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Abstract

In this paper we deal with an alternative technique to study global dynamics in Hamiltonian systems,the mean exponential
growth factor of nearby orbits(MEGNO), that proves to be efficient to investigate both regular and stochastic components
of phase space. It provides a clear picture of resonance structures, location of stable and unstable periodic orbits as well as a
measure of hyperbolicity in chaotic domains which coincides with that given by the Lyapunov characteristic number. Here
the MEGNO is applied to a rather simple model, the 3D perturbed quartic oscillator, in order to visualize the structure of its
phase space and obtain a quite clear picture of its resonance structure. Examples of application to multi-dimensional canonical
maps are also included.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A combination of analytic, geometric and topological tools is required in order to get a detailed account of the
local dynamics around some well-known objects (such as fixed points, periodic or quasi-periodic orbits, invariant
manifolds, etc.) and the bifurcations that occur when changing parameters. Meanwhile, more global problems,
concerning either a big part of the phase space or a large set of the parameter space, require of probabilistic
methods and computing several numerical indicators. But, whenever a detailed knowledge of the dynamics in a
large set is looked for, we can either extend the local analysis to larger domains, say by using normal forms up to
a relatively large order and unfold the bifurcations found or perform systematic numerical experiments, such as
the computation of invariant objects and, later on, to continue them with respect to parameters and so detect the
bifurcations. This has been the approach used in recent papers such as[1,4], following a methodology presented in
[3]. Both approaches, however, demand a considerable computational effort, which points out the convenience of
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having some fast indicators aiming at a significant knowledge of the dynamics in a fairly quick way (see[25] and
references therein). Such a numerical tool is sketched herein which succeeds in providing detailed indications of
the global dynamics in relatively short motion times.

In fact, few tools prove to be useful when studying global dynamics in Hamiltonian systems or maps. In those cases
of divided phase space, which are the most, different techniques are required depending on whether the structure
of the regular or stochastic component is to be investigated. For instance, a Fourier technique such as (Laskar)
frequency map analysis (FMA)[19–21], is a powerful tool, provided that the phase space is almost completely
foliated by invariant tori, since it allows a very precise determination of the frequencies associated to the KAM tori,
thus furnishing information about the orbital structure of the system. A detailed discussion on the refined Fourier
analysis, which is the basis of the FMA, including a thorough study of the error estimates can be found in[12],
where also several examples related to the ones in this paper have been included. However, when irregular motion
occupies a large fraction of the phase space, the FMA is no longer that useful, since, though a linear diffusion-like
coefficient in frequency space may be derived, it is not quite clear whether this coefficient does provide a good
measure of chaos.

For irregular, stochastic regions of phase space, the largest Lyapunov characteristic number (LCN), or maximal
Lyapunov exponent, gives a direct measure of hyperbolicity, being the latter the underlying structure of chaotic
domains (see[11]). But, though the LCN is a good indicator of the stability of the motion from a theoretical point of
view, the motion time required to get a relatively good estimation of its value used to be rather large. Moreover, since
the relative error gets larger as the LCN gets smaller, the computed value for moderate times is rather far from the
actual value in case of regular motion, leading to an erroneous identification of the orbit. In sum, for comparatively
short motion times, the LCN is certainly not an adequate indicator. On the other hand, the motion times needed for
a fair estimation of the LCN are too long when dealing with large ensembles (�104 orbits in the case of flows and
�106 orbits in the case of maps), which, however, cannot be a problem if large arrays of processors are available.

The use offast Lyapunov indicators(FLI) has been recently popularized (see[9,10]). Indeed, to decide about the
regular or chaotic behavior of some orbit, you can just follow the evolution of the length of a vector transported by
the variational flow (or by the differential of the map in the case of discrete dynamical systems). If such a length
increases by a factor less than some thresholdL during a time spanT , we consider the motion as regular. Otherwise,
if a factorL is reached beforeT , we consider it as chaotic. The point is the proper choice of bothL andT . Large
values ofT imply large computational time, while small values ofT , depending onL, have the risk of considering
as chaotic motion which is actually regular or vice versa. This fact already pointed out in[12] will be discussed
below.

Here we address a new technique,the mean exponential growth factor of nearby orbits(MEGNO)—described in
detail in[7]—that provides an alternative tool to explore the phase space, allowing to consider shorter motion times.
This efficient tool is not only suitable to investigate both regular and stochastic components of the phase space, but
also produces in addition a good estimation of the LCN. The MEGNO is a global indicator of the dynamics as well
as it is capable to detect high-order resonances. Actually, its ability to reveal the fine structure of the phase space is
due to its sensitivity to the presence of unstable periodic orbits, the very origin of chaos. The required computational
effort is almost the same needed to compute the LCN. It requires the integration of both the field equations and the
concomitant first variationals, but over much shorter time intervals, since it takes due advantage of all the dynamical
information that there remains hidden along the orbit and its tangent vector.

The fact that the MEGNO is able to provide good indications of the local hyperbolic properties of an orbit in short
time intervals has a side effect. Indeed, the LCN is constant on a connected component of the stochastic set. Hence,
it gives an average indication of the hyperbolicity on this component. This average does not discriminate whether
the orbit has spent large intervals of time close to some invariant torus for instance. It is known that invariant tori are
quitestickyand, for some time interval, motion close to them displays only, at most, a mild stochasticity. Hence, it
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is far more instructive to look at global dynamical properties by means of a large ensemble of data, each one telling
about local properties around it.

A different method to evaluate the LCN is presented in[2] but there the dynamics is quite special, being typically
the superposition of an exponentially increasing function and large quasi-periodic oscillations.

The present effort is devoted to show how a rather simple technique, the MEGNO, succeeds in providing detailed
indications on the global dynamics of multi-dimensional Hamiltonian systems and maps. Below, we summarize the
MEGNO technique and illustrate its performance in the well-known 2D Hénon–Heiles model. Then we apply it to
a rather simple 3D model, the perturbed 3D quartic oscillator, in order to visualize the structure of its phase space.
Next we present a generalized version of the MEGNO and apply it to a 2D and a 4D area-preserving maps. Some
comparisons with the FMA and FLI are included. The presentation is made in the context of conservative systems,
despite the fact that the domain of applicability is general.

We would like to point out that the MEGNO has recently been successfully applied to astronomical problems
(see[13–15]). An application providing numerical evidence for theoretical conjectures in ergodic theory can be
found in[22].

2. The MEGNO

Let H(p, q) with p, q ∈ R
N denote anN-dimensional Hamiltonian, assumed to be autonomous just for the

sake of simplicity since this is actually not required for the present formulation. On introducing the notation
x = (p, q) ∈ R

2N, v = (−∂H/∂q, ∂H/∂p) ∈ R
2N , the equations of motion read:

ẋ = v(x). (1)

Let γ(t) be an arc of an orbit of flow(1) on a compact energy surfaceMh ⊂ R
2N ,Mh = {x : H(p, q) = h}, so that

γ(t) = {x(t′; x0) : x0 ∈ Mh,0 ≤ t′ < t} (2)

and the full positive orbit isγ = lim t→∞ γ(t).
Relevant information about the flow in the vicinity of any orbitγ is gained through its largest LCN,σ(γ), defined

as

σ(γ) = lim
t→∞ σ1(γ(t)), σ1(γ(t)) = 1

t
ln

‖δ(γ(t))‖
‖δ0‖ (3)

with δ(γ(t)) andδ0 “infinitesimal displacements” fromγ at timest and 0, respectively (see below) and where‖ · ‖
is some norm. The fact that the LCN measures the “mean exponential rate of divergence of nearby orbits”, is stated
explicitly when recasting(3) in the integral form:

σ(γ) = lim
t→∞

1

t

∫ t

0

δ̇(γ(t′))
δ(γ(t′))

dt′ =
(
δ̇

δ

)
(4)

with δ ≡ ‖δ‖, δ̇ ≡ dδ/dt = δ̇ · δ/‖δ‖, the bar denoting time-average. Recall that the tangent vectorδ satisfies the
variational equation:

δ̇ = Λ(γ(t))δ, (5)

whereΛ = Dv is the Jacobian matrix of the vector fieldv.
We now introduce the MEGNO,Y(γ(t)), through the expression

Y(γ(t)) = 2

t

∫ t

0

δ̇(γ(t′))
δ(γ(t′))

t′ dt′, (6)
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which is somewhat related to the integral appearing in(4). Notice that in the case of an exponential increase ofδ,
δ(γ(t)) = δ0 exp(λt), the quantityY(γ(t)) can be considered as a weighted variant of the integral in(4). Indeed,
instead of the instantaneous rate of increase,λ, we average the logarithm of the growth factor, ln(δ(γ(t))/δ0) = λt.
Further variants are to be considered inSection 4.

