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A control scheme was designed in order to reduce the risks of hyperglycemia and hypoglycemia in Type 1 Diabetes Mellitus
(T1DM). This structure is composed of three main components: an H∞ robust controller, an Insulin Feedback Loop (IFL) and a
Safety Mechanism (SM). A control-relevant model that is employed to design the robust controller is identified. The identification
procedure is based on the distribution version of the UVA/Padova metabolic simulator using the simulation adult cohort. The SM
prevents dangerous scenarios by acting upon a prediction of future glucose levels, and the IFL modifies the loop gain in order to
reduce postprandial hypoglycemia risks. The procedure is tested on the complete in silico adult cohort of the UVA/Padova metabolic
simulator, which has been accepted by the Food and Drug Administration (FDA) in lieu of animal trials.

Index Terms—Type 1 diabetes, hypoglycemia, hyperglycemia, H∞ control

I. INTRODUCTION

T1DM is an autoimmune disease which is characterized
by the destruction of the pancreatic β-cells and conse-

quently, insulin deficiency. This pathology has been increasing
3-4% per year in youths, making diabetes one of the most
common childhood diseases [1]. In order to avoid being ex-
posed to prolonged hyperglycemia and ketoacidosis, a T1DM
patient is dependent on insulin injections and self-monitoring
of blood glucose throughout his/her life. Therefore, the self-
management of this disease is extremely demanding and does
not reliably lead to effective glycemic control. Consequently,
the problem of automatically controlling the blood glucose
level in T1DM patients is a long standing problem [2]–[8].

An artificial pancreas consist of a Continuous Subcutaneous
Insulin Infusion (CSII) pump, a Continuous Glucose Monitor-
ing (CGM) and a control algorithm which closes the loop.
A variety of Model Predictive Control (MPC) strategies and
Proportional Integral Derivative (PID) controllers have been
extensively tested both in silico and also in clinical trials
[9]–[15]. Furthermore, other control techniques like adaptive
control [16], Linear Parameter-Varying (LPV) control [17],
H∞ control [18]–[20] and even fuzzy logic theory [21], [22]
have also been considered. However, both LPV and also H∞
control have not been tested in clinical trials yet. In addition,
the feasibility of safe blood glucose control with subcutaneous
delivery of both insulin and glucagon has been demostrated in
several works [23]–[25].

In any artificial pancreas scheme based on subcutaneous
insulin delivery and/or glucose measurement, there is great
difficulty in dealing with the long actuation/sensing delays, and
also the large inter- and intra-patient variability. Due to the fact
that the system is highly uncertain and time-varying, it is clear
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that some tuning to patient-specific characteristics is necessary
to achieve high closed-loop performance [26]. One way to tune
or adapt to a particular patient would be to perform an in-depth
a priori identification procedure [27], although the complexity
of such a procedure, and the time required to perform it, are
likely to render such individualization infeasible in practice.
Nevertheless, a general model structure could be adapted to a
particular patient by using certain a priori clinical information
that is easily obtainable, e.g., the patient’s Total Daily Insulin
(TDI) amount. Here, only adult patients are considered to
present the first results of this algorithm, because a lack of
efficacy in adults could lead to dismissal of possible therapies
that could benefit children, the highest-risk population [28].
In this work a control model is synthesized by performing
system identification on the ten adult in-silico subjects of the
UVA/Padova simulator. A third order model was chosen, and
the model gain is personalized by means of the subjects’ TDI.
That personalized model, whose parameters lack physiological
meaning because so-called black-box procedures were used
to identify the model, is employed to synthesize an H∞
controller by solving a mixed-sensitivity problem. The H∞
control, which to our knowledge has never before been tested
on the complete adult cohort of the UVA/Padova metabolic
simulator, represents an alternative approach to other well
known control algorithms. This technique provides a good
balance between insulin dosing and glucose tracking, by a
practical, low order controller.

In order to achieve safe hypoglycemia control, an IFL has
been added to adequately regulate an estimate of the patient’s
Insulin on Board (IOB). In addition, a SM is used to perform
better control based on a prediction, over a 20 minute horizon,
of future glucose levels. Auxiliary modules that modify insulin
dosing when safety alarms are detected have been applied in
several papers, demonstrating their importance in achieving
safe blood glocuse control [29]–[33].

