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Multiple-time-scale framework for understanding the progression of Parkinson’s disease
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Parkinson’s disease is marked by neurodegenerative processes that affect the pattern of discharge of basal
ganglia neurons. The main features observed in the parkinsonian globus pallidus pars interna (GPi), a subdomain
of the basal ganglia that is involved in the regulation of voluntary movement, are pathologically increased and
synchronized neuronal activity. How these changes affect the implemented neuronal code is not well understood.
Our experimental temporal structure-function analysis shows that in parkinsonian animals the rate-coding window
of GPi neurons needed for the proper performance of voluntary actions is reduced. The model of the GPi network
that we develop and discuss here reveals indeed that the size of the rate-coding window shrinks as the network
activity increases and is expanded if the coupling strength among the neurons is increased. This leads to the novel
interpretation that the pathological neuronal synchronization in Parkinson’s disease in the GPi is the result of a
collective attempt to counterbalance the shrinking of the rate-coding window due to increased activity in GPi
neurons.
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I. INTRODUCTION

When 50%–70% of the dopaminergic neurons in the
substantia nigra pars compacta have died, the wide spectrum of
symptoms characteristic of Parkinson’s disease (PD) becomes
apparent [1]. The most evident and best-known symptom is
a progressive impairment of the ability to execute volun-
tary motor plans, which severely affects a patient’s normal
life. At more advanced stages, also cognitive, autonomic,
and psychiatric domains are affected, with dementia at the
latest stage of the disease [2,3]. A vast body of evidence
demonstrates the correlation between these manifestations of
PD and pathologic changes in the neuronal activity of the
basal ganglia (BG). For a review on this subject, see, e.g.,
Ref. [4]. Characteristic alterations of the firing behavior of
single cells manifest in abnormal temporal firing patterns as
well as in changed network behavior [5], the main features
being pathologically increased activity and enhanced neuronal
synchronization [6]. Local field potential (LFP) recordings
evidence the presence of pathologic oscillatory activities
throughout the parkinsonian globus pallidus pars interna and
externa (GPi and GPe, respectively), the subthalamic nucleus
(STN), and the striatum (Str) [7]. Since LFP signals reflect
the averaged activity of neuron populations, these pathologic
oscillations indicate an enhanced synchronization among these
neurons [8]. The enhanced synchronization increases the
power of the β band (13–30 Hz) of the firing frequency
spectrum, which is currently considered a hallmark of PD [9].
The presently most prominent explanatory framework for the
pathophysiology of PD is the so-called rate model. It offers an
interpretation of PD based on the overactivity of the output of
the BG, in particular of the GPi and of the substantia nigra pars
reticulata (SNr) [10,11], based on the BG-thalamo-cortical
circuitry exhibited in Fig. 1. The mentioned centers have
inhibitory projections to the motor thalamus; their overall
effect is antikinetic (impairing voluntary movement). The
effect of dopamine, which is diminished or lost in PD, is the

reduction of the antikinetic activity by exerting an excitatory
effect over the BG circuit “direct pathway” and an inhibitory
one over the “indirect pathway.” GPi is not only the main
output center of the BG, it is, moreover, one preferred target for
deep brain stimulation (DBS) therapy [12]. In the near future,
in-depth knowledge regarding the underlying mechanisms of
DBS may lead to a smart brain “pacemaker” [13,14].

Detailed modeling at the level of cellular properties has
indicated that DBS can increase the activity at the BG output
centers while at the same time regularizing neuronal firing [15].
This would imply that high activity alone might not directly
be responsible for the symptoms of the disease [16]. Recently,
a new interpretation of parkinsonian akinesia relates the motor
impairment in PD to an increased “illegibility” of neuronal
information [17]. However, the specific code that BG neurons
use to transmit information is yet not well understood, and,
moreover, the effects of PD on the neuronal code are unknown.
The objective here is to work out what PD’s effect on the coding
properties of GPi neurons might be. In order to do so, we first
concentrate on the full characterization of the firing behavior
of the output of a single GPi neuron.