Let us now look for MEGNO’s asymptotic behavior for some, though quite special, very representative solutions
of (5) in order to show howY(γ(t)) serves to give clear indication on the character of the different orbits.

In the first place we consider orbits on irrational tori for a non-isochronous system. For any such a (quasi-periodic)
orbit, γq, the solution of(5) in R

2N has the form:

δ(γq(t)) ≈ δ0[1 + wq(t)+ t(λq + uq(t))], (7)

whereλq > 0 is the linear rate of divergence aroundγq, andwq(t) anduq(t) are the oscillating functions oft (in
general quasi-periodic and with zero average) of bounded amplitude, satisfying|uq(t)| ≤ bq < λq. The parameterλq
is a measure of the lack of isochronicity around the orbit since it is related to the maximum eigenvalue of the matrix
∂ω/∂I , ω andI being the frequency and action vectors associated to the torus, respectively (for an isochronous
system, such as the harmonic oscillator,λ = 0 for all γ). Then, from(6) and (7), and recalling thatuq is bounded
by bq, it is straightforward to show thatY(γq(t)) oscillates with bounded amplitude about the value 2 verifying

|Y(γq(t))− 2| ≤ 4 ln
λq + bq

λq − bq
≈ 8

bq

λq
, t → ∞, (8)

where the last approximation holds provided thatbq � λq. The temporal evolution ofY(γq(t)) is given by

Y(γq(t)) ≈ 2− ln(1+ λqt)
2

λqt
+O(γq(t)), (9)

whereO denotes an oscillating term (with zero average) due to the quasi-periodic character of bothwq(t) anduq(t).
The limt→∞ Y(γq(t)) does not exist but, on introducing the time-average:

Ȳ (γq(t)) ≡ 1

t

∫ t

0
Y(γq(t

′))dt′, (10)

it can readily be shown from(8)–(10)that

Ȳ (γq) ≡ lim
t→∞ Ȳ (γq(t)) = 2. (11)

Therefore, for the case of quasi-periodic motion,Ȳ (γ) is a fixed constant, independent ofγ.
The above given results still hold in the case of a regular orbitγ that is not purely stable quasi-periodic. (We

will restrict ourselves to 2D Hamiltonian systems, though the arguments given below could be straightforwardly
extended to higher dimensions.) Letγ be close to a stable periodic orbit,γs. SinceO(γ(t)) in (9) involves nearly
periodic terms, and bothλ andb/λ are small, it follows from(8) and (9)thatY(γ(t)) oscillates with small amplitude
about 2 and that̄Y(γq) converges to 2 slower the smaller isλ. Whenγ → γs, bothu(t), λ → 0, andȲ → 0 as
t → ∞. In this limiting case, the oscillations ofY(γ(t)) about the value 0 are due to the presence of the termw(t)

in (7).
A rather different behaviour ofY(γ(t)) should be expected wheneverγ is close to an unstable periodic orbit,

γu. In such a case, the motion in any small neighborhood ofγu, V , is mainly determined by its associated stable
and unstable manifolds. For sufficiently large motion times,γ will pass close toγu several times. Suppose that
between two successive close approaches withγu, γ spends a time�t1 within V and a time�t2 outside it. During
the interval�t1, it is δ(γ(t)) ≈ δ(γu(t)) ≈ δ0 exp(µt) with µ > 0, while, during�t2, δ(γ(t)) approximately obeys
(7). The “interaction time” betweenγ andγu, �t1, is larger the closer the orbits are to each other. Thus,Y(γ(t))
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should exhibit quasi-periodic oscillations modulated by periodic pulses, of period∼�t2, width ∼�t1 and similar
amplitude. Analogous considerations apply toȲ (γ(t)) but, due to the averaging, the amplitude of the pulses should
decrease as∼1/t. In general,̄Y(γ(t)) will approach the value 2 from above and, after a total motion timet, Ȳ (γ(t))
will be larger the smaller is the distance|γ−γu|. In the limit, whenγ → γu,�t1 ≈ t andȲ (γ(t)) grows unboundedly,
so thatȲ (γ(t)) � 2 (seeEq. (13)).

In the case of an irregular orbit,γi , within any stochastic component, we haveδ(γi(t)) ≈ δ0 exp(σit), σi being
γi ’s LCN. Thus, it is

Y(γi(t)) ≈ σit + Õ(γi(t)) (12)

with Õ some oscillating term of bounded amplitude (which is in general neither periodic nor quasi-periodic, but it
has zero average). On averaging over an interval large enough, we get

Ȳ (γi(t)) ≈ 1
2σit, t → ∞. (13)

Therefore, for a chaotic orbit,Y(γi(t)) andȲ (γi(t)) grow linearly with time, at a rate equal to the LCN of the orbit
or one-half of it, respectively (see below, however). Only when the phase space has an hyperbolic structure, does
Y grow with time. Otherwise, it saturates to a constant value, even in the degenerated cases in whichδ grows with
some power oft, sayn, whereȲ → 2n ast → ∞.

Let us note that MEGNO’s temporal evolution allows for being summed up in a single expression valid for any
kind of motion, which is certainly not the case forσ1. Indeed, the asymptotic behaviour ofȲ (γ(t)) may be written
in the fashionȲ (γ(t)) ≈ aγ t + dγ , whereaγ = σγ/2 anddγ ≈ 0 for irregular, stochastic motion, whileaγ = 0 and
dγ ≈ 2 for stable quasi-periodic motion. Departures from the valuedγ ≈ 2 indicate thatγ is close to some periodic
orbit, beingdγ � 2 anddγ � 2 for stable and unstable periodic orbits, respectively.

Finally, notice that the quantitŷσ1 = Y/t verifies

σ̂1(γq(t)) ≈ 2

t
, σ̂1(γi(t)) ≈ σi, t → ∞, (14)

which show that, in the case of regular motion,σ̂1 converges to 0 faster thanσ1 does (which goes to zero as lnt/t),
while for chaotic motion both magnitudes approach the positive LCN at a rather similar rate.

As it turns out fromEqs. (11) and (13), the LCN can be recovered by means of a simple linear least squares fit
on Ȳ (γi(t)). The main feature of this procedure is that it takes advantage of the dynamical information contained
in Ȳ (γi(t)) regarding the whole interval(0, t) and of the fact that̄Y has a smooth character. Since for purely
quasi-periodic orbits̄Y(γ(t)) approach the constant value 2 quite faster than for nearly stable and unstable periodic
orbits, the LCN derived from the MEGNO will also provide us with information on elliptic and hyperbolic points
as well.

In order to illustrate the announced MEGNO’s behaviour, we consider the well-known 2D Hénon–Heiles model
[18] for the energy levelh = 0.118, the characteristic period of motion beingT ∼ 10. The phase space at this
energy level displays at least two main unconnected chaotic domains having different LCNs (see, for instance,[8]).
One of these domains is associated to simple hyperbolic periodic orbits, while the other is related to 5-periodic
orbits around a simple elliptic periodic orbit.

We picked up the initial conditions of five representative orbits from the surfacex = 0: one close to a stable
1-periodic orbit at(y, py) = (0.295456,0) (sp); another one looking like stable quasi-periodic at (0.483, 0) (qp); a
third one at (0.46912, 0) also quasi-periodic but close to an unstable 4-periodic orbit (up); two irregular orbits, one
inside a gross stochastic layer (c1) at (0.509, 0), and the other one lying in a large chaotic sea (c2) at (0.56, 0.112).

We computedY andȲ by means of(6) and (10), respectively; note that the renormalization ofδ, if necessary,
proceeds naturally from(6). The numerical integrations were performed by means of a Runge–Kutta 7/8th order
integrator (the so-called Dopri8 routine, see[17,24], the accuracy in the conservation of the energy being∼10−13.
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In Fig. 1we show that bothY andȲ evolve with time as predicted byEqs. (9), (11)–(13). Indeed, inFig. 1a we
observe that, for the stable quasi-periodic orbit (qp),Y(t) oscillates about the value 2 with an amplitude� 1, while
Ȳ (t) shows a very fast convergence to the actual average (see below).

Fig. 1b displays the typical behaviour of a trajectory close to an unstable periodic orbit. While the (up) orbit
is “far away” from the hyperbolic point, bothY(t) and Ȳ (t) evolve as in the previous case. However, when the
quasi-periodic orbit passes close to the unstable one, the mutual interaction causes the oscillations ofY(t) to exhibit
a strong modulation, which is damped inȲ (t) as t increases. Thus, after the first close approach att ∼ 2000,
Ȳ (t) > 2 (due mainly to the cumulative effect on the average) but, fort large enough, it asymptotically approaches
the value 2.

Also for the irregular orbits (c1) and (c2) did we compute the time evolution ofY andȲ . The results are given
in Fig. 1c, where bothY(t) and 2̄Y(t) are plotted together to show that, as follows fromEqs. (12) and (13), both
quantities have the same time-rate. Since the trajectories belong to unconnected chaotic domains, the time-rate (i.e.
the LCN) is different for the two orbits.

