H Available online at www.sciencedirect.com

coremes @oinser- PHYSICA [

ELSEVIER Physica D 182 (2003) 151178

www.elsevier.com/locate/physd

Phase space structure of multi-dimensional systems by means
of the mean exponential growth factor of nearby orbits

P.M. Cincotté*, C.M. Giordan&, C. Sim&

@ Facultad de Ciencias Astronémicas y Geafas, Universidad Nacional de La Plata, Paseo del Bosque, 1900 La Plata, Argentina
b Departament de Matematica Aplicada i Analisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Received 1 March 2002; received in revised form 26 September 2002; accepted 10 December 2002
Communicated by I. Mezic

Abstract

In this paper we deal with an alternative technique to study global dynamics in Hamiltonian sykemsan exponential
growth factor of nearby orbitfMEGNO), that proves to be efficient to investigate both regular and stochastic components
of phase space. It provides a clear picture of resonance structures, location of stable and unstable periodic orbits as well as a
measure of hyperbolicity in chaotic domains which coincides with that given by the Lyapunov characteristic number. Here
the MEGNO is applied to a rather simple model, the 3D perturbed quartic oscillator, in order to visualize the structure of its
phase space and obtain a quite clear picture of its resonance structure. Examples of application to multi-dimensional canonical
maps are also included.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A combination of analytic, geometric and topological tools is required in order to get a detailed account of the
local dynamics around some well-known objects (such as fixed points, periodic or quasi-periodic orbits, invariant
manifolds, etc.) and the bifurcations that occur when changing parameters. Meanwhile, more global problems,
concerning either a big part of the phase space or a large set of the parameter space, require of probabilistic
methods and computing several numerical indicators. But, whenever a detailed knowledge of the dynamics in a
large set is looked for, we can either extend the local analysis to larger domains, say by using normal forms up to
a relatively large order and unfold the bifurcations found or perform systematic numerical experiments, such as
the computation of invariant objects and, later on, to continue them with respect to parameters and so detect the
bifurcations. This has been the approach used in recent papers §agh d@sllowing a methodology presented in
[3]. Both approaches, however, demand a considerable computational effort, which points out the convenience of
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having some fast indicators aiming at a significant knowledge of the dynamics in a fairly quick wd2%kaad
references therein). Such a numerical tool is sketched herein which succeeds in providing detailed indications of
the global dynamics in relatively short motion times.

Infact, fewtools prove to be useful when studying global dynamics in Hamiltonian systems or maps. In those cases
of divided phase space, which are the most, different techniques are required depending on whether the structur
of the regular or stochastic component is to be investigated. For instance, a Fourier technique such as (Laskar
frequency map analysis (FMA19-21] is a powerful tool, provided that the phase space is almost completely
foliated by invariant tori, since it allows a very precise determination of the frequencies associated to the KAM tori,
thus furnishing information about the orbital structure of the system. A detailed discussion on the refined Fourier
analysis, which is the basis of the FMA, including a thorough study of the error estimates can be fl@id in
where also several examples related to the ones in this paper have been included. However, when irregular motiol
occupies a large fraction of the phase space, the FMA is no longer that useful, since, though a linear diffusion-like
coefficient in frequency space may be derived, it is not quite clear whether this coefficient does provide a good
measure of chaos.

For irregular, stochastic regions of phase space, the largest Lyapunov characteristic number (LCN), or maximal
Lyapunov exponent, gives a direct measure of hyperbolicity, being the latter the underlying structure of chaotic
domains (sefl1]). But, though the LCN is a good indicator of the stability of the motion from a theoretical point of
view, the motion time required to get a relatively good estimation of its value used to be rather large. Moreover, since
the relative error gets larger as the LCN gets smaller, the computed value for moderate times is rather far from the
actual value in case of regular motion, leading to an erroneous identification of the orbit. In sum, for comparatively
short motion times, the LCN is certainly not an adequate indicator. On the other hand, the motion times needed for
a fair estimation of the LCN are too long when dealing with large ensempj&&* (orbits in the case of flows and
>10° orbits in the case of maps), which, however, cannot be a problem if large arrays of processors are available.