II. CHARACTERIZATION OF SINGLE NEURONAL
FIRING

Neuronal firing provides typically temporally highly vari-
able, nonstationary, low-frequency noisy (and often relatively
short) time series of interspike intervals (ISI). As early as
the beginning of the 1980s, it was observed that “using
experimental data subject to noise and drift, we find the
structure function can be computed to higher accuracy, yet
using less data than the correlation function” [18]. For similar
reasons, the method was subsequently used in the context of
turbulence [19–21]. Later on, the method has been refined in
several directions [22], before becoming the standard method
in the study of physiological data [22,23]. We use here
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FIG. 1. (Color) Basal ganglia-thalamocortical circuit scheme before (a) and after (b) the emergence of PD. The variation of the arrow
thickness from the left to right panel encodes the quantitative changes observed. Blue, exitatory input; red, inhibititory input.

the method in its simplest variant as follows. The structure
function of a time series is based on the difference between
successive intervals I, �Ij (τ ) = I (j + τ ) − I (j ), where j is
the index of the interval and τ ∈ N+ is a positive index shift.
The structure function Sq(τ ) of order q ∈ Q is then defined as
the average,

Sq(τ ) = 〈|�Ij (τ )|q〉, (1)

evaluated over the time series. The approach thus provides
information about how correlated interspike intervals are,
over some time that corresponds to a time average obtained
for an index increase τ . Exponent q provides a magnifying
glass for putting more emphasis on “extreme” than on the
“normal” cases when performing the average. If one is only
interested in the first order (q = 1) structure function, the
average is numerically feasible as long as the first order of
the distribution exists and more involved preprocessing are not
needed (normally, first a wavelet analysis of the data is made
and the structure function then is performed on the wavelet
coefficients of corresponding order). For a simple generating
mechanism, scaling properties can be assumed, which implies
that we will have a power-law relationship,

Sq(τ ) ∼ τ ζ (q). (2)

The exponent ζ (q) then contains the condensed information
desired for a distinction of different behaviors of the spike-
generating process. Let us exhibit how this happens. For
a stationary process with independent increments ζ (q) = 0,
which expresses that the mean correlation between successive
events does not depend on the event index [24]. Monofractal,
nonintermittent time series imply ζ ′(q) = const, multifractal
behavior is characterized by ζ ′′(q) < 0 [22,25]. The zero-slope
regime of the structure function (as a function of τ ) is of
particular interest, since it marks the temporal scale across
which only random processes are at work. For neuronal signals,
this regime precludes coding schemes other than a rate code,
and the zero-slope regime can be assimilated to the temporal
window of rate-coding. The ability of the first-order structure
function to work out these regimes justifies the particular
interest we have in it.

III. DISTINCT NEURONAL CODING REGIMES IN
HEALTHY AND PD NEURONS

In a previous work, we showed that the rate-coding window
of single GPi neurons is reduced in an animal model of
PD [26]. This insight was gained from applying the structure
function analysis to neuronal recordings from a group of
parkinsonian (6-hydroxydopamine-lesioned) Sprague-Dawley
adult rats and comparing the results to those from a healthy
control group. The recordings were obtained under two
conditions: with animals under deep chloral-hydrate anes-
thesia and with fully alert animals; both groups were in
relaxed, head-restrained conditions. For more detail on our
experimental work, the reader is invited to consult Ref. [27].
For the obtained interspike intervals time series, the structure
functions of increasing order were calculated. Since for q � 6
the results show a mild dependence on the order q only, we
will therefore restrain the reported results to order one. In
the temporal structure function of the majority of the neurons
studied, at least two major regimes were evident. The first
regime, starting at small values of τ , shows an ascending
behavior that terminates abruptly at breakpoint τ1 (vertical
lines in Fig. 3). This regime characterizes the small-scale
correlations within the data. The regime is followed by an
essentially flat region that is at the focus of our attention, as
this flat region represents the rate-coding window of neuronal
activity. In the PD group at all alertness levels, this second
regime was substantially reduced. The next-following regime
(if identifiable) basically encodes long-term memory processes
and is mostly ascending. For Fig. 3, smoothing averaging over
five consecutive data points from our modeling approach (see
below) was applied; for essentially equivalent experimental
animal data, see Ref. [26].

Similar results could, alternatively, be obtained through the
(first-order) correlation function; the emergence of τ1, which is
one essential ingredient to our analysis, is, however, enhanced
by using the structure function framework. Regarding the
cases exhibited in Fig. 3, the value of τ1 in case I is clearly
corroborated. Already in case II, a value of τ1 becomes more
difficult to extract and for the PD cases III and IV, this is
virtually impossible (cf. the corresponding autocorrelation
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function in our Supplemental Material [28]). In the structure
function approach, exhibited in Fig. 3, we have no difficulties
in determining an approximate value of τ1.