In Fig. 1d, the temporal evolution of̄Y for all the three regular orbits are compared. For the stable quasi-periodic
orbit (qp),Ȳ reaches the value 2 much faster than for the orbit (sp), which is close to a stable periodic one. In fact,
Ȳ (γsp) � 2 over all the time interval. Both curves, the one forȲ (γsp) and that forȲ (γqp), fit very well Eq. (9), on
neglecting oscillations, beingλsp < λqp. Again, we note that the orbits (qp) and (up) evolve in a rather similar way,
as long as the interaction between (up) and its nearby unstable periodic orbit is weak.

In order to show that actuallŷσ1 → LCN whent → ∞, in Fig. 1e we display its time evolution together with
that ofσ1 for three of the orbits, namely, (sp), (c1) and (c2). We observe that for the chaotic orbits, both magnitudes
converge to the same positive LCN at the same rate. Only there are very small differences betweenσ̂1 andσ1 (see
below). For the regular orbit (sp) instead, we note thatσ̂1 decreases faster thanσ1, the expected final values (see
Eq. (14)and discussion below), 0.00013 and 0.00064, respectively, being in good agreement with the computed
ones.

In the case of chaotic motion, bothY andȲ evolve almost linearly with time along the whole time interval, as
seen inFig. 1c. The deviations from the linear trend, for instance, in (c2), are presumably caused by stickiness.
Indeed, during those time intervals in whichY is almost flat, the orbit remains close to some small stability domain
embedded in the chaotic sea. Here, stickiness does not significantly reduce fast diffusion but, whenever it is strong,
it does influence the mean time-rate of bothY andȲ and consequently, the derived LCN. In order to illustrate this
effect, let us consider the differential equationẋ = a(t)x, x ∈ R, with a(t) a real valued function, so that the LCN is

σ = lim
t→∞

1

t

∫ t

0
a(t′)dt′. (15)

If we compute both the LCN andY for a finite time intervalT and the functiona(t) taking the valuea1 for
0 ≤ t ≤ T/2, anda2 for T/2 ≤ t ≤ T , with a1 anda2 constants, then there resultsσ = σ1 = (a1 + a2)/2.
Meanwhile, the MEGNO, given by(6), is

Y = 2

T

∫ T

0
a(t′)t′ dt′ = a1 + 3a2

4
T. (16)

We see that, in this case, the relative error,ε = |σ̂1 − σ1|/σ1 = |a2 − a1|/|2(a1 + a2)|, is maximum when any of
theai → 0, yieldingε = 1/2, while it takes its minimum value,ε = 0, for a1 = a2. This rather simple example
serves to illustrate that, even in the case of fairly strong stickiness, the rate at whichY evolves does not differ much
from that of the LCN. Here, for instance, the difference barely amounts a factor 1.5.

Further details on the MEGNO’s performance when applied to the study of global dynamics in 2D Hamiltonians,
as well as the advantages of deriving the LCN from a least squares fit onȲ are given in[6,7]. An interesting
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Fig. 1. Time evolution ofY andȲ (〈Y〉 in the figure) for typical orbits: (a) (qp) stable quasi-periodic; (b) (up) quasi-periodic but close to an unstable 4-periodic orbit; (c) (c1) and (c2)
irregular, embedded in two different stochastic domains (smooth curves corresponding to 2Ȳ , and noisy curves toY ). (d) Ȳ (〈Y〉 in the figure) for three regular orbits: (sp) close to a
stable periodic, (qp), and (up); (e) time evolution ofσ̂1 (Y/t in the figure) and the finite time Lyapunov exponentσ1 (denoted by LCN in the figure) for (sp), (c1) and (c2).
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application to a 2.5D problem, namely, the Arnold’s classical problem of diffusion when the two small parameters
are equal, may be found in[25]. The associated splitting of separatrices has been studied in[27].

3. A 3D model

Below, we consider a toy 3D model in order to illustrate how the MEGNO technique succeeds in providing a
detailed picture of its resonance structure. With this aim we address the perturbed quartic oscillator. Indeed, for this
rather simple model the different resonances for small values of the perturbation parameter are easily identified so
that the comparison with the MEGNO’s results is straightforward.

Therefore we investigate the full dynamics of the system:

H̃(p, q) = 1
2p2 + 1

4(x
4 + y4 + z4)+ εx2(y + z) (17)

on a given energy surface and for different values of the parameterε. The termεṼ (x, y, z) = εx2(y + z) can be
regarded as a small perturbation to the integrable 3D uncoupled quartic oscillator, as long asε � 1. Recall that the
quartic oscillator allows for the analytic solutionq(t) = a cn(at), wherea is the oscillation amplitude and cn(u) is
the Jacobian elliptic cosine (see[5]). Using the Fourier expansion for cn(u) (see[16]) and writing the amplitude in
terms of the energy,h, q(t) can be recast as

q(t) = q0(h)

∞∑
n=1

αn cos((2n− 1)ωt)), q0 = 4βh1/4, ω =
√

2βh1/4, β = π

2K(1/
√

2)
, (18)

whereK(k) denotes the complete elliptic integral, and the coefficients in the Fourier expansion are given by

αn = 1

cosh((n− 1/2)π)
,

αn+1

αn
≈ e−π ≈ 1

23
. (19)

In terms of the unperturbed action-angle variables,(I1, I2, I3; θ1, θ2, θ3), Hamiltonian(17)can be written as

H(I , θ) = H0(I )+ εV(I , θ), (20)

whereH0 is given by

H0(I ) = A(I
4/3
1 + I

4/3
2 + I

4/3
3 ) (21)

with A = (3β/2
√

2)4/3, and the perturbation admits of the Fourier expansion:

V(I , θ) = V̂12

∞∑
n,m,k=1

αnmk( cos(2(n+m− 1)θ1 ± (2k − 1)θ2)+ cos(2(n−m)θ1 ± (2k − 1)θ2))

+ V̂13

∞∑
n,m,k=1

αnmk( cos(2(n+m− 1)θ1 ± (2k − 1)θ3)+ cos(2(n−m)θ1 ± (2k − 1)θ3)), (22)

the functionV̂ij and the coefficientsαnmk being

V̂ij ≡ V̂ (Ii, Ij) = CI2/3i I
1/3
j , C = 3β

4
, αnmk= αnαmαk.

The unperturbed frequency vector is

ω(I ) = ∂H0

∂I
= 4

3
A(I

1/3
1 , I

1/3
2 , I

1/3
3 ). (23)
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In order to easily visualize the resonance structure on the energy surface, we introduce a first change of coordinates,
such that the unperturbed energies in each degree of freedom,h1, h2, h3, become the new action-like variables.
Then we get

H0(h1, h2, h3) = h1 + h2 + h3, ω(h1, h2, h3) =
√

2β(h1/4
1 , h

1/4
2 , h

1/4
3 )

and, in terms ofh1 andh2, the resonance condition,m · ω = 0,m ∈ Z
3/{0}, for H0 = h reads

(m4
1 +m4

3)ξ
4 + 4m3

1m2ξ
3η+ 6m2

1m
2
2ξ

2η2 + 4m1m
3
2ξη

3 + (m4
2 +m4

3)η
4 −m4

3 = 0, (24)

whereξ = (h1/h)
1/4, η = (h2/h)

1/4.
Let us now look for the strength of the different harmonics in perturbation(22). On keeping terms ofO(1) in the

coefficients, i.e. neglecting all terms withn,m, k > 1, the harmonics of largest amplitude are

A0
ε = {(2,±1,0), (2,0,±1), (0,±1,0), (0,0,±1)},

while, retaining terms up toO(1/23), we obtain

A1
ε = A0

ε ∪ {(4,±1,0), (4,0,±1), (2,±3,0), (2,0,±3), (−2,±1,0), (−2,0,±1), (0,±3,0), (0,0,±3)}
and, atO(1/232)

A2
ε = A1

ε ∪ {(6,±1,0), (6,0,±1), (4,±3,0), (4,0,±3), (2,±5,0), (2,0,±5), (−2,±3,0), (−2,0,±3),

(−4,±1,0), (−4,0,±1), (0,±5,0), (0,0,±5)}.
We will now be concerned with harmonics appearing at orderO(ε2) and then introduce a canonical transformation
F : (I , θ) �→ (J ,ϕ):

F(J , θ) = J · θ + εΦ(J , θ), I = ∂F

∂θ
, ϕ = ∂F

∂J
, H(J ,ϕ) = H(I , θ) (25)

with the functionΦ(J , θ) so chosen that the transformed HamiltonianH does not contain terms ofO(ε), which
of course can be done as long as we are “far away” from any primary resonance (see below). Thus, introducing
I = J + ε∇θΦ in H0(I ), and expanding it up to the second order inε, we obtain

