focus a control action on them. Some authors agree (Bhattacherjee et al.,

1986; Chun and Sung, 1996; Yoshioka et al., 2001) on the fact that forcing at KH frequency enhances

flow mixing and major reductions on the recirculation bubble length, even for turbulent regimes. But

as pointed out by Dandois et al. (2007), in their investigation of the separated flow in a ramp geometry,

there are some differences reported on the most effective forcing Strouhal number St = f f ℓ/U∞, where

the forcing frequency is non-dimensionalized with a velocity U∞ and a characteristic length ℓ, i.e. the

step height h, the vorticity thickness δω or the momentum thickness θ. A study of BFS flow forced in

a wide range of frequencies around the KH values and with different forcing amplitudes seems to be

lacking.

Flow control EHD actuators have received special attention over the last years, as reviewed by Moreau

(2007) or Corke et al. (2010). Most of these actuators use non-thermal surface plasmas in which the

air flowing close to the surface of the body is weakly ionized. Due to the presence of charged particles

within a highly non-uniform electric field and through a collisional mechanism, the plasma can create

a body force near the electrode surface (Boeuf et al., 2007). Consequently, a flow can be superimposed

without adding mass through this momentum coupling mechanism. The plasma actuators are techno-

logically attractive because of their simplicity (they have no moving parts), their spanwise homogeneity,

the very short response time (typically of the order of milliseconds) and their low energy consumption.

In addition, by means of burst modulation, the plasma actuators allow a relatively easy adjustment of the

actuation control parameters (amplitude and frequency) (Benard and Moreau, 2010). Most of the studies

with plasma actuators in the last decade have been undertaken considering a dielectric barrier discharge
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(DBD) which was perfected for the first time in air at atmospheric pressure by Masuda and Washizu

(1979) for ionic charging of particles. Roth et al. (1998) used it for airflow applications at the end of the

1990s, characterizing the injected momentum for a flat plate and airfoil flows. DBD actuators have also

been applied in the control of bluff body flow as in (Thomas et al., 2006; Jukes and Choi, 2009; Sosa

et al., 2011; D’Adamo et al., 2012). In these kinds of devices, the discharge is produced by applying

a high voltage ac signal to a pair of electrodes that are separated by a dielectric layer. Typically, the

voltage magnitude is a few kilovolts, the ac frequency is between 100 Hz and 10 kHz, and the dielectric

layer is of thickness 0.1-1 mm. Under these conditions, stable surface plasma, consuming tens of watts

per meter of electrode, can be easily created at atmospheric pressure (Moreau, 2007; Corke et al., 2010).

Our aim in this study is to use a plasma actuator to analyze the separated forced flow in a regime in

which transition to turbulence depends mainly on KH instability. The geometry of BFS with a fixed point

for flow separation simplifies the study. Although the flow may present three dimensional structures

(Lanzerstorfer and Kulhmann, 2012) the main instability that develops it is a 2D KH. Furthermore,

the 2D excitation that we perform reduces its spanwise variations as it happens in other separated flow

problems (Naim et al., 2007).

We intend with this work to characterize this kind of flow when it is forced by a plasma actuator.

This would be the necessary benchmark in order to design closed-loop actuation for which this kind of

actuator is an attractive device as it does not need moving parts and forcing amplitudes and frequencies

can be easily operated from output signals of the flow. Furthermore, if the flow behaves linearly for

some range of actuation, this would be an useful feature to start dealing with future closed-loop design.

2 Experimental Setup

2.1 Flow geometry

The experiment takes place in a low-speed closed wind tunnel whose upstream flow velocity U∞

ranges from 0.2 to 2 m/s. As showed in Fig. 1(a), the cross section is square, width W and height

H both of 180 mm length downstream the step. The the BFS has a step height h = 20 mm thus the

expansion ratio Er is H/(H − h) = 1.14. H is constant 1.60m downstream the step and upstream the

step H −h is constant over 0.8m.