The main changes observed in the temporal structure
function of parkinsonian GPi neurons can be summarized as
follows: At all alertness levels, PD neurons have a shortened
rate-coding window, a prolonged regime I (with a higher
τ1) under anesthesia, and an increasing structure function for
almost every τ at full alertness, where the rate-coding window
almost disappears. To understand these results on the neuronal
level, we investigated a simplified model of the parkinson and
the healthy GPi.

IV. A MODEL OF THE PARKINSONIAN AND
NONPARKINSONIAN GPI

To obtain insight into the origins of this changed behavior,
we simulated the behavior using an abstract model of the GPi,
composed of a ring of coupled neurons [26]. The specific
network architecture can be seen in Fig. 2.

In the ring, 101 Rulkov neurons were implemented, where
each neuron follows the dynamical equations [29],

xi,n+1 = f (xi,n,yi,n + βi,n), (3)

yi,n+1 = yi,n − μ(xi,n + 1) + μσ + μσi,n, (4)

where the index n indicates the iteration step, and where
function f is given by

f (xn,y) =

⎧⎪⎨
⎪⎩

α/(1 − xn) + y, xn � 0

α + y, 0 < xn < α + y ∧ xn−1 � 0

−1, xn � α + y ∨ xn−1 > 0.

(5)

In this model, xn represents the membrane voltage of the ith
neuron at discrete time t = 0,1,2,...,n and yi,n is the slow
recovery or adaptation variable. External input (from STN or
Str) is modeled by the current

σ = σu + Ic, (6)

i j

Str
STN

GPi

FIG. 2. (Color) Model architecture. GPi neurons are arranged
in a ring and diffusively coupled to each other (n = 101, circles).
The Str afference to the GPi (inhibitory) is modeled with 101
axons, each of which connected to one GPi neuron with a high
synaptic weight (wStr-GPi-I = 0.9) and to 9 GPi neurons with a lower
weight (wStr-GPi-II = 0.01). STN input, excitatory, is represented by
101 axons, each of which produces 10 collaterals to adjacent GPi
neurons with the same synaptic weight (wSTN-GPi = 0.1). Small-range
interactions are modeled by diffusive coupling among GPi cells.

where σu represents the initial excitability of each isolated
neuron and Ic models the input to the cell. Rulkov neurons
are very general and versatile to model virtually any neuronal
firing behavior (cf. Refs. [30,31], where Rulkov neurons have
been explicitly related to measured neuronal behavior).

STN and Str inputs to GPi are modeled as excitatory and
inhibitory inputs, respectively, and the spatial distribution of
both inputs is close to the available histological data [32]:
Excitatory input to the GPi is mediated by 101 STN axons,
each of which sends collaterals to 10 neighboring cells using
identical synaptic weights (wSTN-GPi = 0.1). Inhibitory input
to the GPi is mediated by 101 Str axons producing also
10 collaterals each (Fig. 2): one central connection to a
GPi neuron with a high synaptic weight (wStr-GPi-I = 0.9)
and 9 connections to adjacent cells with a lower weight
(wStr-GPi-II = 0.01). For every neuron, the parameter values
α = 4.5 and μ = 0.001 are used. The dynamical coupling
from each neuron i to its neighbors has the form ([29], where
we set βe and σ e to 1)

βi,n = gjiβ
e(xj,n − xi,n), (7)

σi,n = gjiσ
e(xj,n − xi,n), (8)

where in our case the coupling constants gji depend in a
power-law decay fashion on the distance between the neurons
measured along the ring structure,

gji = D

|(i − j )|2 . (9)

In neural tissues, diffusive coupling is well-known and also
referred to as ephaptic coupling; see Ref. [33]. Inputs Ic were
modeled by uniformly distributed random numbers from the
unit interval, multiplied by amplitudes Ae and Ai for excitatory
and for inhibitory input, respectively. To account for variability
in initial neuronal excitation, σu was drawn uniformly from
[0.05,0.15]. To test the intrinsic behavior of the network, the
use of an uncorrelated input seems to be indicated, since, in
this way, the specific signatures produced in the signal by the
emergent behavior of the network itself can unfold without
competing effects.