H0(I ) = H0(J )+ εω · ∇θΦ+ 1

2
ε2∂ωi

∂Ij
ΦθiΦθj +O(ε3), (26)

ω being the unperturbed frequency vector given by(23); here,∂ωi/∂Ij stands for(∂ωi/∂Jj)J=I , and the sum over
repeated indexes should be understood. But, since the Jacobian matrix,∂ωi/∂Ij, is diagonal,(26) reduces to

H0(I ) ≈ H0(J )+ εω · ∇θΦ+ 1

2
ε2∂ωi

∂Ii
(Φθi)

2. (27)

Let us now split perturbation(22) into two, namelyVxy andVxz, which, by introducing the integer vectorsl =
(l1, l2,0), k = (k1,0, k3) and the new coefficientŝαl1l2 andα̂k1k3, read

Vxy(I1, I2; θ1, θ2) = V̂12

∑
l1,l2

α̂l1l2 cos(l1θ1 + l2θ2), Vxz(I1, I3; θ1, θ3) = V̂13

∑
k1,k3

α̂k1k3 cos(k1θ1 + k3θ3)

so that the full Hamiltonian, up toO(ε2), becomes

H(J , θ) ≈ H0(J )+ ε(ω · ∇θΦ+ Vxy + Vxz)+ 1

2
ε2∂ωi

∂Ii
(Φθi)

2. (28)
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Therefore, in order to avoid terms ofO(ε) inH, the functionΦ should be of the form:

Φ(J , θ) =
∑
l1,l2

φ
(1)
l1l2

sin(l1θ1 + l2θ2)+
∑
k1,k3

φ
(2)
k1k3

sin(k1θ1 + k3θ3) (29)

with the amplitudes verifying

φ
(1)
l1l2

= − V̂12α̂l1l2

l1ω1 + l2ω2
, φ

(2)
k1k3

= − V̂13α̂k1k3

k1ω1 + k3ω3
. (30)

Hence, provided thatl1ω1 + l2ω2  = 0 andk1ω1 + k3ω3  = 0, all terms of orderε will be removed from the
Hamiltonian. Actually, the non-resonance condition should be stated properly in terms of a suitable Diophantine
condition in order to avoid too small divisors in(29). Thus, being “far away” from primary resonances,(28)reduces
to

H(J , θ) ≈ H0(J )+ 1

2
ε2∂ωi

∂Ii
(Φθi)

2. (31)

Let us note that the presence of(Φθi)
2 leads to new harmonics. Indeed, on computing(Φθ1)

2 we obtain∑
l,l′

φ
(1)
l φ

(1)
l′ l1l

′
1 cos(l · θ) cos(l′ · θ)+

∑
k,k′

φ
(2)
k φ

(2)
k′ k1k

′
1 cos(k · θ) cos(k′ · θ)

+2
∑
k,l

φ
(1)
l φ

(2)
k l1k1 cos(l · θ) cos(k · θ),

all degrees of freedom being coupled in the last term. When computing(Φθ2)
2 and (Φθ3)

2, instead, degrees of
freedom 2 and 3 remain uncoupled. The new harmonics corresponding tol, k ∈ A0

ε which verify that|m| < 5 are

A0
ε2 = {(4,0,0), (±2,0,0), (0,±2,0), (0,0,±2), (0,±1,±1), (±2,±2,0), (±2,0,±2)},

while, retaining terms up toO(1/232) also satisfying that|m| < 5, we obtain

A2
ε2 = A1

ε2 = A0
ε2 ∪ {(−4,0,0), (0,±4,0), (0,0,±4), (0,±1,±3), (0,±3,±1), (±2,±1,±1)}.

FromA0
ε ,A

1
ε,A

2
ε ,A

0
ε2,A

1
ε2 andA2

ε2 we learn which harmonics would become a resonance (since theωi’s are
always positive) and at which order, in both the coefficients of the expansion and the perturbation parameter, they
would appear.

Note that for those harmonics in which one of themi is zero, the resonant polynomial(24) can be easily solved
to yield

ĥ2 = m4
1

m4
2

ĥ1, m1m2 < 0, m3 = 0, (32a)

ĥ2 = 1−
(
m4

1 +m4
3

m4
3

)
ĥ1, m1m3 < 0, m2 = 0, (32b)

ĥ2 =
(

m4
3

m4
2 +m4

3

)
(1− ĥ1), m2m3 < 0, m1 = 0 (32c)

with ĥi = hi/h, showing that those resonances associated to resonant vectors with at least one nullmi, appear as
straight lines on the energy surfaceĥ1 + ĥ2 + ĥ3 = 1.
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The width of any of those resonances can be computed by means of a simple pendulum approximation, which
indeed is a suitable description whenever we assume each resonance to be isolated from the rest. Let us, for example,
take a resonance atO(ε), the resonant vector beingm = (m1,−m2,0), with m1,m2 > 0. Its amplitude, assuming
orderO(1) for the coefficients, is

Vm = V̂12α
3
1 = 3

4βα
3
1I

r2/3
1 I

r1/3
2 , (33)

but, since the resonant valuesIr
1 andIr

2 verify m1ω1(I
r
1) − m2ω2(I

r
2) = 0, which yieldsIr

2 = (m1/m2)
3Ir

1, there
results

Vm = 3β

4

m1

m2
α3

1I
r
1. (34)

Then, the amplitude depends only onIr
1, which varies on the interval(0, I∗(h)), with I∗ defined through both the

resonance condition and the energy conservation. Notice that resonances of the formω1 = 0, ω2 = 0 orω3 = 0
should not show up since their corresponding amplitudes are zero.

In action space the width of the resonance is given by the vector (see[5]):

(�I )rm = m
√
εMVm,

1

M
= mi

(
∂ωi

∂Ij

)
I r
mj = m2

1

(
∂ω1

∂I1

)
I r
+m2

2

(
∂ω2

∂I2

)
I r

(35)

and, in thehi action-like variables, it can be computed as (see below)

(�hi)
r
m = ωr

i (�Ii)
r
m, (36)

where(�hi)rm and(�Ii)rm denote theith-component of vectors(�h)rm and(35), respectively. A straightforward
calculation leads to

(�hi)
r
m = (−1)(i−1)23/4Km

√
α3

1εh
r7/8
1 , Km =

√
m1/m2

1+ (m2/m1)4
, i = 1,2. (37)

Then, since(�h1)
r
m = −(�h2)

r
m andm3 = 0, the width (half-width to be precise) in energy space is

√
2 times the

amount given by(37). Numerical factors aside, the width, being∼α3/2
1

√
εh

r7/8
1 , increases almost linearly withhr

1.
For resonances atO(1/23) orO(1/232), the width is about 1/

√
23 ≈ 1/5 or 1/23, respectively, of that given by

(37). Just to give an idea of the order of magnitude of the theoretical resonance widths, let us say that the maximum
width of one of the strongest resonances, i.e.(2,−1,0), is about

√
ε/10.

Eq. (37)also provides the width of resonances of the type(m1,0,−m3), when replacing thereinm2 by m3,
whether the minus sign is taken up on computing(�h3)

r
m. For (0,m2,−m3) resonances, however,(37) does no

longer apply since they appear but atO(ε2), as follows fromA0
ε2. In such a case, we know that the width is∼ε,

but we would need to calculate their amplitudes in order to obtain the dependence on bothhr
1 and the harmonic

numbers.
Let us observe that the relation(�h1)

r
m = −(�h2)

r
m is a natural consequence of the change of coordinates

performed. Indeed, the mapI �→ h transforms the unperturbed energy surface,Mh, into a plane, so that the normal
vector (covector) toMh becomes constant,ω �→ (1,1,1)andmi �→ mlωlδ

i
l. Then, the invariant resonance condition,

m ·ω = 0, yields, in the new coordinates, the resonant vector(s,−s,0), with s = m1ωr
1 = m2ωr

2. Clearly, analogous
results are obtained for any resonance with one nullmi. Whenever all themi  = 0, the resonant vector becomes
(s1, s2,−s1 − s2), with si = mlωr

l δ
i
l. From the above discussion it follows that(36) is just the law under which the

components of any vector should transform under the given change of coordinates.
Now, in order to have the actual motion onMh, let us perform a second (global) change of coordinates in such

a way that one of the new basis vectors, sayn3 is normal toMh, namely,n3 = (1,1,1)/
√

3. The remainder basis
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vectors are taken onMh and orthogonal to each other,n1 = (1,−2,1)/
√

6 andn2 = (1,0,−1)/
√

2. Then, denoting
by (e1, e2, e3) the components ofh in the new basis, we have

e1 = 1√
6
(h1 − 2h2 + h3), (38a)

e2 = 1√
2
(h1 − h3), (38b)

e3 = 1√
3
(h1 + h2 + h3) (38c)

with

−
√

2

3
≤ e1

h
≤ 1√

6
, − 1√

2
≤ e2

h
≤ 1√

2
,

e3

h
= 1√

3
. (39)

The map(h1, h2, h3) �→ (e1, e2, e3) leads toH0 �→ √
3e3, ω �→ (0,0,

√
3), andm �→ (µ1, µ2, µ3) where

µ1 = 1√
6
(m1ω1 − 2m2ω2 +m3ω3), µ2 = 1√

2
(m1ω1 −m3ω3),

µ3 = 1√
3
(m1ω1 +m2ω2 +m3ω3). (40)

Because of the resonance condition, it is alwaysµ3 = 0. Whenm3 = 0, we haveµ1 = √
3/2m1ω

r
1 andµ2 =

m1ω
r
1/
√

2, while for nullm2 there resultsµ1 = 0 andµ2 = √
2m1ω

r
1. Unlike in the(h1, h2, h3) representation, on

Mh, the widths(�e1)
r
m and(�e2)

r
m are now different.