Quantitative measurements were carried out using 2D particle image velocimetry (PIV) on a vertical

D’Adamo #Paper FE-13-1519 Page 5



Active control of a backward facing step flow with plasma actuators

plane placed at mid-span of the BFS. The trajectories of the seeding particles and those of the fluid

particles surrounding the tracer have frequently been considered to be the same in flow visualizations by

smoke injection techniques and in PIV experiments. However, if a slipping velocity is verified between

the tracer and the fluid, the trajectories might differ. The tracer particles could “swim” in the moving

media, and the information obtained from the tracers must be carefully examined. In our experiments

the flow is seeded with olive oil droplets, produced by a LaVision V-Z Droplet seeder, with a mean

droplet diameter of 1 micron. As analyzed in a previous article (Artana et al., 2002), the influence of

coulombic forces on the tracer trajectory when using seeding particles of this size can be disregarded

without introducing a significant error.

Image acquisition and PIV calculations were performed using a LaVision system, composed of an Im-

agerPro 1600 × 1200 CCD camera with a 14-bit dynamic range capable of recording double-frame pairs

of images at 16 Hz and a two-rod Nd:YAG (15 mJ) pulsed laser synchronised by a customised PC using

LaVision DaVis 7.1 software. The laser sheet width was about 1 mm in the test section, located at the

middle of the spanwise length of the channel z = 0. The entire 150 mm × 75 mm imaging region gives

a spatial resolution of ∆x = 0.0375h. An identical camera was added when we needed to enlarge the

field of vision in order to characterize longer recirculation bubbles. Additional measures were taken at

z =±W/4 in order to verify the 2D assumption.

Concerning PIV uncertainties, a conservative value can be calculated as follows. The system resolution

for distances can be estimated as the product of the pixel resolution (1/4 pix) and the pixel size (see

i.e. Hart (2000) for a study on PIV uncertainties). In that way, the resolution of the velocity field can

be estimated dividing the latter value by the time between a pair of laser pulses. For the selected case

to be controlled, this time value is 3000µs. In our case the pixel size was about 0.093 mm, leading to a

conservative value of uncertainty

∆u =
1

4
pix0.093

mm

pix

1

1500µs
= 0.03m/s

A Valydine differential pressure transducer with an acquisition frequency up to fS=100 Hz was used to

acquire velocity fluctuations from a Pitot probe schematically showed in Fig. 1(a). The probe is placed
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at x/h = 4,y/h = 0.5,z = 0.

Further post-processing and analysis were done using Scientific Python environment.

2.2 DBD Plasma actuator

The plasma actuator consisted of an asymmetric dielectric barrier discharge (DBD) flush mounted

on the vertical wall of the BFS as is shown in Fig. 1(a). The scheme of the electrodes is more detailed

in Fig. 1(b). This wall (thickness 1 mm) was used as a dielectric barrier for the electrodes of the DBD

discharge. The DBD consisted of a pair of flat aluminum-foil electrodes (50 µm thickness, spanwise

length 180 mm) oriented perpendicular to the mean flow direction.

The electrode exposed to the air (electrode (1)) was connected to the output of an AC power supply

(peak-to-peak voltage VAC in the range 0 - 20 kV) and the encapsulated electrode (electrode (2)) was

grounded. Hence, the plasma actuator induces an ionic wind flow as sketched on Fig. 1(b). The

AC power supply consisted of a function generator coupled to an audio-amplifier (of 700W) that fed

a high voltage transformer coil. In practice there was an optimal matching frequency, established by

the resonance between the transformer inductance and the stray capacity of the electrode arrangement,

including the wire connections. For our circuit geometry, the optimum excitation AC frequency was

fEHD = 9kHz (TEHD = 1/ fEHD = 111µs).

The signal generator can operate the DBD by a TBurst periodic burst modulation, of the sinusoidal high

voltage signal. The forcing frequency is then f f = 1/TBurst . On the other hand, the effect of the duty-

cycle (DC% defined as: 100× (TON/TBurst) being TON the time during which the plasma is produced,

see Fig. 1(c)) was explored for values from 25 % up to 75 %. This parameter quantifies the fraction of

time that the discharge, and consequently the forcing, is active. In this way, by changing this parameter,

it is possible to modify the time averaged intensity of actuation.