The use ofast Lyapunov indicatoré-LI) has been recently popularized (§8€1.0]). Indeed, to decide about the
regular or chaotic behavior of some orbit, you can just follow the evolution of the length of a vector transported by
the variational flow (or by the differential of the map in the case of discrete dynamical systems). If such a length
increases by a factor less than some threshaldring a time spaff, we consider the motion as regular. Otherwise,
if a factor L is reached befor&, we consider it as chaotic. The point is the proper choice of hadind 7. Large
values ofT imply large computational time, while small valuesifdepending ord., have the risk of considering
as chaotic motion which is actually regular or vice versa. This fact already pointed fi#t]iwill be discussed
below.

Here we address a new techniqtes mean exponential growth factor of nearby orilMEEGNO)—described in
detail in[7]—that provides an alternative tool to explore the phase space, allowing to consider shorter motion times.
This efficient tool is not only suitable to investigate both regular and stochastic components of the phase space, but
also produces in addition a good estimation of the LCN. The MEGNO is a global indicator of the dynamics as well
as it is capable to detect high-order resonances. Actually, its ability to reveal the fine structure of the phase space i
due to its sensitivity to the presence of unstable periodic orbits, the very origin of chaos. The required computational
effort is almost the same needed to compute the LCN. It requires the integration of both the field equations and the
concomitant first variationals, but over much shorter time intervals, since it takes due advantage of all the dynamical
information that there remains hidden along the orbit and its tangent vector.

The fact that the MEGNO is able to provide good indications of the local hyperbolic properties of an orbit in short
time intervals has a side effect. Indeed, the LCN is constant on a connected component of the stochastic set. Hence
it gives an average indication of the hyperbolicity on this component. This average does not discriminate whether
the orbit has spent large intervals of time close to some invariant torus for instance. It is known that invariant tori are
quitestickyand, for some time interval, motion close to them displays only, at most, a mild stochasticity. Hence, it
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is far more instructive to look at global dynamical properties by means of a large ensemble of data, each one telling
about local properties around it.

A different method to evaluate the LCN is presentefPirbut there the dynamics is quite special, being typically
the superposition of an exponentially increasing function and large quasi-periodic oscillations.

The present effort is devoted to show how a rather simple technique, the MEGNO, succeeds in providing detailed
indications on the global dynamics of multi-dimensional Hamiltonian systems and maps. Below, we summarize the
MEGNO technique and illustrate its performance in the well-known 2D Hénon—Heiles model. Then we apply it to
a rather simple 3D model, the perturbed 3D quartic oscillator, in order to visualize the structure of its phase space.
Next we present a generalized version of the MEGNO and apply it to a 2D and a 4D area-preserving maps. Some
comparisons with the FMA and FLI are included. The presentation is made in the context of conservative systems,
despite the fact that the domain of applicability is general.

We would like to point out that the MEGNO has recently been successfully applied to astronomical problems
(see[13-15). An application providing numerical evidence for theoretical conjectures in ergodic theory can be
found in[22].

2. The MEGNO

Let H(p, ) with p, g € R" denote anV-dimensional Hamiltonian, assumed to be autonomous just for the
sake of simplicity since this is actually not required for the present formulation. On introducing the notation
x = (p,q) e R?N v =(—0H/dq, dH/dp) € R?N, the equations of motion read:

x = v(x). (8]
Let y(r) be an arc of an orbit of flo|l) on a compact energy surfas, c R2V, M, = {x : H(p, q) = h}, so that
y(0) = {x(t';x0) tx0 € My, 0<1 <1} (2)

and the full positive orbit iy = lim;_, o y(2).
Relevant information about the flow in the vicinity of any orpiis gained through its largest LCM(y), defined
as
16(y()) I
l[8oll

with §(y(r)) anddp “infinitesimal displacements” fromr at timest and 0, respectively (see below) and whigré|
is some norm. The fact that the LCN measures the “mean exponential rate of divergence of nearby orbits”, is stated
explicitly when recasting3) in the integral form:

. 1
o(y) = tlLrgo o1(y(1), o1(y(1) = - In (3

e Loy, (8
v ‘z'ir@o?/() sy & = (3> “

with 8 = |||, § = ds/dr = § - §/|8], the bar denoting time-average. Recall that the tangent védatisfies the
variational equation:

§ = A(¥(1))8, (5)

whereA = Dv is the Jacobian matrix of the vector fiald
We now introduce the MEGNQ,(y(?)), through the expression

2 1)),
Vo) = > /0 S ®)
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which is somewhat related to the integral appearin@)nNotice that in the case of an exponential increasg of
3(y(1)) = Spexp(rr), the quantityY(y(r)) can be considered as a weighted variant of the integr@)inndeed,
instead of the instantaneous rate of increasee average the logarithm of the growth factor(sly (7)) /5o) = At.
Further variants are to be considere®iection 4

Let us now look for MEGNO'’s asymptotic behavior for some, though quite special, very representative solutions
of (5) in order to show how(y(¢)) serves to give clear indication on the character of the different orbits.

Inthe first place we consider orbits on irrational tori for a non-isochronous system. For any such a (quasi-periodic)
orbit, y,, the solution of5) in R?V has the form:

8(yq (D) = So[1 + wq (1) + 1(hg + uqg()], ()

wherek, > 0 is the linear rate of divergence aroupd andw, () andu, () are the oscillating functions of(in

general quasi-periodic and with zero average) of bounded amplitude, satigfying < b, < A,. The parametex,

is a measure of the lack of isochronicity around the orbit since it is related to the maximum eigenvalue of the matrix

dw/0l, @ and I being the frequency and action vectors associated to the torus, respectively (for an isochronous

system, such as the harmonic oscillator= 0 for all y). Then, from(6) and (7) and recalling that, is bounded

by by, it is straightforward to show that(y, (1)) oscillates with bounded amplitude about the value 2 verifying
[Y(yy(H) —2] <4 1n ;w—m ~ Sﬁ, t— 00, (8)

A
q q q
where the last approximation holds provided thats A,. The temporal evolution of(y, (7)) is given by

IN(1+ Ay1)?

Y(yg() ~ 2 — rat

+ O(y4 (1), )
whereO denotes an oscillating term (with zero average) due to the quasi-periodic characterwof Gptndu,, (7).
The lim,_, », Y(y,(2)) does not exist but, on introducing the time-average:

_ 1 1
A /0 Y(y, (1) dr, (10)

it can readily be shown fror(8)—(10)that
Y(Vq) = t|l>nc1>o Y(Vq(t)) =2 (11)

Therefore, for the case of quasi-periodic motiiy) is a fixed constant, independentaf

The above given results still hold in the case of a regular grhitat is not purely stable quasi-periodic. (We
will restrict ourselves to 2D Hamiltonian systems, though the arguments given below could be straightforwardly
extended to higher dimensions.) Liebe close to a stable periodic orbjt. SinceO(y(r)) in (9) involves nearly
periodic terms, and bothandb/x are small, it follows fron{8) and (9)thatY(y(r)) oscillates with small amplitude
about 2 and thal'(y,) converges to 2 slower the smallerisWheny — ys, bothu(t), A — 0, andY — 0 as
t — oo. In this limiting case, the oscillations &%y(¢)) about the value 0 are due to the presence of the ten
in (7).

A rather different behaviour of (y(¢)) should be expected wheneveris close to an unstable periodic orbit,
yu- In such a case, the motion in any small neighborhood,pV, is mainly determined by its associated stable
and unstable manifolds. For sufficiently large motion timesyill pass close tgy, several times. Suppose that
between two successive close approaches miithr spends a timé ¢, within V and a timeAr, outside it. During
the intervalAr, it is 8(y(1)) ~ s(yu(®)) ~ Soexp(ur) with . > 0, while, duringAr, §(y(r)) approximately obeys
(7). The “interaction time” between andy,, Ar, is larger the closer the orbits are to each other. THU(¢))
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should exhibit quasi-periodic oscillations modulated by periodic pulses, of periad, width ~A¢; and similar
amplitude. Analogous considerations applya(s)) but, due to the averaging, the amplitude of the pulses should
decrease as1/t. In general Y (y(r)) will approach the value 2 from above and, after a total motion tink&y (7))
will be larger the smaller is the distanjge— yy|. In the limit, wheny — yy, Aty & randY (y(f)) grows unboundedly,
so that¥ (y(t)) > 2 (se€Eq. (13).