This work is organized as follows. The model identification
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Figure 1. Bode diagram of all 10 virtual adult patients at three different
glucose levels (thin lines) and G0(z).

is performed in Section II. An explanation about how the
controller is designed, and how it works, is presented in
Section III. Results of numerical simulations are provided in
Section IV, and conclusions are presented in Section V.

II. MODEL IDENTIFICATION & PATIENT TUNING

Several models that describe the glucose-insulin dynamics
have been developed [15], [34], [35]. However, the model
parameters typically have physiological significance and can-
not easily be estimated in real patients. In addition, for
control synthesis a simple, low order-model is frequently more
desirable than a complex, sophisticated model [36]. Therefore,
a low-order control-relevant model is identified using a black-
box approach, and subsequently adjusted based solely on a
priori patient data, as in [37]. The procedure is described next.

For each in-silico adult of the distribution version of the
T1DM simulator, a linear model of the transfer characteristics
from the insulin delivery (pmol/min/kg) to the deviation from
a particular glucose concentration (mg/dl) is identified. Three
different interstitial glucose concentrations1 are considered
here: 90, 120 and 150 mg/dl to capture the frequency response
at different operating points. Hence, three linear models are
obtained for each patient.

The identification process for a particular glucose concen-
tration is as follows. First, the basal insulin (Ib) that produces
the particular glucose concentration at steady state is obtained.
Then, Ib is added to a sinusoidal insulin sweep. Over 12 h, and
with a sampling time of Ts = 10 min, this signal is infused
through a CSII pump, and the glucose deviation is captured.

1The simulator has access to that particular variable without the CGM
measurement noise.

Third-order models were obtained in all 30 cases using
subspace identification algorithms [38], [39]. Considering
these models, the following discrete-time transfer function is
defined:

G0(z) = −
c0z
−3

(1− z−1p1)(1− z−1p2)(1− z−1p3)
(1)

where c0 = 0.132 and the poles are: p1 = 0.965, p2 = 0.95
and p3 = 0.93. Figure 1 depicts the Bode diagrams of G0(z)
and all identified models. The gain of G0(z) is intentionally
overestimated, and its phase is purposefully chosen lower than
the phase of all identified models, in order to obtain robust
controllers as in [37]. From previous experience, a controller
based on this nominal model could be too conservative and
consequently may lead to poor performance. In order to limit
this conservatism, an individualized transfer function G0,j(z)
is defined:

G0,j(z) = −
crjz

−3

(1− z−1p1)(1− z−1p2)(1− z−1p3)
. (2)

Here, as in [37], rj = 1800/TDIj is based on the 1800 rule
(see [40]) and represents the gain, which adapts to the patient’s
TDI, where the TDI of the patient with index j is denoted by
TDIj, and

c =
60

100
(1− p3)(1− p2)(1− p1)Ts (3)

is a constant that scales units. Therefore, crj is adapted to each
patient instead of using the constant value c0.

III. CONTROLLER DESIGN

The glucose controller consists of 3 parts:

1) an H∞ controller;
2) a SM;
3) an IFL.
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Figure 2. Block diagram of the closed loop.

A schematic of the closed-loop system, considering one adult
from the simulator database, is depicted in Fig. 2, in which
KSM,j is the H∞ controller modified by the SM, g is the
measured glucose concentration, usm is the control signal
proposed by KSM,j, u is the insulin input that is finally
commanded to the CSII pump, r and e are, respectively, the
reference and error signals, and σ is a switching signal, which
is defined in Section III-B.
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A. H∞ Controller

H∞ has proven to be a practical controller synthesis ap-
proach when using LTI plant models. The low order robust
controller characterized byH∞ naturally performs an effective
tradeoff between the strength of control action and the tracking
error. This compromise is known as the mixed-sensitivity
problem and the optimal solution in terms of the lowest gain
between the input disturbance and the output errors is achieved
by this optimal control procedure.