It is important to quantify the strength of the forcing plasma to describe the effectiveness of the flow

control device. It is customary to use a combination of plasma voltage and current applied to the plasma

actuator as an indicator of plasma forcing (Sosa and Artana, 2006). However the relationship between

the voltage and current applied to the plasma actuator and the force being generated is not unique.

The plasma force is also a function of the current wave form, dielectric material, geometry of plasma

actuator, as well as the operating environment such as temperature, pressure, and humidity (Moreau,
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2007). Also, some authors looking for analogies with actuation with synthetic jets have proposed the use

of a momentum coefficient, which uses the time averaged momentum flow incorporated by the actuator

and the free-stream momentum flow through a cross section of the body (Jukes and Choi, 2009).

In the present work, the momentum introduced by the DBD actuator produces a jet whose velocity at

close vicinity of the wall cannot be determined directly by PIV due to reflections and high velocity

gradients. Though we cannot properly determine a momentum coefficient, nevertheless, an indirect

measure, allows us to estimate the relative intensity of the actuation between the different DC values.

Fig. 2 shows a typical time averaged flow field when the plasma actuator is applied in quiescent air.

For each considered DC value we have calculated the induced flow rate through the horizontal plane

y/h = 1.5. As is shown in Table 1, for increasing DC values, the induced flow rate G augments. In

order to roughly determine the flow velocity near the actuator we have estimated a jet of width 0.25h at

y/h= 0.25. Thus, at this location the generated jets have velocities U j in a range 0.13U∞ <U j < 0.35U∞

for the range of DC values.

3 Non forced flow

3.1 Mean flow

In order to characterize the flow on the non-forced case, a range of Reynolds 500 < Re < 2600 is

explored. As an example, we show in Fig. 3 contours of the mean non-dimensional velocity modulus

U/U∞ and streamlines for the mean flow at Re = 1520. Mean (temporal averaged) values are deter-

mined from ensembles of 780 snapshots. This number of measured fields, taken at random sampling,

was found to be sufficient for the convergence of the averaged field. On the other hand, additional sets

of measures were taken at z = ±W/4. These measures are similar to those at z = 0, verifying the flow

bidimensionality at this regime when forcing.

Contours of the velocity modulus as well as streamlines are used to represent the flow. The recirculation

bubble manifests from the streamlines and its length xr, the distance between the step corner and the

point of reattachment on the bottom wall, is a typical measure for the BFS flow. This point is charac-

terized by a time-averaged zero streamwise velocity ūx ≃ 0 close to the bottom wall, y ≃ 0. In order to

determine xr, we made use of the contours of the average velocity for positions y/h = 0.0375. Values

between ūx = 0±2∆u define xr.

D’Adamo #Paper FE-13-1519 Page 8



Active control of a backward facing step flow with plasma actuators

Figure 5 shows the evolution of xr as a function of Re for unforced cases in our configuration. This

evolution is similar to previous works i.e. (Armaly et al., 1983) where three distinct regions are defined.

First, xr increases for laminar regimes up to Re ∼ 800 (this low Re numbers regime was not extensively

explored in this work). For higher Reynolds numbers (in our case, 800 < Re < 1520) the KH instability

develops and the recirculation length decreases. The flow is still laminar at the separation edge as our

data follows the Blasius solution for laminar boundary layer. Finally, the recirculation region reaches

an asymptotic value (4h < xr < 6h for our configuration), when turbulence is fully developed. We se-

lected the case Re = 1520, xr ≃ 5.70h, far enough from the laminar regime, because we are interested

in controlling flows with transition to turbulence behavior.

3.2 Natural frequency

In order to determine the natural frequency fn for the unforced flow we placed the Pitot probe at

x/h = 4,y/h = 0.5,z = 0 in order to acquire ux fluctuations. We measure 20 sets of 2000 samples.