In the case of an irregular orbig, within any stochastic component, we ha\(g;(r)) ~ 8o exp(o;t), o; being
11'S LCN. Thus, it is

YD) ~ it + O (1)) (12)

with O some oscillating term of bounded amplitude (which is in general neither periodic nor quasi-periodic, but it
has zero average). On averaging over an interval large enough, we get

Y(ri(0) ~ 3oit, t— oo. (13)

Therefore, for a chaotic orbik(yi (7)) andY (3 (¢)) grow linearly with time, at a rate equal to the LCN of the orbit
or one-half of it, respectively (see below, however). Only when the phase space has an hyperbolic structure, does
Y grow with time. Otherwise, it saturates to a constant value, even in the degenerated cases drgndvichwith
some power of, sayn, whereY — 2n ast — oo.
Let us note that MEGNO's temporal evolution allows for being summed up in a single expression valid for any
kind of motion, which is certainly not the case for. Indeed, the asymptotic behaviourlfy(r)) may be written
in the fashiont (y(1)) ~ a,t + d,,, wherea, = 0,,/2 andd,, ~ 0 for irregular, stochastic motion, whilg, = 0 and
d, ~ 2 for stable quasi-periodic motion. Departures from the valus: 2 indicate thay is close to some periodic
orbit, beingd,, < 2 andd, 2, 2 for stable and unstable periodic orbits, respectively.
Finally, notice that the quantity; = Y/t verifies

2
01(yq(1) ~ e o1(n()) ~oj, 1 — 00, (14)

which show that, in the case of regular motiénconverges to 0 faster than does (which goes to zero as ifv),
while for chaotic motion both magnitudes approach the positive LCN at a rather similar rate.

As it turns out fromEgs. (11) and (13)}he LCN can be recovered by means of a simple linear least squares fit
on Y (yi(#)). The main feature of this procedure is that it takes advantage of the dynamical information contained
in Y(y(n) regarding the whole intervald, /) and of the fact that has a smooth character. Since for purely
quasi-periodic orbit§ (y(t)) approach the constant value 2 quite faster than for nearly stable and unstable periodic
orbits, the LCN derived from the MEGNO will also provide us with information on elliptic and hyperbolic points
as well.

In order to illustrate the announced MEGNOQO's behaviour, we consider the well-known 2D Hénon—Heiles model
[18] for the energy levek = 0.118, the characteristic period of motion beifig~ 10. The phase space at this
energy level displays at least two main unconnected chaotic domains having different LCNs (see, for if@g)ance,
One of these domains is associated to simple hyperbolic periodic orbits, while the other is related to 5-periodic
orbits around a simple elliptic periodic orbit.

We picked up the initial conditions of five representative orbits from the sunface0: one close to a stable
1-periodic orbit aly, p,) = (0.295456 0) (sp); another one looking like stable quasi-periodic at (0.483, 0) (gp); a
third one at (0.46912, 0) also quasi-periodic but close to an unstable 4-periodic orbit (up); two irregular orbits, one
inside a gross stochastic layer (c1) at (0.509, 0), and the other one lying in a large chaotic sea (c2) at (0.56, 0.112).

We computedr andY by means of6) and (10) respectively; note that the renormalizationspif necessary,
proceeds naturally fror(6). The numerical integrations were performed by means of a Runge—Kutta 7/8th order
integrator (the so-called Dopri8 routine, §&&,24], the accuracy in the conservation of the energy beitg12.



156 P.M. Cincotta et al./ Physica D 182 (2003) 151-178

In Fig. 1we show that botlY andY evolve with time as predicted gs. (9), (11)—(13)Iindeed, inFig. 1a we
observe that, for the stable quasi-periodic orbit (df8)) oscillates about the value 2 with an amplituge., while
Y (¢) shows a very fast convergence to the actual average (see below).