Consider Adult #j from the simulator database and let
G0,j(z) be its nominal model. A discrete H∞ controller Kj
is synthesized solving a mixed-sensitivity problem with a
performance objective defined as:

min

{
γ such that

∥∥∥∥[ Wp(z)S0,j(z)
W∆,j(z)Kj(z)S0,j(z)

]∥∥∥∥
∞
< γ

}
. (4)

Here, S0,j(z) = (1 + G0,j(z)Kj(z))
−1 is the sensitivity

function, Wp(z) and W∆,j(z) are the performance and control
weights, respectively, and the sample-period is 10 min.

To reduce the risk of hypoglycemia, W∆,j(z) resembles
a derivative in order to penalize fast changes in the insulin
delivery. Regarding Wp(z), it is chosen to be close to an
integrator, i.e., large at low frequencies, to induce fast tracking
of the safe blood glucose levels.

In all cases, Wp(z) and W∆,j(z) are as follows:

Wp(z) =
0.01434z − 0.01365

z − 0.9993
(5)

W∆,j(z) = ISj ×
0.001992(z − 1)

z − 0.992
(6)

where ISj is the individualized gain based on the subject’s
sensitivity to insulin, which is related to the following a priori
clinical information:
• the average TDI regimen, in units of insulin;
• the Correction Factor (CF), which is the maximum drop

in mg/dl per unit of insulin;
• the Carbohydrate Ratio (CR), which is used to compute

the meal bolus as a function of the meal size.
IS values greater than unity are desired for patients with
high insulin sensitivity, in order to increase the weighting on
the control signal, and thereby reduce the amount of insulin
infused. In general:

↓ TDI and ↑ {CF, CR} ⇒ ↑ insulin sensitivity ⇒ IS > 1

and vice versa. It means that low TDI and high CF and CR
are likely related to patients with high insulin sensitivity and
therefore, IS should be defined greater than unity, and vice
versa. In order to quantify the effect of CR and CF, we define
Cav = αCR + βCF, with α ≥ 0, β ≥ 0, and α + β = 1.
Units of α and β are [U/g] and [UdL/mg], respectively. Here,
the solution is obtained choosing α = 0.5 U/g, and β = 0.5
UdL/mg. However, if one coefficient (CR or CF) needs to be
emphasized because it is more important or accurate than the
other, then α and β can be selected with different weightings.

The TDI and the Cav of an adult from the simulator
database, should be selected as the reference values: TDIr,
Cavr and ISr = 1. Due to the fact that both the patient’s

model and also its design weight W∆,j(z) both depend on
its a priori TDIj, any adult from the database can be selected
as the reference. Without loss of generality, patient #9 has
been considered as a starting point. Finally, for Adult #j the
ISj is calculated as follows:

ISj =
TDIr

TDIj

Cavj

Cavr
. (7)

Therefore, if Adult #j is likely to be more sensitive to
insulin than Adult # 9, ISj will be greater than unity, otherwise
it will be less than unity.

B. Safety Mechanism

In order to reduce the risk of hypoglycemia and hyper-
glycemia, a SM is included to modify the H∞ controller
output (uK). As shown in Fig. 3, the SM is composed of
a Decision Algorithm (DA) and 2 prediction strategies:
• Linear Extrapolation (E) to predict future glucose levels

considering the last 3 glucose measurements;
• Kalman Filtering (F) to predict the levels, rates of change,

and acceleration, of future glucose concentrations.

qg

-

- F
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ĝF

ĝE

-
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σ

Figure 3. Block diagram of the SM including the decision (DA) and prediction
(E and F) algorithms.

Any one prediction strategy has disadvantages compared to
others, and a safety module based on only one single strategy
would suffer from these weaknesses as a consequence. In
this work the use of parallel prediction strategies E and F,
in conjunction with a DA, allows us to exploit the strengths
of the individual algorithms, to better predict dangerous future
glucose scenarios and thereby to create a more robust system
[41].