Although for each set the frequency resolution results ∆ f = fS/(2nsamples) = 0.025, the absolute error

was determined base on the mean standard deviation. Hence we adopted as the frequency measurement

uncertainty ∆ f = 0.1 Hz. The power spectrum for ux is estimated from the resulting signal as showed in

Fig. 6. We observe a range of frequencies 8.5 < f < 11.5Hz that is amplified by the shear layer, a peak

about f = 9.9Hz is distinguishable after smoothing. It’s worth mentioning that due to the frequency

sampling rate of our PIV system, this value cannot be estimated directly from images. This frequency

corresponds to the KH vortex passage. Indeed, for the pure shear layer that develops from two uniform

streams of respective velocities U1 and U2, according to Ho and Huerre (1984), the frequency for the

KH instability evolves related to the momentum thickness θ and mean velocity between the streams Um

determined immediately downstream the separation point x = 0.

fn[Hz] = 0.032(Um(x = 0)/θ(x = 0)) (1)
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where the momentum thickness θ is computed by:

θ =

∫ ∞

−∞

[

1

4
−

(

ūx(y)−Ūm)

∆U

)2
]

dy (2)

given the mean velocity Um = (U1+U2)/2 and ∆U = (U1 −U2) the velocity difference.

For our flow configuration, we estimate U1 and U2 as follows. First we consider a x fixed position that

determine a velocity profile ux which is correspondingly time averaged ūx. The profiles, depicted in Fig.

4 are characterized by the free stream velocity U1, far from the shear layer and the inner velocity that

develops in the recirculation region in opposite sense. We define U2 as the maximum value of this inner

velocity. From our PIV results we have found for x/h = 0 that θ = 0.087h and Um(x/h = 0) = 0.57 m/s,

thus the natural frequency is fn = 10.48Hz which can be consider close to that measured with the Pitot

probe. A Strouhal number based on θ, Stθ = fnθ/Um = 0.0153, is consistent with previous studies on

the BFS flow (Eaton and Johnston, 1982; Hasan, 1992; Dandois et al., 2007).

Another useful tool to analyze KH instability and the receptivity of this separated flow to different ex-

citation frequencies is to perform linear stability analysis (Michalke, 1965). If we analyze the mean

flow fields, we may perform a local linear stability analysis for the two-dimensional free shear layer that

develops from the separation edge.

Before undertaking such study, our data must satisfy the velocity profile shape and the weakly non

parallel flow condition. According to inviscid linearized theory the smooth hyperbolic-tangent velocity

profile, provides the basic flow which has been reviewed in (Ho and Huerre, 1984; Huerre and Rossi,

1998) and throughly studied (Michalke, 1964, 1965; Monkewitz and Huerre, 1982).

Figure 4 presents experimental data profiles fitted with Um [1+R(tanh(2y/δω +η)] with R the veloc-

ity ratio R = ∆U/(2Um) and η represents the inflexion point displacement of the velocity profile. The

flow is made non-dimensional with mean velocity Um as a velocity scale and the half vorticity thickness

δω/2 as a length scale. We determine δω(x) = (U1 −U2)/(dūx/dymax) by fitting the velocity profiles.

There is very good agreement for each location x from the backward-step, the main inviscid instability

is therefore captured. When the flow approaches the bottom wall y =−h we expect to deviate from such

inviscid velocity profile.
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Non parallel effects are considered negligible as a typical scale to take into account Lω = [1/δω)(dδω/dx)]−1

is very small compared to the vorticity thickness δω, Lω/δω < 0.08 for x/h < 3. Hence, our experimen-

tal flow can be analyze within linear stability theory.

The linear stability of parallel shear flows can be studied from the incompressible inviscid Rayleigh

equation:

(kU −ω)

(

d2ψ

dy2

)

− k
d2ūx

d2y
= 0 (3)

where ūx is the time mean streamwise velocity, k = kr+ iki the wavenumber, ω=ωr+ iωi, the frequency

and ψ the eigenfunction associated. The boundary conditions for this equation are:

ψ(−∞) = ψ(∞) = 0 (4)

The eigenvalue problem of the Rayleigh equation provides a dispersion relation D(k,ω,R) = 0. We

solve equation (3) for each x using a Chebyshev spectral collocation method. We study the spatial

stability characteristics as our results shows spatially growing instabilities. To do so, we determine from

our PIV measures the velocity ratio R and vorticity thickness δω for each location x as represented in

Fig. 7(a) and 7(b). Vorticity thickness evolution characterize the development of the wave instability

that precedes a vortex formation (0 < x/h < 3). Once the vortex is formed and convected (x/h > 3), the

vorticity thickness grows linearly (Ho and Huang, 1982).