Fig. 1b displays the typical behaviour of a trajectory close to an unstable periodic orbit. While the (up) orbit
is “far away” from the hyperbolic point, botki(r) and Y () evolve as in the previous case. However, when the
guasi-periodic orbit passes close to the unstable one, the mutual interaction causes the oscill&tiptesethibit
a strong modulation, which is damped ¥ir) ast increases. Thus, after the first close approach -at 2000,

Y () > 2 (due mainly to the cumulative effect on the average) but; karge enough, it asymptotically approaches
the value 2.

Also for the irregular orbits (c1) and (c2) did we compute the time evolutioti ahdY. The results are given
in Fig. 1c, where both¥(r) and 2 (r) are plotted together to show that, as follows fr&gs. (12) and (13)both
guantities have the same time-rate. Since the trajectories belong to unconnected chaotic domains, the time-rate (i.e
the LCN) is different for the two orbits.

In Fig. 1d, the temporal evolution df for all the three regular orbits are compared. For the stable quasi-periodic
orbit (gp), Y reaches the value 2 much faster than for the orbit (sp), which is close to a stable periodic one. In fact,
Y (ysp) < 2 over all the time interval. Both curves, the one faiysp) and that forY (yqp), fit very well Eg. (9) on
neglecting oscillations, beingsp < Aqp. Again, we note that the orbits (gp) and (up) evolve in a rather similar way,
as long as the interaction between (up) and its nearby unstable periodic orbit is weak.

In order to show that actually; — LCN whenr — oo, in Fig. 1e we display its time evolution together with
that of a1 for three of the orbits, namely, (sp), (c1) and (c2). We observe that for the chaotic orbits, both magnitudes
converge to the same positive LCN at the same rate. Only there are very small differences betaredn, (see
below). For the regular orbit (sp) instead, we note thatiecreases faster than, the expected final values (see
Eq. (14)and discussion below), 0.00013 and 0.00064, respectively, being in good agreement with the computed
ones.

In the case of chaotic motion, bothandY evolve almost linearly with time along the whole time interval, as
seen inFig. 1c. The deviations from the linear trend, for instance, in (c2), are presumably caused by stickiness.
Indeed, during those time intervals in whiklis almost flat, the orbit remains close to some small stability domain
embedded in the chaotic sea. Here, stickiness does not significantly reduce fast diffusion but, whenever it is strong
it does influence the mean time-rate of b@tiandY and consequently, the derived LCN. In order to illustrate this
effect, let us consider the differential equatioe- a(r)x, x € R, with a(¢) a real valued function, so that the LCN is

1 t
o:lﬁrrgo;/o a()dr. (15)

If we compute both the LCN andf for a finite time intervalT and the functioru(s) taking the valuez; for
0 <t < T/2, anday for T/2 < t < T, with a1 anday constants, then there results= o1 = (a1 + a2)/2.
Meanwhile, the MEGNO, given b{f), is

y=2 / Ta(t/)t/ g = At 3, (16)
T Jo 4

We see that, in this case, the relative ersos |61 — o1|/01 = |az — ai1]/|2(a1 + a2)|, is maximum when any of
thea; — 0, yieldinge = 1/2, while it takes its minimum value, = 0, for a; = a». This rather simple example
serves to illustrate that, even in the case of fairly strong stickiness, the rate at¥wciives does not differ much
from that of the LCN. Here, for instance, the difference barely amounts a factor 1.5.

Further details on the MEGNO's performance when applied to the study of global dynamics in 2D Hamiltonians,
as well as the advantages of deriving the LCN from a least squares fitame given in[6,7]. An interesting
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application to a 2.5D problem, namely, the Arnold’s classical problem of diffusion when the two small parameters
are equal, may be found [85]. The associated splitting of separatrices has been studj2d]in

3. A 3D mode

Below, we consider a toy 3D model in order to illustrate how the MEGNO technique succeeds in providing a
detailed picture of its resonance structure. With this aim we address the perturbed quartic oscillator. Indeed, for this
rather simple model the different resonances for small values of the perturbation parameter are easily identified sc
that the comparison with the MEGNO's results is straightforward.