In Fig. 2(left) we plot the solution of(24)for |m| ≡ |m1|+ |m2|+ |m3| < 9 after the transformation toMh using
(38a)–(38c). This figure displays the theoretical Arnold web, which is enclosed in a triangle of sides that, as already
indicated in the figure, correspond toh3 = 0 (upper side),h1 = 0 (bottom side) andh2 = 0 (side on the right).
The vertices of such a triangle,(1/

√
6,1/

√
2), (−√

2/3,0), and(1/
√

6,−1/
√

2), correspond to periodic solutions
of axisx, y andz, respectively. Those curves that are not straight lines havem1,m2,m3  = 0 and are resonances
of O(ε2), most of them appearing inA0

ε2 (with the appropriate signs in order to be a resonance). The theoretical
Arnold web should look a bit different when actual motion is considered. Indeed, in such a case every curve should
become a layer of finite width, as we illustrate inFig. 2(right). There we display, for a relatively large value ofε, the
most relevant resonances atO(ε) with their theoretical width given by(37)and transformed to(e1, e2) by recourse
to (38a)–(38c).

3.1. Global dynamics by means of the MEGNO

Hamiltonian(17)depends, at first sight, on two parameters, namely, the energyh andε. However, after rescaling
the variables in the fashionxi → εxi, pi → ε2pi andt → t/ε, we haveH̃ → ε4H̃ ≡ H̄ , which is independent
of ε, being thus the scaled energy,h̄ = ε4h, the only free parameter. Then we allowε to vary and fix the energy
at the valueh = 1/(4β4) ≈ 0.485. This adopted value for the energy leads to a periodT = 2π for they, z-axial
periodic orbits, which remain always stable despite the strength of the perturbation. The corresponding amplitudes
of oscillation areβ−1 > 1. Forε  = 0, thex-axial periodic orbit does not exist and it shows up, in general, as a
chaotic orbit on the invariant planey = z or h2 = h3. However, there exist some stability intervals, for example,
ε � 8× 10−4, 0.057� ε � 0.071 and 0.073� ε � 0.076, where bothy andz oscillate, with the same frequency,
about some negative value. This is shown inFig. 3a where we display the final value of the MEGNO (after a rather
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Fig. 2. Left: solution of the resonant polynomial(24) for |m| < 9(h = 1) yielding the theoretical Arnold web on the energy surface. Right:
the strongest resonances and their width accordingly to(37)–(38c). Arrows within resonances(2,−3,0) and(2,0,−3) indicate the direction in
which�hr

m oscillates about the corresponding resonant value.

long motion time) versus the perturbation parameter onh2 = h3 = 0. There we observe that over almost all the
regarded interval, it is̄Y > 2, indicating the unstable or chaotic character of the motion. Only within the above
mentioned intervals, and in some other very narrow domains, do we getȲ ≤ 2, revealing the existence of stable
motion. InFig. 3b we plot one stable orbit on the invariant planeh2 = h3, corresponding toε = 0.06.

Also the plane(x, px) = (0,0), or h1 = 0, is invariant, as follows from the equations of motion forH̃ , the
remainder 2D Hamiltonian in(y, py, z, pz) being integrable. The resulting motion is in general quasi-periodic,
unlessh2 = h3. Nevertheless, the normal variational equations to thex-motion ath1 = 0 show that the motion
could be either stable or unstable onh1 = 0, as seen inFig. 3c. There we plot, forε = 0.005, the value of the
MEGNO after a certain motion time,tf (see below), for 1000 orbits along the lineĥ2 + ĥ3 = 1, and we observe an
unstable zone around the center.

For each adopted value ofε, we take values ofh1 andh2 with 0 ≤ h1, h2 ≤ h, h3 = h−h1−h2, beingh1 andh2

of the formjh/250, j = 0, . . . ,250. This leads to 31,626 initial conditions for which we take(x, y, z) = (0,0,0).
We integrate the equations of motion together with their first variationals over a total motion timetf = 3500T . For
the tangent vector, we adopt the initial valuesδx = δy = δz = 0 andδpi chosen at random in the interval(−1,1)
and then normalized to 1. For each orbit we compute bothȲ (tf ) and the rate at which the MEGNO grows with
time. When performing the least squares fit onȲ (t) to obtain the LCN, only the last 80% of the time interval is
considered in order to avoid the initial transient. The actual energiesh1, h2, h3, are scaled to the interval [0,1] (by
division throughh) and(38a)–(38c)are used to pass to the energy plane(e1, e2). We have considered 20 values of
ε, ranging from 10−5 to 1, but only the most representative results concerning the global dynamics of the system
are here enclosed.

In Figs. 4 and 5we present the obtained values forȲ (tf ) in a contour-like plot, for comparatively small and large
values ofε, respectively. The values ofȲ (tf ) were binned in six intervals, one of them being very narrow and close
to 2 (see figures for details). The gray-scale was simulated using different point sizes for differentȲ (tf ) intervals.
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Fig. 3. (a) Plot ofȲ (〈Y〉 in the figure) againstε onh2 = h3 = 0. (b) Stable orbit on the invariant planeh2 = h3 for h1 = h, h2 = h3 = 0, x0 = 0 andε = 0.06. (c) Values of̄Y (〈Y〉 in
the figure) on the invariant planeh1 = 0 for ε = 0.005 (see text).
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Fig. 4. Ȳ (tf )-levels (indicated as〈Y〉-levels in the picture) on the energy surface. The contour plot in gray scale (from white to dark-gray)
corresponds tōY binned in six intervals: (a) [0, 1.9965), [1.9965, 1.9979), [1.9979, 2.1), [2.1, 3), [3, 10), [10,33); (b) [0, 1.9965), [1.9965, 1.998),
[1.998, 2.1), [2.1, 3); [3, 15), [15, 98); (c) [0, 1.994), [1.994, 1.999), [1.999, 2.1), [2.1, 20), [20, 100), [100, 189); (d) [0, 1.991), [1.991, 1.999),
[1.999, 2.1), [2.1, 10), [10, 55), [55, 251).

Let us say, however, that, in order to highlight some details at different perturbation values, the point sizes were not
kept constant throughout all figures.

Fig. 4 exhibits most of the regular regime of the system. Indeed,Fig. 4a, which corresponds to the integrable
model under a small perturbation, is in good agreement with what expected (seeFig. 2 (right) for comparison).
All resonances inA2

ε as well as some inA2
ε2 can be clearly distinguished in the figure as light gray channels
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Fig. 5. Ȳ (tf )-levels (〈Y〉-levels in the figure) on the energy surface. The contour plot in gray scale (from white to dark-gray) corresponds toȲ

binned in six intervals: (a) [0, 1.993), [1.993, 2.005), [2.005, 5), [5, 45), [45, 150), [150, 383); (b) [0, 2.005), [2.005, 5), [5, 35), [35, 115), [115,
260), [260, 543); (c) [0, 2.005), [2.005, 30), [30, 100), [100, 200), [200, 350), [350, 738); (d) [0, 2.005), [2.005, 20), [20, 200), [200, 300), [300,
500), [500, 1026).

surrounded by dark boundaries. Thus, for instance, four resonances are seen to intersect at the origin, the three lines
corresponding to the(1,−1,0), (1,0,−1), (0,1,−1) resonances and the curve being associated to the(−2,1,1)
resonance. Let us mention that the origin corresponds to exact energy equipartition,h1 = h2 = h3 = h/3, which
yields to a stable periodic orbit (see below). The global amount of stochasticity as a function ofε can be measured
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by counting how many pixels have a value ofȲ (tf ) which exceeds some threshold. A convenient value is 1.998.
Then, the fractions of stochasticity for the four values ofε in Fig. 4 are 5.8, 16.4, 32.6 and 44.3%, respectively.
These figures do agree with a behaviour of the formO(

√
ε).