For a range of real frequencies ω we determine the mode ψ(y) most amplified, Fig. 7(c), associated with

an eigenvalue k = kr+ iki that has the maximum growth rate −ki . Thus, we determine the corresponding

frequency fn = ωr/(2π) and we obtain a local frequency for each value of R. The resulting frequency is

presented in dimensional form scaling with Um and δω in Fig. 7(d). As Um decreases and δω augments,

fn is expected to decrease from the separation point x = 0. The local selected frequency is nearly

constant for the interval 2 < x/h < 3 where its mean value is fn = 9.8Hz, close to the Pitot measured

value 9.9Hz. We consider this value to be the KH natural instability frequency, the linear stability
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analysis gives a practical method to evaluate the natural frequency from time averaged velocity profiles.

Figure 7(d) shows that high frequencies may be amplified near the separation point. On the other hand,

the BFS flow is receptive to lower frequencies further downstream, when it approaches the reattachment

point, and it loses parallelism.

4 Forced flow

Once the natural frequency is established, we set the forcing frequencies of the DBD actuator to

be evaluated. According to many authors (Bhattacherjee et al., 1986; Chun and Sung, 1996; Yoshioka

et al., 2001; Wengle et al., 2001; Mehrez et al., 2010), an important reduction of the recirculation length

is obtained when forcing the shear layer at the natural frequency. We explore, therefore a range of fre-

quencies from 1Hz up to 34Hz for three forcing amplitudes. The non-dimensional excitation frequency

defined as f+ = f f / fn, has therefore a range 0.1 < f+ < 3.4.

4.1 Mean flow

The experimental mean fields were obtained by PIV measurements of the flow, averaging 780 instan-

taneous velocity fields. Figure 8 depicts the BFS flow behavior as a function of the forcing parameters

for 81 tests. The curves show how xr depends on the forcing frequency rather than its amplitude. We

performed 20 PIV sets of 780 snapshots for the selected non-forced case, Re = 1520, in order to have

a statistic estimation of the uncertainty of xr. The value is 2.85mm = 0.143h = which we bound to

4∆x = 0.15h. The reference value is thus xr/h = 5.70± 0.15 and we extended the uncertainty to all

forced cases.

We confirm that a major reduction, up to 35%, of the recirculation length takes place for forcing frequen-

cies around the natural frequency. A global minimum of xr is appreciable in all three forcing amplitudes.

We present the study of the mean flow modifications as a function of the forcing frequency in Fig. 9

for a fixed amplitude (DC=50%). We confirm that the forcing frequency has an important impact on the

recirculation bubble shape. It is well known that within this recirculation bubble there are two distinct

mean statistic flow structures (Hall et al., 2003): a large, or primary vortex region and a corner, or sec-

ondary counter-rotating vortex region. The plasma forcing modifies both of them, as we can observe on

the streamlines in Fig. 9 compared to Fig. 3. The corner vortex gets closer to the step and is deformed
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by the plasma forcing, however, more PIV resolution would be necessary in order to accurately describe

this structure evolution. We restraint therefore our present study to the dynamics of the primary vortex

and the mean recirculation bubble length.

For f+ ≃ 1, Fig. 9(b) the recirculation region attains its minimum length as we observe from the stream-

lines. For a lower frequency ( f+ ≃ 0.1) Fig. 9(a), the reduction is less noticeable as the receptiveness of

the shear layer at such frequencies takes place further downstream. On the other hand, higher frequen-

cies ( f+ ≃ 2.8) do not produce reductions on xr but in Fig. 9(c) the modifications on the streamlines

reveals the footprint of stretched primary vortex on the mean flow, as suggested by Chun and Sung

(1996) and we discuss in Section 4.3.

Additionally, regarding Fig. 8, the flow seems to be also sensitive to f+ near a sub-harmonic (≃ 1/2)

and also for the first harmonic (≃ 2). This effect was also found in previous works for another kind

of excitation devices (Chun and Sung, 1996; Mehrez et al., 2010). The amplitude seems to attain an

optimum, as when exceeding DC = 50% the actuator performance slightly decays. We shall bring some

insight to these aspects by studying some underlying mechanisms of the KH instability.