Both E and F have a sample-period of 10 min and a
forecasting horizon of 20 min. In [41] a similar approach
is presented, but considering a greater number of prediction
algorithms and a different DA. Here, the SM process can be
described as follows.
• At every sampling time k, the glucose is measured (g)

and the prediction algorithms estimate the future glucose
level (ĝ). According to the following 4 regions:

– Region λ1: ĝ < 90 mg/dl
– Region λ2: 90 ≤ ĝ ≤ 110 mg/dl
– Region λ3: 110 < ĝ ≤ 220 mg/dl
– Region λ4: ĝ > 220 mg/dl

the DA defines the variables

ni,p,k =

{
1 if ĝp,k ε Region λi
0 otherwise

∀ i ε {1, ..., 4} and p ε {E,F}. The variable ĝp,k
represents the estimated glucose value at step k + 2



4

Breakfast 1 Lunch 1 Dinner 1 Breakfast 2 Lunch 2 Dinner 2 Breakfast 3 Lunch 3 Dinner 3
Time Size Time Size Time Size Time Size Time Size Time Size Time Size Time Size Time Size

#1 7 AM 50 g 2 PM 60 g 8 PM 50 g 6 AM 50 g 1 PM 70 g 7 PM 50 g 7 AM 50 g 1 PM 65 g 9 PM 55 g
#2 7 AM 50 g - - 8 PM 60 g - - 12 PM 55 g 9 PM 50 g 7 AM 50 g 2 PM 55 g 8 PM 50 g

Table I
PROTOCOL #1 AND #2.

(twenty minutes later) by the prediction algorithm p as
predicted at actual step k.

• Finally, the switching signal σ is defined in the following
Matlab-like code.
if n1,F ≥ 1 && n1,E ≥ 1 || g < 90 mg/dl

σ = 1;
elseif n2 ≥ n3 && n2 > 0

σ = 2;
elseif n3 ≥ n4 && n3 > 0

σ = 3;
else

σ = 4;
end
usm = ρσuK;

where ni =
∑
p,m ni,p,m, ni,p =

∑
m ni,p,m, ρ1 = 0,

ρ2 = 0.5, ρ3 = 1, ρ4 = 1.25 and m = {k − 2, k − 1, k}.
Therefore, if low glucose values are predicted, the insulin
delivery is either suspended or attenuated. On the other hand,
if high glucose values are predicted, the insulin delivery
proposed by the H∞ controller is increased.

C. Insulin Feedback Loop

The main risks of insulin therapy are an overdose of insulin
and a high level of IOB in the body. An estimate of IOB is
made and employed to prevent insulin stacking due to frequent
insulin boluses. Therefore, an IFL as shown in Fig. 4 is in-
cluded at the KSM,j output to inhibit the insulin infusion when
the plasma insulin concentration is estimated to be excessive
[32], [33]. The SIM block is the Subcutaneous Insulin Model
presented in Appendix A and employs the mean population
values for all its parameters. The model is discretized with a
sample-period of 10 min and it is used to estimate the plasma
insulin relative to the basal conditions. The parameter µ is
a tuning gain, fixed to 7.5 for all subjects according to the
magnitude of the signals involved and the desired closed-
loop performance. Its selection depends on the compromise
between having a slow (high µ) or a more aggressive and
fast (low µ) response, after verifying the closed-loop stability.
Consequently, if the estimated insulin concentration is higher
than its nominal value the control signal is reduced by an
amount proportional to that difference.

-
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Figure 4. Block diagram of KSM,j and the IFL.

Figure 5. Closed-loop responses for the 101 in silico adults to protocol #1.
Above: blood glucose [mg/dl]. Below: insulin [U/h].

IV. RESULTS

The complete UVA/Padova T1DM simulator, which is ac-
cepted by the FDA in lieu of animal trials in the development
of an artificial pancreas [42], is used to test the closed-loop
performance. Simulations are performed for all 101 in silico
adults (one is an average patient), considering unannounced
meals, a CSII pump, CGM as sensor, and two different
protocols, which are presented in Table I. Protocol #1 includes
three meals per day, while protocol #2 is used to evaluate the
safety of the algorithm when long fasting periods appear.

In addition, in both protocols the simulation starts in the
fasting state of each subject, and the basal insulin is infused
during the first 4 hours. Then, the glucose controller takes
over the insulin delivery considering a constant setpoint. A
postprandial period (PP) is defined as the 5 hour time interval
following the start of a meal, and night (N) is defined as the
period from 00:00 to 7:00 AM.