V. RESULTS OF MODEL SIMULATIONS

After a transient phase, the system was iterated for 180 000
time steps and spikes were extracted to obtain ISI time series.
After a suitable choice of the few parameters inherent in the
model, our simulation reproduced the experimental animal
data very well (Fig. 3, comparable to the experimental data in
Ref. [26]). The classical model of PD [10] bases the distinction
between the healthy and the PD case on distinct excitatory and
inhibitory input levels, which we extended for the distinction
between anesthetized and alert conditions [26]. Whereas the
anesthetized condition was modeled by Ai = −1.2 (−24.5)
and Ae = 1.5 (25), the alert condition was modeled by Ai =
−1.5 (−48.5) and Ae = 2 (50) [for control (PD), respectively].
This led to | Ai

Ae
| ratios of 0.8 (0.98) (anesthesia) and 0.75 (0.97)

(alertness) [control (PD), respectively]. To reproduce the
temporal structures for the four experimental groups studied
(control and PD groups, under deep anesthesia and at full
alertness; Fig. 3, panels I–IV), in addition to the classical
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FIG. 3. Order-1 structure functions of the four modeled groups representing our neuronal classes of behavior. (I, II) Control group, deep
anesthesia, and alert condition, respectively; (III, IV) PD, deep anesthesia, and alert condition, respectively. With alertness, for groups I to III,
the breakpoint moves to the right and finally disappears in group IV, and a progressive reduction of the zero-slope scale range is observed,
indicating a loss of the rate-coding capability for PD neurons. f indicates the average frequency connected with the index interval τ and 1/f

the corresponding “typical” time scale (in the model in units of iterations).

model (see Sec. VI for more details) we also had to use distinct
diffusion constants (D = 0.3 in the PD versus D = 0.01 in
the healthy case). The network activity was calculated as the
mean across the network of the number of spikes divided by
the number of iterations. Figure 4 shows the network activity
as a function of the input level, for different coupling strengths
and at different | Ai

Ae
| ratios. As can be expected, with higher

input levels, the network activity increases before it saturates.
This also holds with respect to higher levels of D, since higher
levels of coupling induce higher levels of gji [cf. Eq. (9)].
Compared to healthy conditions, at PD input conditions the
network saturates at higher external input and at higher activity
levels.

The degree of synchronization of neuronal activity, a
hallmark of PD, was calculated as the mean [34,35]

Mn = 1

N

n∑
i=1

xi, (10)

where xi is the fast variable corresponding to the n neurons
of the network. In the case of weak neuronal coupling, the
mean fluctuates irregularly, because the firing of individual
neurons is noncoherent. Conversely, if the neurons start
to fire coherently and become synchronized, then regular
oscillations of comparatively large amplitudes of Mn emerge.
To characterize this, for each simulation a synchronization
measure Am was calculated as the difference between the

highest and lowest values of Mn. As a tendency, increasing D

enhances neuronal synchronization [Fig. 5(b)]. When Am >

1.0, we considered a network synchronized, which we then
take as the hallmark for a simulated PD network state.

To obtain a network-representative breakpoint τ1, we
averaged the individual structure functions over the network.
The obtained averaged structure function S̄ shows behaviors
similar to the structure functions of the individual neurons of
the respective classes. To evaluate τ1 we calculated the first
derivative of the averaged structure function, S̄ ′, and defined
τ1 as the smallest τ for which S̄ ′ < 0 for three consecutive τ .

In our four experimental groups, the breakpoint τ1 moves to
the right from the control case under deep anesthesia (group I),
to the control case at full alertness (group II), and the PD case
under anesthesia (group III), and is highest in the PD case
at full alertness (group IV). In this last group an increasing
temporal structure function at almost every scale is observed,
and the zero-slope window essentially disappears. This marks
the progressive reduction of the zero-slope scale range,
indicating a loss of the rate-coding properties in PD neurons,
which are even more deteriorated under the effect of full
alertness.

With our modeling framework, we successfully reproduced
this behavior; it is worthwhile emphasizing that the distinct
behaviors are the emergent consequences of the different
global network conditions, expressed at the level of single
cells, but are not the intrinsic properties of single neurons.
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FIG. 4. (Color) Average network activity: Growing external input entrains increased activity (a) healthy conditions [|Ai/Ae| = 0.8, external
input <5, typically ∈ (1.5,2)], (b) toward parkinsonian conditions [|Ai/Ae| = 0.9, external input ∈ (25,50)], (c) healthy conditions [D = 0.01,
typically D < 0.1, external input <5, typically ∈ (1.5,2)], (d) toward parkinsonian conditions [D = 0.3, typically D ∈ (0.3,0.5), external input
∈ (25,50)].