4.2 Momentum thickness

Momentum thickness (θ), which is proportional to δω, along with the local velocity determines the

dynamics of the KH vortex, as pointed out in section (3.2). We focus on the modifications induced by

the actuation on θ evolution downstream of the separation point x = 0.

Figure 10 presents momentum thickness development for natural flow and considering three forcing

frequencies: for a fixed amplitude (DC = 25%), a frequency close to the natural one, together with a

lower and a higher frequency.

For the non forced case, momentum thickness evolves from the boundary layer to attain mixing layer

behavior. From x = 0, we observe a slightly decrease of θ as the turbulent inflow takes some distance to

become a shear flow dominated by a large scale two dimensional instability. Once the mixing layer is

established, it becomes unstable at x/h ∼ 2.7 and the momentum thickness grows monotonically with a

slope that can be fitted by

dθ

dx
= 0.034R with R =

∆U

2Um

(5)

D’Adamo #Paper FE-13-1519 Page 13



Active control of a backward facing step flow with plasma actuators

an expression determined experimentally by Browand and Troutt (1985) for free mixing layers. In our

case, for R evaluated at x/h ≃ 3 the slope value coincides as showed on Fig. 10. As we already observed

the recirculation bubble length is for this case xr/h = 5.70.

The forcing frequency modifies the growth starting point as well as the growth rate. For f f ≃ fn, we

observe a steeper slope for θ starting at x/h ∼ 1.3, a value for which the shear layer is receptive to f f .

The slope decreases to a value closer to the natural behavior at x/h ∼ 2.2. It becomes clear that vortex

are formed further upstream than in the natural case, explaining the observed large reductions of the

bubble recirculation length, about 30% for this case.

When forcing with a lower frequency f+ ≃ 0.2, we produce larger structures in the shear layer that

enhance momentum exchange between the recirculation bubble and the free flow. However, these struc-

tures take longer distances to effectively perturb the shear layer thus resulting in a lower reduction of

the recirculation length respect to f+ ≃ 1. The evolution of θ for this forcing frequency is similar to the

natural case but it starts at x/h ∼ 2 achieving a recirculation length reduction of ∼ 0.7h which corre-

sponds to a 13% reduction.

Higher frequencies, f f ≃ 2.8 fn develop more important fluctuations near the detachment point, sup-

porting the linear stability analysis that showed receptiveness to high frequencies. For f f ≃ 2.8 fn we

observe in Fig. 10 that even though θ has greater values than the natural case, the slope is smaller and

the recirculation length do not differ appreciably respect to the non forced case. This type of forcing

produces smaller vortex that do not contribute to the formation of larger structures. This determines that

in some cases, the recirculation length is even greater than the non forced one.

Comparing forcing amplitudes, Fig. 11, we observe roughly an optimum for the control parameter

DC = 50% as expending more energy (DC = 75%) does not produce more reduction of the recircu-

lation length. Increasing the forcing amplitude moves upstream the onset of the momentum thickness

growth. Additionally, we observe that θ(x ≃ 0) increases with the forcing amplitude, probably caused

by the intensity of the fluctuations provoked by the ionic wind. Regarding DC = 50% as an optimal

forcing amplitude, we could consider that further increases of the forcing amplitude (DC=75%) pro-

duce fluctuations that do not participate on the KH instability. This effect has been observed in the

context of blowing/suction actuation by Yoshioka et al. (2001).
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4.3 Vortex structures.

Observation on momentum thickness can be reinforced by typical snapshots of the flow that reveal

the structures involved. Vorticity contours are depicted in Fig. 12 along with some Q-contours. As in

Jeong and Hussain (1995) vortex identification for planar flows can be achieved by means of positive Q,

the second invariant of ∇uuu

Q =−
1

2

∂ui

∂x j

∂u j

∂xi
=

1

2

(

‖ΩΩΩ‖2 −‖SSS‖2
)

(6)

a scalar that represents the local balance between shear strain rate(SSS) and vorticity (ΩΩΩ) magnitude.

Vortex cores are therefore distinguishable when Q > 0.