As long as the perturbation is increased, resonances become wider. We can clearly distinguish their actual width
as well as the narrow stochastic layers at their edges. The center of any resonance “channel” corresponds to a
sequence of 2D elliptic tori while its borders (stochastic layer) to a sequence of 2D hyperbolic tori. Note that the
MEGNO also reveals traces of many high-order resonances. As expected, for low values ofε, an important part of
the energy surface is populated by 3D tori (quasi-periodic motion), while resonant motion (3D tori “trapped” in the
resonances) occupies a small fraction of the phase space. Forε = 4–8× 10−3 (Fig. 4c and d), we observe a strip of
chaotic motion close toh1 = 0. The presence of this region is easily understood fromFig. 2, as the overlap of the
strongest resonances, e.g.(2,−1,0) and(2,0,−1) as well as many others, for instance,(4,−1,0), (4,0,−1) and
(6,−1,0), (6,0,−1) in A2

ε (not depicted inFig. 2).
A quite interesting fact that MEGNO reveals is the common existence of stability zones at resonance intersections

(also seen inFig. 5). That is, when the system is at a multiple resonance. A chaotic domain should arise whenever
two or more resonances cross. This occurs, in general, due to the intersections of the stable and unstable manifolds
of the nearby related hyperbolic objects: either hyperbolic periodic orbits or center manifolds of elliptic–hyperbolic
periodic orbits. But that domain can appear surrounding a stability region centered at a totally elliptic periodic orbit
(intersection of at least two exact resonances). InFig. 4d, for instance, deeply inside the chaotic zones near the
center of the figure, we note a small stability “island” at the intersection of several resonances. Notice, however,
that a change in the sign of some coupling term can produce a dramatic effect. This can be seen, for instance, at the
lower right plot inFig. 12, which should be compared with the upper right picture. This phenomenon is discussed
in the last few paragraphs ofSection 5.

Fig. 5displays the dynamics at high-level perturbation, that is, the chaotic regime. There is some value ofε, near
5× 10−2, where a transition to, let us say, global stochasticity takes place. While forε = 2 × 10−2 a significant
part of the energy surface still looks regular, with wide resonance domains and a broad chaotic strip (Fig. 5a), it
looks very chaotic for a somewhat slightly larger perturbation (Fig. 5b). If, as done forFig. 4, we fix a threshold
Ȳ (tf ) ≤ 1.998 to regard orbits as regular, the fractions of regular motion in the present figure are 38.3, 8.3, 5.7
and 4.9%, respectively, as we increaseε. Note, however, that within the weaker chaotic region, the MEGNO is still
capable to unveil the relics of resonance structures. For larger perturbations (Fig. 5c and d), only the central zone
and a few other small stability domains are present. Thus, while all these stability domains become smaller asε

increases, the one at the origin grows, about a factor 2, whenε goes from 2× 10−2 to 4× 10−2, and then persists
without significant changes up toε ≈ 0.1075, when the central periodic orbit becomes unstable, the stability domain
disappears and almost all the energy surface becomes completely chaotic.

Very similar pictures to those for̄Y(tf ) given inFigs. 4 and 5are obtained when we plot the LCN,σls, derived by
a least squares fit on̄Y(t) (seeFig. 6corresponding toε = 4×10−2). Anyway, and since the MEGNO is a measure
of hyperbolicity, a rough estimation of the positive LCN is also given by (seeEq. (14)) σ̂1(tf ) = 2Ȳ (tf )/tf ∼
10−4Ȳ (tf ). Indeed, taking, for instance, the value of the MEGNO corresponding to the center of the highest interval,
[260, 543), inFig. 5b, we get log(σ̂1) ≈ −1.437, in agreement with the values [−1.55,−1.3) corresponding to the
highest interval inσls in Fig. 6. On the other hand, the lowest values of log(σls), ∼−7, are much smaller than those
given by log(σ̂1), ∼−3.7. This shows that a least squares fit onȲ (t) to get its time-rate is a very efficient procedure
to separate stable and unstable motion in comparatively short times, as well as provide a good estimation of the
positive LCN (see[7] for further details).

Turning back toFigs. 4 and 5, we observe that diffusion over the energy surface may occur. This is obvious
in the case of large perturbations (Fig. 5c and d), but for smaller perturbations(Figs. 4c, d and 5 a, b)it looks
like diffusion could take place along the chaotic layer of a given resonance and eventually spread over the whole
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Fig. 6. log(σls)-levels (〈Y〉-levels in the figure) on the energy surface. The contour plot in gray scale (from white to dark-gray) corresponds to
log(σls) binned in six intervals: [−8.2,−4.2), [−4.2,−2.55), [−2.55,−2.25), [−2.23,−1.78), [−1.78,−1.55), [−1.55,−1.3).

energy surface through the intersecting zones (this conjecture is usually quoted in physical literature as “Arnold
diffusion”). However, as we show below, such intersections of resonances have a rather complicated structure and,
instead of being a source where chaotic motion spreads, they could act as a barrier to diffusion. Let us mention that
preliminary studies on diffusion on the energy surface at moderate-to-high perturbation (ε ∼ 10−2) reveal that, for
typical timestf � 108T , “fast” diffusion only takes place on the chaotic strip close toh1 = 0. But this is still a
research in progress and will be the subject of a forthcoming work. For related experiments with symplectic maps
we refer to[26].

In order to illustrate some details of the phase space structure at moderate perturbations, we present inFig. 7a, a
plot similar to those given inFigs. 4 and 5, but for ε = 5× 10−3 and with a higher resolution inh1 andh2 (step
10−3h in both of them, that is, 501,501 orbits). In this plot we have skipped all points with 1.995 ≤ Ȳ (tf ) < 2
(corresponding to quasi-periodic motion) in order the resonances be distinguished more clearly. Near 76% of the
pixels correspond tōY(tf ) < 2 and the number of pixels exceeding the value 1.998 is slightly below 37% (compare
with the data forFigs. 4 and 5).

Note the complexity of the picture shown inFig. 7b, where we present a zoom around the intersection of resonances
at the origin. The contour plot was obtained with a higher resolution inh1 andh2 (step 10−4h in both of them) and
for a total motion timetf = 350T . There the MEGNO reveals the existence of several stability zones, which should
be responsible for restraining the spread of chaotic motion, acting in the manner of barriers to diffusion. They are
the sticky tori surrounding the periodic orbit located at the center of the resonance. This plot is also very illustrative
to see how the manifolds of lower-dimensional tori bend in a complex fashion, giving rise to the many tight loops
seen in the picture. These manifolds are important because they are the objects able to carry the motion arriving
along one of the resonances either to the “other part” of the resonance or to a different resonance.

Further details of the resonance structure are shown inFig. 7c, where a zoom along a thin resonance channel is
displayed. For this contour plot the initial conditions were taken spanningh1 andh2 intervals, so that the rectangle
appears distorted because of the transformation to the(e1, e2)-plane. Again the total motion time considered is
tf = 350T and the same magnification (step 10−4h as in (b)) has been used.
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Fig. 7. Ȳ (tf )-levels on the energy surface forε = 5× 10−3 (a); zoom around(e1, e2) = (0,0) (b); zoom along a thin resonance channel (c).
The contour plots correspond tōY binned in the intervals: (a) [1.99, 1.995), [2, 2.015), [2.015, 20), [20, 160), [160, 215); (b) [2.15, 2.6), [2.6,
8); (c) [1.969, 1.978), [2.008, 2.11), [2.11, 9). In (a),tf = 3,500T while in both (b) and (c),tf = 350T .

A few data on the computational cost of the preceding figures can be relevant. For these computations an array
of processors (HIDRA) has been used. At the time the computations were done, it consisted of 42 dual PC, most
of them Pentium at 500 MHz running under Linux. For each one of the plots inFigs. 4 and 5the CPU time was
slightly less than 2 h, whileFig. 7a took 34 h.
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Let us notice that similar resonance structures were obtained via Laskar’s frequency mapping technique when ap-
plied to the dynamical study of triaxial galactic models (see[23,28]). These resonance structures, though resembling
the ones shown above, are far less detailed, so hiding relevant dynamical information.

4. Generalization of the MEGNO

As we have already shown in the example above, the MEGNO does succeed in providing a clear indication of
regular and chaotic behaviour as well as in producing good estimates of the LCN. Let us though generalize the
MEGNO in the following fashion:

Ym,n(γ(t)) = (m+ 1)tn
∫ t

0

δ̇(γ(t′))
δ(γ(t′))

(t′)m dt′, (41)

now defining

Ȳm,n(γ(t)) = 1

tm+n+1

∫ t

0
Ym,n(γq(t

′))dt′ (42)

and analyze whether any benefit would turn out when taking values for the exponents(m, n),m ≥ 0 other than the
natural choice(1,−1) which yielded(6) and (10). Note also thatYm,n with the choice(0,−1) gives, in the limit
whent → ∞, the value ofσ as defined in(4).