The glucose responses to protocol #1 are depicted in Fig. 5,
employing differing colors to differentiate between risky and
safe situations. Note that the glucose graph is mainly green
and the insulin graph blue, which means that glucose levels
are mostly near the safe values, and that the insulin injection
is generally low.
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Figure 6. Average closed-loop responses for the 101 in silico adults to protocol #1 (left) and to protocol #2 (right). The mean ±1 STD values are represented
by vertical bars, every 30 minutes.

Mean BG Max BG Min BG % in [70 180] % > 300 % > 180 % < 70
O PP N O PP N O PP N O PP N O PP N O PP N O PP N

#1 148 176 116 226 229 142 96 108 100 75.9 54.2 99.5 0.1 0.3 0.0 24.0 45.8 0.4 0.1 0.0 0.0
#2 154 177 135 220 224 183 108 114 107 75.5 54.4 91.4 0.0 0.1 0.0 24.5 45.6 8.6 0.0 0.0 0.0

Table II
AVERAGE RESULTS FOR THE 101 ADULTS TO PROTOCOL #1 AND #2.

The average time responses to both protocols are depicted
in Fig. 6. As shown in that figure, large insulin spikes appear
after meals. Then, the insulin infused is reduced and thereafter,
a constant amount of insulin is administered on average.
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Figure 7. CVGA of all the 101 closed-loop responses to protocol #1 (circles)
and protocol #2 (stars).

Although meals are unannounced and there is not any
particular adjustment for any patient, besides the automatic
one at the controller design stage, a minimal High BG Index
(HBGI < 5.0) and a minimal Low BG Index (LBGI < 1.1)
were achieved in both protocols as shown in Fig. 6. As shown
in Table II, for both protocols the proposed controller achieves
meal glucose values that are less than, or equal to, 154 mg/dl,
which is in accordance with recommendations made by the
American Diabetes Association (ADA) [43]. Therefore, due

to the fact that hypoglycemia occurs only for one subject, we
conclude that safe hyperglycemic control has been achieved.

The Control Variability Grid Analysis (CVGA) and the
average results for both protocols are presented in Fig. 7 and
Table II, respectively. In Table II the overall (O), PP and N
time intervals are analyzed separately. Because of the high
measurement noise2, a reduced closed-loop bandwidth has
been proposed. Therefore, higher blood glucose peaks appear
during the first day of trial. Consequently, and furthermore
because each day of the protocol has similarly sized meals,
both the CVGA plot, as well as the average results, related
to protocol #1 are computed based on the results of the third
day. On the other hand, the CVGA plot and the average results
related to protocol #2 are obtained considering the data from
the second day, to include its long fasting period. In order to
reflect how the IFL helps to avoid postprandial hypoglycemia,
the IFL signal obtained considering the last day of protocol #1
is depicted in Fig. 8. As was mentioned above, a large insulin
spike appears after a meal. Consequently, as uifl starts to
increase the insulin infused u = usm−uifl starts to be reduced.
This process avoids insulin overdosing, and therefore mitigates
postprandial hypoglycemia. The usefulness of the SM is also
reflected in Fig. 8. For protocol #1, the mean minus one STD
value obtained every 30 minutes for all 101 adults, both with

2In [42] it is anticipated that the real sensor errors would tend to be smaller
during controlled inpatient clinical trials.
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The mean minus one STD value of the 101 closed-loop night response to protocol #1 with (continuous line) and without (dashed line) the SM.

and without the SM, are compared. As illustrated, the SM
assists the algorithm in preventing low glucose outcomes.

5%
7%

73%

15%

 

 
10%

7%

74%

9%σ=1
σ=2
σ=3
σ=4

Figure 9. Percentage of time each value of σ is selected. Left: protocol #1.
Right: protocol #2.