Breakpoint τ1 limits the size of the rate-coding window
from the left-hand side (a higher τ1 implies a shorter rate-
coding window). Understanding the variables that determine
its position can help gaining new insights into the network
changes that parkinsonian neurons account for. In particular,
we focused on the dependence of τ1 on two main network
variables: the coupling strength D and the mean network
activity (Fig. 5).

VI. DISCUSSION AND INTERPRETATION OF RESULTS

The traditional rate-mode explanatory framework for the
pathophysiology of PD (Fig. 1) offers an interpretation of
PD based on the overactivity of the output structures of
the BG, namely the GPi and the SNr [10,11]. Since these
output centers are connected with an inhibitory projection to
the motor thalamus, their overall effect is considered to be
antikinetic (impairing voluntary movement). This antikinetic
activity is stimulated through the indirect pathway of the

BG, and inhibited through the direct pathway (therefore
considered antikinetic and prokinetic, respectively). The effect
of dopamine, which is diminished or lost in PD, is to reduce
the antikinetic activity by exerting a stimulatory effect over the
direct pathway and an inhibitory one over the indirect pathway
of the BG circuit. The dopamine loss liberates the spontaneous
activity of the GPi. Although there is substantial agreement
about the increased activity of the GPi in PD [36,37], a
clear causal relationship with the symptoms of the disease
has not been established. Accepting the premises of the rate
model, the GPi’s overactivity could explain bradykinesia.
Some major controversies, however, arise between the rate
model and several electrophysiological findings obtained
during functional neurosurgery in human patients [38]. In
the first place, there is evidence showing that high-frequency
DBS of the GPi further increases its activity [39–41]. DBS,
moreover, provides a benefit for PD patients when applied
to different parts of the BG-thalamo-cortical circuitry: a
reduction of the symptoms has been observed applying the
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FIG. 5. (Color) White arrows: Suggested development of PD.
The parameters (activity, D) provide a coherent qualitative de-
scription of the situation, although they are not fully independent.
(a) τ1 evaluated as a function of the network activity and D

(at |Ai/Ae| = 0.95). Blue (τ1 < 100) and black (100 < τ1 < 500)
indicate viable rate-coding windows. Red: Vanishing rate-coding
window (τ1 > 500). In the course of PD increased activity, to
escape a coding window collapse, D must increase as well. From
|Ai/Ae| = 0.90 to |Ai/Ae| = 0.95, the red area increases from the
dashed boundary to the final one. (b) Network synchronization as a
function of the network activity and on D (at |Ai/Ae| = 0.9). The
situation remains essentially unchanged for |Ai/Ae| in (0.8, 0.95).
White, unaccessible regime; black, viably unsynchronized (Am < 1).
Regime I, highly synchronized across all of the interval (Am > 2);
Regime II, very strong synchronization at |Ai/Ae| = 0.8, subject
to a decrease toward |Ai/Ae| = 0.95 (from Am ≈ 4 to Am = 1.5);
Regime III, synchronized across the whole interval (1 < Am < 2).
This regime is likely to trigger the typical PD synchronization
phenomena.

stimulation to the GPi, the GPe, the STN, motor Thalamus,
premotor cortex, and even the zona incerta [42–46]. DBS
of the GPi can, moreover, successfully treat hypokinetic
PD as well as hyperkinetic movement disorders (dystonia),
which according to the rate model are based on oppositional
mechanisms.

Our modeling approach suggests that as the GPi network
activity increases with the higher input levels present in PD,
the length of the rate-coding window progressively shortens
and that an appropriate increase in the diffusive coupling
D might postpone this effect [Fig. 5(a)]. The price to be
paid for this, however, would be the danger of enhanced
network synchronization. In fact, the neuronal activity of the
BG in PD is known to be pathologically synchronized [9].
Experimental evidence about pathological synchronization in
the parkinsonian BG comes mainly from LFP studies that

show an increased power in specific frequency ranges in the
BG with PD [47]. Both pharmacological anteparkinsonian
treatment and DBS therapy have been shown to normalize
the LFP profiles [48,49]. These facts, unfortunately, failed to
provide any insight about the organization of neuronal firing
in the time-domain.