The time evolution ofYm,n in case of regular, quasi-periodic motion, is given by the expression:

Ym,n(γq(t)) ≈ (m+ 1)

(
m−1∑
k=0

(−1)ktm+n−k

(m− k)λkq
+ (−1)m

tn ln(1+ λqt)

λmq

)
+O(γq(t)), (43)

which obviously reduces to(9) for (m, n) = (1,−1). Then, fort large enough we get

Ym,n(γq(t))

tm+n ≈ m+ 1

m
, (44)

so the quotientYm,n/tm+n saturates to a constant value ast → ∞. Moreover, from both(42) and (43)it follows
that

Ȳm,n(γq(t)) ≈ m+ 1

m(m+ n+ 1)
, t → ∞, (45)

which is also a fixed constant not depending on the orbit.
In the case of an irregular orbit,γi , of LCN σi, we have

Ym,n(γi(t))

tm+n ≈ σit + Õ(γi(t)), (46)

while, on considering a sufficiently large time, we obtain

Ȳm,n(γi(t)) ≈ σit

m+ n+ 2
. (47)

For a chaotic orbit then, bothYm,n/tm+n andȲm,n grow linearly with time, at a rate that is proportional to the LCN
of the orbit.

Therefore, the asymptotic behaviour ofȲm,n can still be recast as̄Ym,n(γ(t)) ≈ aγ t + dγ , where nowaγ =
σi/(m + n + 2) anddγ ≈ 0 for irregular, stochastic motion, whileaγ = 0 anddγ ≈ (m + 1)/m(m + n + 1) for
stable, quasi-periodic motion.
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Further, as it turns out fromEqs. (45) and (47), the LCN can also be recovered by a simple linear least squares
fit on Ȳm,n(γ(t)).

Let us notice that the quantitŷσ1,m,n = Ym,n/t
m+n+1 verifies

σ̂1,m,n(γq(t)) ≈ m+ 1

mt
, σ̂1,m,n(γi(t)) ≈ σi, t → ∞, (48)

which show that, in case of regular motion,σ̂1,m,n also converges to 0 faster thanσ1 that goes as lnt/t, while
for chaotic motion, both magnitudes approach the positive LCN at a rather similar rate. Notice that the asymptotic
behaviour ofσ̂1,m,n in the regular regime does not depend on the exponentn.

From the several experiments carried out taking different values for the exponents, it looks like the largerm, the
faster the convergence ofȲm,n to a constant value in case of regular motion. Nonetheless, form rather large, it seems
to play a role the total time considered, as the effect of the latter points is reinforced giving rise to somewhat small
oscillations.

An exhaustive comparison of the MEGNO(m, n)’s performance for different exponents(m, n) revealed that,
besides the natural choice(1,−1), also the values (2, 0) serve to distinguish regular from chaotic behaviour in a
quite efficient manner (see below).

Just for the sake of illustration, let us turn back to the 2D Hénon–Heiles example given inSection 2. For the same
three regular orbits there labeled as (sp), (qp) and (up), we computed bothYm,n andȲm,n, by means of(41) and
(42), respectively, for three different choices of(m, n), namely,(1,−1), (2, 0) and (3, 1).

In Fig. 8 we show that in case of regular motion,Ȳm,n evolves with time as predicted byEq. (45). Indeed, the
temporal evolution of̄Ym,n for all the three regular orbits is seen to tend to the asymptotic values 2, 1/2 and 4/15,

Fig. 8. Time evolution of̄Ym,n (〈Y〉m,n in the plot) for the regular orbits (sp), (qp) and (up) in the Hénon–Heiles model, for different values of
the exponents(m, n).
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when the exponents are(1,−1), (2, 0) and (3, 1), respectively. We observe that, for the stable quasi-periodic orbit
(qp), Ȳm,n rapidly converges to the value given in(45), a faster convergence being observed the larger ism. Also
for the orbit close to a stable periodic one, (sp), doesȲm,n reach the constant value(45) faster as a greaterm is
considered. Meanwhile, for the trajectory close to an unstable periodic orbit, (up), smaller oscillations around the
asymptotic value(45)do show whenm = 2.

From the comparison we conclude that the MEGNO (2, 0) allows for clearly separating the regular and chaotic
regime even in rather short motion times. Furthermore, if we use the quantity 4Ȳ2,0, we see that for regular orbits it
tends to 2, as̄Y1,−1 does, while for orbits with exponential instability it tends to behave asσit. Then, either a linear
fit or simply 4Ȳ2,0(γi(t))/t supplies an estimate of the LCN. However, the choice(1,−1) for the exponents offers
the additional benefit of more clearly identifying stable and unstable periodic motion as well.

5. The MEGNO for maps

In this section we show how this numerical tool applies to discrete dynamical systems. For dealing with maps,
the MEGNO is defined essentially as before, but summing over the iterates of the map instead of integrating with
respect tot, and taking the differential map in place of the variational equations.

For a given initial pointQ0, iterates under a given mapP are to be computed yielding pointsQk = Pk(Q0).
An initial “random” tangent vectorv0, ‖v0‖ = 1, is transported under the differential mapDP, to obtain vectors
vk = DPk(Q0)v0. Then, afterN iterates, the MEGNO is computed by means of

Ym,n(N) = (m+ 1)Nn
N∑
k=1

ln

( ‖vk‖
‖vk−1‖

)
km (49)

and

Ȳm,n(N) = 1

Nm+n+1

N∑
k=1

Ym,n(k). (50)

The algorithm has been tested with different values for the exponentsm andn. Again, it turned out that the larger
m, the faster̄Ym,n converges to a constant value for regular motion, but, form rather large, small oscillations show
up. However, the bumpy late evolution ofȲm,n (which is also present in the continuous case, asFig. 8shows, in the
case of (up) orbits) is diminished if the iteration is stopped when the distance between the initial and final points is
minimum (“right-stop” condition). On returning close to the initial point, the effect of the periodic or quasi-periodic
oscillations added to a regular behavior is minimized. This sort of refinement in regards to the stop time, has proven
rather efficient in smoothing such oscillations.

For the sake of illustration, two examples are included where the values (2, 0) have been adopted for the exponents.
This choice, together with the “right-stop” condition, has shown to provide a fairly good fast indicator, the MEGNO
(2, 0)rs. A minor additional modification is also convenient with the choice(m, n) = (2,0). Let us define the
quantity

Ŷ2,0(N) = 4Ȳ2,0(N)− 2

N
, (51)

which tends to 0 in the regular case and toσi in the case of an irregular orbit. Negative values ofŶ2,0(N) appear for
regular orbits (providedN is taken not too small), while small positive values identify mild chaos. The resolution
can eventually be improved by means of a linear fit of 4Ȳ2,0(N)−2, but in the forthcoming examples we have used
simply (51)with the rs criterion.
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Fig. 9. Ŷ2,0-levels for the RSSM (see text) corresponding toµ = 0.8 (left) andµ = 0.85 (right). Regions of regular behaviour are depicted in
white and those of chaotic behaviour in black.

5.1. Examples

Let us first be concerned with the rational shifted standard map (see[12] for details). This is a 2D area-preserving
discrete dynamical system given by the equations:

y′ = y + εf(x), x′ = x+ εy (52)

with x ∈ [0,2π), y ∈ [0,2π/ε), and where

f(x) = sin(x+ ϕ)

1− µ cosx
−∆, ∆ = µ√

1− µ2 + 1− µ2
. (53)

Notice that(52) and (53)define a standard map modified in order to have a no longer symmetric nor entire function
f . Indeed, symmetry is lost through the introduction of the phaseϕ, while the parameterµ ∈ [0,1) breaks the entire
character off . The quantity∆ is fixed so thatf has zero average.

The MEGNO (2, 0)rs has been applied to(52) in an equispaced grid of 1000× 1000 pixels in the domain
(x/2π, yε/2π) ∈ [0,1) × [0,1), for a sample ofµ ∈ [0,1). A maximum ofN iterates has been computed, for
10,000< N < 11,000, the iteration being stopped when the distance|PN(Q0) −Q0| is minimum, according to
the “right-stop” condition. The results forµ = 0.8 andµ = 0.85 are presented inFig. 9, where we have adopted
the valuesε = 0.2 andϕ = 1 for the remaining parameters. There the pixels corresponding to initial conditions
of regular behaviour have been plotted in white and those of chaotic behaviour in black. While forµ = 0.8 the
regular regime prevails (plot on the left), the dynamics forµ = 0.85 displays many chaotic components (plot on
the right), but rotational invariant curves (joining the vertical boundaries) still exist. Note that the variation ofµ has
been small, but the effects are quite dramatic. A small additional increase inµ produces the destruction of all these
curves and a large chaotic zone appears. Notice that the MEGNO (2,0)rs also succeeds in unveiling the resonance
structure of the system.