For how long each value of σ is selected is represented
in Fig. 9. According to this figure, the algorithm settles on
σ = 3, the unscaled H∞ controller, more than 70% of the
time in both protocols. The last situation is also reflected
in Table II in which the percentages of time in the range
[70, 180] mg/dl are presented. This is a desirable situation,
because the selection of this control implies that the glucose
values tend to remain in a safe region. Hence, according to
the results obtained, it could be concluded that a safe hyper-
and hypoglycemia blood glucose control has been achieved.
Because the UVA/Padova metabolic simulator does not include
intra-patient variations, that scenario could not be tested.
However, the Proposed Approach (PA) has proved robust to
large inter-patient variations. In addition, parameter ISj could
also be modified to a controller that is either more, or less,
aggressive, depending on whether the subject’s sensitivity to
insulin changed drastically over time.

Finally, results for the standard open-loop basal-bolus treat-
ment, with boluses delivered at the time of meal ingestion, are
presented in Table III for comparison. As expected, because
the PA considers unannounced meals, better performance is
obtained with an Optimal Bolus Treatment (OBT). However,
in practice the meal is sometimes wrongly estimated, and as
a result the bolus size is not appropriate. In order to illustrate
the risk of that situation, the CVGA obtained with the PA and
with a 30% overestimated OBT is presented in Fig. 10.

V. CONCLUSION

A controller structure is designed focused on hyper– and
hypoglycemia protection. The system identification is based

Control Strategy PA 70% of OBT 130% of
OB OB

Mean BG [mg/dl]
O 148 144 127 110
PP 176 165 143 125
N 116 119 109 99

Max BG [mg/dl]
O 226 199 175 162
PP 229 202 178 164
N 142 129 117 115

Min BG [mg/dl]
O 96 115 99 73
PP 108 119 105 80
N 100 115 101 76

% time in [70 180] mg/dl
O 75.9 86.5 95.9 92.2
PP 54.2 73.6 91.8 94.6
N 99.5 100 100 91.2

% time > 300 mg/dl
O 0.1 0.0 0.0 0.0
PP 0.3 0.0 0.0 0.0
N 0.0 0.0 0.0 0.0

% time > 180 mg/dl
O 24.0 13.5 4.1 1.9
PP 45.8 26.5 8.2 3.7
N 0.4 0.0 0.0 0.0

% time < 70 mg/dl
O 0.1 0.0 0.0 5.9
PP 0.0 0.0 0.0 1.7
N 0.0 0.0 0.0 8.8

Table III
COMPARISON BETWEEN THE AVERAGE RESULTS FOR THE 101 ADULTS TO

PROTOCOL #1 OBTAINED WITH THE PA, WITH AN OBT, WITH A 30%
UNDERESTIMATED OBT, AND WITH A 30% OVERESTIMATED OBT.
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Figure 10. CVGA of all the 101 closed-loop responses to protocol #1.
(Circles) PA. (Stars) OBT overestimating the bolus sizes by 30%.

on the 10 subject cohort, in order to mimic a reduced spectrum
of information present for controller design, and to design
a controller that is suitably safe. The robust H∞ controller
is synthesized via a mixed-sensitivity problem with weights
focused on maintaining the glucose level near to the reference
value while being cautious with the insulin injection. The
IFL is intended as a postprandial hypoglycemia risk reduction
based on the IOB estimation. Finally, the SM considers an
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estimation of future glucose levels in order to maintain the
patient’s glucose concentration in a safe region. The method is
practical because it only uses a priori patient information that
is easily obtainable, and works for both different patients and
unannounced meals. For validation purposes, the full cohort
of the 101 subject simulator was employed to rigorously test
the proposed control strategy, showing good performance and
minimal hyper– and hypoglycemia risks.

APPENDIX A
SUBCUTANEOUS INSULIN MODEL

The insulin model employed in the IFL is presented in
[35] and the subcutaneous insulin kinetics, which complete
the model equations, are introduced in [44].

İsc1 = −(kd + ka1)Isc1(t) + IIR(t)

İsc2 = kdIsc1(t)− ka2Isc2(t)

İl = −(m1 +m3)Il(t) +m2Ip
İp = −(m2 +m4)Ip +m1Il + ka1Isc1 + ka2Isc2
I = Ip/VI

(8)

Variables
Isc1 : Amount of nonmonomeric insulin in the subcutaneous space [pmol/l].
Isc2 : Amount of monomeric insulin in the subcutaneous space [pmol/l].
Ip : Insulin mass in plasma [pmol/l].
Il : Insulin mass in liver [pmol/l].
I : Plasma insulin concentration [pmol/l].
IIR : Exogenous insulin infusion rate [pmol/kg/min].