Non forced flow presents the shear layer development until a vortex is formed. The formation length

appreciated in Fig. 12(a) is in agreement with momentum thickness behavior. Indeed, the shear layer

perturbations that lead to a vortex core formation are noticeable around x ≃ 2.5h. The structure grows

until it reaches the bottom wall. Forced flow at natural frequency reduces strongly the necessary length

for vortex formation as showed in Fig. 12(b). We can see from Fig. 10 that the point when momentum

thickness start to growth linearly is just displaced near the separation point. A similar scenario is found

in a pure shear flow forced with micro-jet actuators (Parezanovic et al., 2013). From hydrodynamical

stability theory we can represent the vortex contours for a perturbation at x= 0. Vorticity fluctuations are

derived from Ω′ = Ω′
r+ iΩ′

i = (k2ψ−ψ′′) and are superposed to base flow vorticity from the hyperbolic

profile Ω0 = R(1 − tanh2 y). Choosing a small disturbance magnitude ε = 0.0005 we can write an

expression for the resulting spatially developing flow:

Ω = Ω0 + εexp(−kix)
[

Ω′
r cos(krx−ωrt)−Ω′

i sin(krx−ωrt)
]

(7)

In Fig. 13 we appreciate that vorticity produced by the most unstable mode evolves spatially from

x ≃ 2.5h. The vorticity values are obtained using scales from our experiment: δω/2 for length and

Um for velocity. As vorticity contours attain the bottom wall around x ≃ 5, as well as presented in

experimental results in 12(a), the simplified linear theory cannot be extended further downstream.
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Given that linear stability analysis provides the description of the predominant instability structure (the

one with the maximum growth rate), forcing with KH natural frequency enhances the growth of the

natural unstable mode. Therefore, forcing actuation at KH frequency produces the optimum reduction

of the recirculation bubble size. At the same time, relative small perturbations at this frequency are

strong enough to produce modifications. We expect therefore the flow to be less receptive to forcing

amplitude modifications, a behavior early described in Fig. 11.

Forcing the flow with higher forcing frequencies produces smaller size vortex near the detachment

region as observed on Fig. 12(d) for f+ = 1.8. Natural vortex are inhibited and the recirculation region

might become even larger than in non-forced flow. Nevertheless, vortex merging appears in shear flows

when several wavelengths of the perturbation wave (λ = Um/ f f ) are attained (Ho and Huang, 1982).

This phenomena would explain a similar bubble recirculation length between the non-forced case and

the higher frequencies forced cases, even though smaller vortices structures are created in the latter

condition.

When forcing the flow with lower frequencies f+ < 1, one might expect that higher wavelengths and

lower amplification rate takes place according to Fig. 7(c). However this is not observed in Fig. 12(c)

where for f+ = 0.5 we see vortex structures that are similar to those of f+ = 1. The linear instability

theory fails to describe this situation.

First, the forcing signal is square-like so it contains the harmonic f+ = 1(see i.e. Benard and Moreau

(2010)) that becomes more amplified by the flow: ki ≃ 0.06 for f=+ 0.5, ki ≃ 0.30 for f+ = 1 . On

the other hand, a larger period may allow the formation of a natural vortex. The actuation is although

not as effective as in f+ = 1 as the vortex is formed further downstream and it reaches the bottom wall

between 3< xr < 4. Even if subharmonic forcing enhances vortex merging in shear flow (Ho and Huang,

1982), in this case, there is not enough distance to observe such phenomena: the separated flow reach

the bottom wall after few wavelengths. Finally, for much lower forcing frequencies the flow becomes

insensitive to the actuation and the natural behavior takes place.

5 Conclusions

Plasma-based, local periodic forcing have been studied experimentally for the flow over a backward-

facing step at Re = 1520. Simple methods for the study such as the linear stability analysis of the mean
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flow and the evolution of the momentum thickness gave us some insight on the dynamics aspects of the

flow dominated in this case by a Kelvin-Helmholtz instability.

Linear stability analysis is useful to explain main behavior of natural and forced flow, particularly for

forcing at the natural frequency. Natural frequency is precisely selected and the spatial development of

the shear layer and its relation with reattachment point is predicted within the linear framework.