Fig. 10illustrates the application of the MEGNO to describe the regular or chaotic behaviour for fixed values of
µ. In each 1000× 1000 pixels plot values ofε ∈ [0.001,1] (vertical axes) have been used, and as initial conditions
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Fig. 10. The chaotic regions of the RSSM for different values ofµ. From left to right the values ofµ = 0.4,0.6 and 0.8 have been used. On
the vertical axis we displayε while the horizontal one contains the initial value ofyε/2π. The initial value ofx has been taken equal to 0 in all
cases. Dark-gray pixels correspond to chaotic motion.

x = 0 andyε/2π ∈ [0,0.999] (horizontal axes). The parameterϕ is kept equal to 1 in all cases. The chaotic
behaviour at the boundaries of the resonant zones (where the islands are present) can be clearly seen, as well as
their evolution withµ. We refer to[12] for the analysis of the RSSM using FMA. The frequency analysis provides
information on the rotation numbers of the invariant curves, but the computational cost to correctly discriminate the
character of most of the pixels is much higher. UsingŶ2,0,rs the computing time on HIDRA for each plot inFigs. 9
and 10is less than 3 min.

A comparison with the FLI is also instructive. We consider the RSSM forµ = 0.5, ϕ = 1. To determine how
reliable a method is to decide about the regular or chaotic character of the orbit corresponding to some initial
conditions we have, first, set up a criterion. To this end, we have computed the maximal amplification of the length
of a random initial vector for a maximum ofN = 106 iterates. A threshold equal toL = 1024 has been selected.
Conditions exceedingL beforeN iterates are considered as chaotic. Otherwise, they are assumed to be regular.
Several independent tests have been used to rely on the results (see[1] for tests to decide whether a point is on an
invariant curve). Having assigned a character to each one of the 1000× 1000 pixels withε andyε/2π as above,
we have computedNŶ2,0,rs(N) and the amplification factorA afterN iterates, usingN = 104 andN = 2× 104

in both cases. In the MEGNO approach the last 103 iterates have been used to select the best final point.Fig. 11
shows the number of “discrepancies”, i.e. incorrect identifications among the 106 pixels. The horizontal variable
denotes the value of the parameter used as an estimation ofσiN (eitherNŶ2,0,rs(N) or A). The dots are located at
the respective minima of the number of discrepancies. They are 1878 and 975 for the MEGNO estimates and 3209
and 1852 usingA at the end of each run. It follows that with the same effort (and even without using a fitting) the
MEGNO reduces the number of discrepancies by a factor around 1.8 and furthermore, the value ofσi where the
minimum is found is much closer to 0, as it should be (1.50× 10−4 and 0.95× 10−4 against 5.18× 10−4 and
2.90× 10−4, respectively). Several other choices of(m, n)rs have been tested, modifying the numerator in(51)
to (m + n + 2)(Ȳm,n(N) − (m + 1)/m(m + n + 1)). The results are similar for different couples like(m, n) =
(2,0), (2,1), (2,2), (3,−2), (3,−1) and, among them, (2, 0) seems to be the simplest one.

Let us now turn to a 4D conservative map, the coupled rational shifted standard map, consisting of two coupled
rational shifted standard maps so that it is described by the equations:

y′1 = y1 + ε1f1(x1)+ γ+f3(x1 + x2)+ γ−f3(x1 − x2),

y′2 = y2 + ε2f2(x2)+ γ+f3(x1 + x2)− γ−f3(x1 − x2),

x′1 = x1 + ε1y1, x′2 = x2 + ε2y2 (54)
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Fig. 11. Number of discrepancies as a function of the estimator ofσiN using MEGNO (2, 0)rs (curves on the left) and the usual Lyapunov
estimator (curves on the right). The upper curves correspond toN = 104 and the lower ones toN = 2× 104.

with xi ∈ [0,2π), yi ∈ [0,2π/εi), i = 1,2, and where

fi(x) = sin(x+ ϕi)

1− µi cosx
−∆i, ∆i = µi√

1− µ2
i + 1− µ2

i

, i = 1,3 (55)

withµi ∈ [0,1), and the quantities∆i so fixed thatfi have zero average. Notice that two coupling terms in(x1+x2)

and(x1 − x2) have been added,γ+ andγ− being the coupling parameters.
Several experiments have been carried out using different values for the parameters. The algorithm MEGNO (2,

0)rs has been applied to an equispaced grid of 1000×1000 pixels in the domain(y1ε1/2π, y2ε2/2π) ∈ [0,1)×[0,1).
The initial values for the remaining variables arex1 = 0, x2 = 0. The “right-stop” condition has been applied, so
that for each initial condition the iteration is stopped afterN iterates, 10,000< N < 11,000, when the distance
|PN(Q0)−Q0| is minimum.

Since we have come here to a problem of higher dimension, we have to compute the iterates underDP of two
“random” initial vectorsv10, v20, ‖vi0‖ = 1, which we orthogonalize and renormalize at each iterate. The MEGNO
associated with each direction is computed and the maximum of the two is used in order to determine the character
of the trajectory. The results corresponding toµ1 = 0.5,ϕ1 = 1,µ2 = 0.4,ϕ2 = 2,µ3 = 0.6,ϕ3 = 3 are displayed
in Fig. 12for ε1 = 0.1, ε2 = 0.2, and different values of the coupling parametersγ+ andγ−, which are indicated
on top of each plot. The lower right plot has the same values ofγ+ andγ− on top of it, but the parameterε2 is now
negative. The fact that in the coupling we face to an indefinite form rather than a positive definite one produces a
dramatic effect on the resonances. The contour-like plots in gray scale (from white to dark-gray) exhibit the obtained
values forŶ2,0,rs binned in three intervals. The orbits such thatŶ2,0,rs(N) < 0.01 have been selected as regular, while
those withŶ2,0,rs(N) > 1 are considered chaotic. The intermediate range is regarded as, possibly, mildly chaotic.

A resonance can be identified again as a light gray channel surrounded by dark boundaries. If it is thin perhaps
only some trace of the light and/or dark-gray can be seen. Hundreds of resonances can be detected inFig. 12.
The resonances in the vertical and horizontal directions are present even ifγ± = 0 and their amplitudes depend,
essentially, on|εj|, j = 1,2. As long as the coupling parameters are increased, resonances are seen to become
wider, their actual width as well as their narrow stochastic layers at their edges being clearly distinguished. Further
details on the CRSSM dynamics may be found in[26].
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Fig. 12.Ŷ2,0-levels for the CRSSM for different values of the coupling parametersγ+ andγ−. The contour plots in gray scale (from white to
dark-gray) correspond tôY2,0 binned in three intervals; pixels corresponding to initial conditions of regular behaviour are plotted in white, and
those of chaotic behaviour in dark-gray.

6. Conclusions

In this paper we have shown how a rather simple technique, like the MEGNO, succeeds in providing detailed
indications on the global dynamics of Hamiltonian systems and maps.



P.M. Cincotta et al. / Physica D 182 (2003) 151–178 177

This technique furnishes an efficient algorithm that allows not only to clearly identify regular and irregular motion
as well as stable and unstable periodic orbits, but also to obtain a quite good estimate of the LCN in comparatively
short motion times, for both ordered and stochastic components of phase space. Thus, by the application of a single
tool it is possible to grasp the global dynamics of the system, this procedure being a first attempt to get dynamical
information about the motion using the whole orbit.

Here we have presented numerical evidence of the MEGNO being a fast indicator capable of unveiling the
hyperbolic structure of the phase space, as well as yielding a clear picture of the resonance structure, even in the
case of multi-dimensional systems, which are not easy to be dealt with. The MEGNO is shown to provide the actual
size of a resonance as well as reveal its internal structure.

The algorithm has been applied to a 3D perturbed quartic oscillator. A quite interesting result is the existence
of stability zones in almost all resonance intersections. Indeed, in this case a chaotic domain is seen to show up
whenever two or more resonances intersect, but always surrounding a stability region centered at a stable periodic
orbit. Diffusion over the energy surface may occur, which is obvious for large perturbations, but in case of smaller
perturbations, the MEGNO elucidates such a complex structure of the resonance intersections, that they could
restrain the spreading of chaotic motion.

Further results regarding diffusion on the energy surface at moderate-to-high perturbation will be the subject of
forthcoming papers.

Also has the MEGNO’s performance when applied to conservative maps been illustrated by its application to
both the 2D rational shifted standard map and the 4D coupled rational shifted standard map. There this technique
has demonstrated its efficiency as a fast and reliable method to estimate the main dynamical features and their
significance when dealing with discrete dynamical systems.
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