Parameters
kd : Rate constant of insulin dissociation [min−1].
ka1 : Rate constant of nonmonomeric insulin absorption [min−1].
ka2 : Rate constant of monomeric insulin absorption [min−1].
mi : Rate parameters [min−1], i=1,...,4.
VI : Distribution volume of insulin [l/kg].
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Politècnica de Catalunya (2005-2009, Barcelona) and visit-

ing Prof./Researcher at several Universities in the USA and the EU. He has consulted
for ZonaTech (USA), STI and VENG (Argentina) in aerospace applications and with
Alstom-Ecotecnia (Spain) in wind turbines applications. He is recipient of the Premio
Consagración in Engineering by the National Academy of Exact, Physical and Natural
Sciences (ANCEFN, Argentina) and the Group Achievement Award fom NASA as a
Review Board member for the Aquarius/SAC-D satellite. Since 2009 he is Director of the
PhD Department in Engineering at the Buenos Aires Institute of Technology (ITBA) and a
CONICET Principal Investigator. He has applied Identification and Control techniques to
acoustical, mechanical and aero & astronautical engineering and also to type 1 diabetes.

Ravi Gondhalekar (M‘10-SM‘13) is a Project Scien-
tist at the University of California Santa Barbara (UCSB),
USA. His research interests include model predictive con-
trol, constrained control and optimization. At UCSB he is
applying constrained model predictive control techniques
to an artificial pancreas that performs automated delivery
of insulin to people with type 1 diabetes. Ravi received
a PhD degree in informatics in 2008 from the Tokyo
Institute of Technology, Japan, and MEng and BA degrees
in engineering in 2002 from the University of Cambridge,
UK. From 2008 to 2012 Ravi was an Assistant Professor at

Osaka University, Japan. Prior to that he held short-term positions at the Massachusetts
Institute of Technology, USA, the University of Cambridge, UK, Princeton University,
USA, Pi Technology, UK, the Rutherford Appleton Laboratory, UK, and the United
Kingdom Atomic Energy Authority, UK.

Eyal Dassau (M‘08-SM‘12) received the B.Sc., M.Sc.,
and Ph.D. degrees in chemical engineering, in 1999, 2002,
and 2006, respectively, all from Technion Israel Institute of
Technology. He is currently a Senior Investigator and Dia-
betes Research Manager with the University of California,
Santa Barbara. He is also Adjunct Senior Investigator with
the Sansum Diabetes Research Institute, Santa Barbara, CA.
His current research interests include modeling, design and
control of an artificial pancreas for type 1 diabetes mellitus.
Process and product design with emphasis on medical and
biomedical applications. Dr. Dassau is a Senior Member of

the American Institute of Chemical Engineering and a member of the American Diabetes
Association.

Frank J. Doyle III (M‘02-SM‘04-F‘08) received the
B.S.E. degree from Princeton University, Princeton, NJ, in
1985, the C.P.G.S. degree from the University of Cambridge,
Cambridge, U.K., in 1986, and the Ph.D. degree from the
California Institute of Technology, Pasadena, CA, in 1991,
all in chemical engineering.

He holds the Duncan and Suzanne Mellichamp Chair
in process control in the Department of Chemical Engi-
neering, University of California, Santa Barbara, as well as
appointments in the Electrical Engineering Department and
the Biomolecular Science and Engineering Program. He is

also a Guest Investigator with the Sansum Diabetes Research Institute, Santa Barbara.
His research interests include systems biology, network science, modeling and analysis
of circadian rhythms, drug delivery for diabetes, model-based control, and control of
particulate processes.

Dr. Doyle is a Fellow of a number of societies including the International Federation
of Automatic Control, the American Institute of Medical and Biological Engineering, and
the American Association for the Advancement of Science. In 2005, he was awarded the
Computing in Chemical Engineering Award from the American Institute of Chemical
Engineers for his innovative research in systems biology.