We defined therefore optimum control parameters of the actuator in order to reduce the recirculation

bubble length. Relative small injected momentum achieves reductions up to 37%. In this sense, the

optimum forcing frequency is associated to KH instability. This forcing produces coherent 2D vortex

that are generated upstream and grow faster than in the natural case.

On the other hand, we find that adding momentum saturates for increasing forcing amplitudes. Eventu-

ally, excessive amplitude forcing could introduce non-coherent perturbations which do not contribute to

the main dynamics associated with KH instability.

We hope that this control scenario will allow future works to have a physical benchmark before per-

forming closed loop control with DBD actuators.
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Fig. 1. (a) Outline of the test section geometry and position of the DBD actuator. The imaging region is represented schematically by the

laser sheet (b) Detail of the DBD plasma actuator (c) Scheme of the burst modulation signal mode
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U j/U∞

Fig. 2. Time averaged velocity modulus contours for the forcing jet produced by the DBD actuator ( f f = 10Hz, DC = 50%). Induced

flow rate G has been calculated through the plane marked with the dashed line
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Fig. 3. Contour of the velocity modulus U/U∞ and streamlines for the non-forced mean flow for Re =1520. The recirculation length

xr ≃ 5.70h.
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Fig. 4. Symbols: PIV mean velocity profiles ūx(y) for different positions x/h. Solid lines: Data is fit by f (y) = c1 + c2 ∗ tanh(c3 ∗
y+ c4)
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Fig. 5. Symbols • represent the recirculation region length for different Re numbers for non-forced flow. Symbol ⋆ stands for the selected

case to be controlled.
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Fig. 6. Dashed line: Power spectrum signal for ux estimated from a Pitot probe located at x/h = 4. Solid line: the same data smoothed
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(a) Streamwise evolution of the velocity ratio R.
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(b) Streamwise evolution of the vorticity thickness δω. A lin-

ear behavior follows from x ≃ 3, where the natural frequency

is selected.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ωr

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

−
k
i/
R

R=1.00

R=1.09

R=1.17

R=1.26

(c) Solution of the dispersion relation D(ω,k,R). Maximum

spatial growth rate (−ki(max)) occurs for ω(max)≃ 0.4.
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periment is used to construct the selected natural frequency
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Fig. 7. Linear Stability analysis on experimental mean flow for the non-forced case, at Re = 1520. The selected frequency in (d)

fn = 9.8Hz matches the Pitot measures.
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Fig. 8. Recirculation bubble length xr modifications under actuation for three forcing amplitudes and a range of frequencies 0.1 < f+ <
3.4.
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U/U∞

(a) DC 50% f+ ≃ 0.1.

U/U∞

(b) DC 50% f+ ≃ 1.

U/U∞

(c) DC 50% f+ ≃ 2.8.

Fig. 9. Evolution of the mean flow, represented by contours of the non-dimensional velocity modulus U/U∞ and streamlines. Different

forcing frequencies are considered.
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Fig. 10. Momentum thickness evolution downstream. Non-forced case and three forcing frequencies for a fixed forcing amplitude (%DC=25).

Dashed lines show the corresponding recirculation length for each case.
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Fig. 11. Momentum thickness evolution downstream. Non-forced case and three forcing amplitudes for a fixed forcing frequency f+ = 1.
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(d) f+ ≃ 1.8

Fig. 12. Instantaneous vorticity contours for the natural flow and three forcing frequencies for DC=50%. Some Q contours (solid lines)

identify the main vortex of the flow. Formation length is appreciable as well as an approximate measure for the wavelength λ
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Fig. 13. Instantaneous vorticity contours for the more unstable mode of the linear stability problem for the non forced case. Experimental

scales δω and Um are used on equation (7).
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List of Tables

1 Flow rate induced by the ionic wind of the DBD device. A characteristic velocity for

DBD jet is estimated for each DC.
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DC (%) 25 50 75

G [cm2/s] 6.60 10.20 15.97

U j/U∞ 0.13 0.20 0.35

Table 1. Flow rate induced by the ionic wind of the DBD device. A characteristic velocity for DBD jet is estimated for each DC.
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