The results indicate that different time scales may be at work
in the healthy and PD GPi. This speaks in favor of a multiple-
scale rather than of a scale-free temporal organization of
neuronal firing, implying that the transmission of information
might be favored in or confined to a limited time-range. As
we have seen, PD deteriorates these temporal scales. The high
activity induced by the disease (exacerbated in vivo at full
alertness) generate a temporal structure where virtually all
the scales are positively correlated. As a consequence, in PD,
temporally independent stimuli could no longer be transmitted
in a long time-window, making PD neurons extremely sensitive
to any spurious input. At the different scales, different
mechanisms are likely to be relevant. At small time scales,
the behavior seems to be more strongly influenced by local
interactions, modeled in our approach by diffusive coupling.
Experimental evidence supports that the coupling between
adjacent PD Str neurons is pathologically increased [50,51]. It
is not far stretched to expect that a similar characterization also
holds for the parkinsonian GPi. Up to now, the consequences
of an increased coupling regarding information coding have
not been investigated. We demonstrate that the length of the
rate-coding window in GPi neurons (measured by means of τ1

only), depends qualitatively inversely on activity and directly
on the coupling strength D. At activities characteristic for
PD, an increased coupling strength may allow GPi neurons to
maintain a temporal structure resembling a normal one only
at input levels much higher than those observed in the healthy
condition. The price to be paid is that of increased neuronal
synchronization, accompanied by the well-known abnormal
oscillations of parkinsonian neurons. When in PD the limits of
the compensatory mechanism are reached by pathologically
high activity, GPi neurons are left with a temporal structure
growing for almost every scale, which then prohibits largely a
rate-coding of information.

These insights into a potential scheme underlying the effects
observed in PD emerge from a simple network model that
was tuned toward the reproduction of the electrophysiological
properties of the basal ganglia under chronic dopamine
depletion. Although based on real GPi histology, we deal here
with a simplified one-dimensional model. The mammalian
GPi has a 3D structure; therefore, a comparison of topological
indicators (number of connections, distribution, etc.) can on
this level only be of qualitative nature. The developed model
reproduces the animal model experiments well, to some extent
even reflecting what is found in human PD patients. If a direct
relationship between these frequencies to the frequencies of
the tremor often shown by PD patients could be made, this
would clearly be of interest. However, we would expect such a
relationship to be rather complicated, as the transduction from
GPi frequencies to frequencies observed on the movement
level is far from being trivial, and one needs to be extremely
cautious when making comparisons between these cases and
human PD. First of all, the discharge frequencies of neurons
of the GPi in PD patients depend generally on the state of
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activity during which the measurements are taken, and they
vary from individual to individual [52]. Second, a distinction
needs to be made between the frequencies of discharge of
single neurons (such as is done in our modeling) and LFP
frequencies. Because the LFP is influenced not only by the
frequency of discharge of single cells but also by the (lower)
frequency of collective bursting, the LFP power spectrum peak
is typically lower than the frequency of discharge of single
cells, the latter being around 60–100 Hz [48]. Normally, the
LFP peak is found within the β frequency band (13–30 Hz), but
we deal also in this respect with considerable variation, even
under similar conditions [53]. Under conditions of immobility,
the peak value of the distribution has been reported to lie
around 20 Hz [54].

For matching the model-obtained frequencies with the
generally accepted values observed in human PD, the time step
corresponding to one iteration of the Rulkov map [Eqs. (3)–(5)]
can be adjusted in an optimal way, the freedom being limited
by the fact that all experimental conditions will be affected
by such a manipulation in the same manner. Considering a
time step equal to 5 ms per iteration, the single-cell frequency
of the four groups shown in Fig. 4 would be for the control
group 10 Hz (under anesthesia) and 12 Hz (alert), respectively;
and for the PD group 32 Hz (under anesthesia) and 58 Hz

(alert). Using this time step, the model would yield a power
spectrum peak of the mean field, to be compared to the LFP in
humans, around 38 Hz for the PD group. This is in reasonable
correspondence with the human data outlined above (58 Hz
versus 60–100 Hz for single-cell frequency and 38 Hz versus
13–30 Hz for the spectrum peaks). Most importantly, with
this time step, the characteristic bursting of single neurons
is faithfully reproduced, as well as the characteristic sizes of
the rate-coding windows. This seems to permit the conclusion
that, at the level of electrophysiological (emergent) properties,
our model provides a reliable reproduction of the biological
processes at work in PD.
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