Therefore we investigate the full dynamics of the system:

Hp,q) = ip*+ 10+ +2H + e +2) (17)

on a given energy surface and for different values of the pararaefdre termeV (x, y, z) = ex2(y + z) can be
regarded as a small perturbation to the integrable 3D uncoupled quartic oscillator, asdorgladkecall that the
quartic oscillator allows for the analytic solutigir) = a cn(at), wherea is the oscillation amplitude and @) is
the Jacobian elliptic cosine (sfg). Using the Fourier expansion for @) (see[16]) and writing the amplitude in
terms of the energys, ¢(¢) can be recast as

— o)y, 2 COS((2n — Door), qo = 4BhY4, w = V2BHY4 p= — 18
q() qo();a cos(2n — D). go=4pn""", 0 =2 p= (18)

whereK (k) denotes the complete elliptic integral, and the coefficients in the Fourier expansion are given by

1 Op41 7 1
= , ~e T —. 19
%1 = Cosh((n — 1/2)7) n 23 (19)

In terms of the unperturbed action-angle variab{és, I», I3; 61, 62, 63), Hamiltonian(17) can be written as

H(I,0) = Ho(I) +€V(1,9), (20)
whereHj is given by

Ho(I) = AU + 137° + 133 (21)
with A = (38/2+/2)*3, and the perturbation admits of the Fourier expansion:

VUL0) =12 Y anmi(COS(2(n + m — 16y £ (2k — 1)) + cOS(2(n — m)6y % (2 — 1)62))
n,m,k=1

+Vi3 Y anmk(COS(2(n +m — 161 £ (2k — D63) + COS(2(n — m)by + (2 — 1)63)), (22)
n,m, k=1

the functionf/ij and the coefficienta,mk being

3
Vi=Vu, 1) = Clz/3 1/3 C= Zﬂ’ Qnmk = O Oty Ol
The unperturbed frequency vector is
dH,
o) =22 = —A(Il/3 n* 5k (23)

ol
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In order to easily visualize the resonance structure on the energy surface, we introduce a first change of coordinates,
such that the unperturbed energies in each degree of freddoy, #3, become the new action-like variables.
Then we get

Ho(h1,ho,h3) = hi+h2+hs,  @(h1, ha, ha) = V2B(hy*, hy/*, hgl*)
and, in terms ofi1 andh;, the resonance conditiom, - @ = 0, m € Z3/{0}, for Hy = h reads
(m§ + mBE* + 4m3moE3n + 6m2m32n? + Amam3en® + (my + mPHn* —m§ =0, (24)

wheret = (hy/h)Y4, n = (ho/ h)Y*.
Let us now look for the strength of the different harmonics in perturbg@@h On keeping terms aP(1) in the
coefficients, i.e. neglecting all terms withm, k > 1, the harmonics of largest amplitude are

A = {(2,4+1,0), (2,0, +1), (0, +1, 0), (0, 0, +1)},
while, retaining terms up t®(1/23), we obtain

Ag = AS U{4, £1,0), (4,0, +1), (2,£3,0), (2,0, £3), (-2, £1,0), (-2, 0, +£1), (0, £3, 0), (O, O, +3)}
and, atO(1/23%)

"43 = Ai ) {(6, :l:lv O)a (67 09 :l:l)v (47 :|:39 O)v (4» O, :l:3)7 (2» :|:5, 0)1 (29 O, :l:5)s (_27 :|:37 O)v (_21 07 :|:3)s
(-4, +1,0), (4,0, £1), (0, £5, 0), (0, O, £5)}.

We will now be concerned with harmonics appearing at oédrf) and then introduce a canonical transformation
F:(1,0) = (J, 9):
JdF oF
F(J,0)=J-0+¢®(],0), I=—, = —,
(J,0)=J -0+e2(J,0) 0 =357
with the function@(J, 6) so chosen that the transformed Hamiltonfdrdoes not contain terms @(¢), which
of course can be done as long as we are “far away” from any primary resonance (see below). Thus, introducing
I = J +€Vydin Hy(I), and expanding it up to the second ordee,imve obtain

H(J,9) = H(,0) (25)

1 ,0w;
Ho(I) = Ho(J) + €0 - Vo + S -2 @g, P, + O(), (26)
J
® being the unperturbed frequency vector giver(2§), here,dw;/d1; stands fordw;/9J;) y=;, and the sum over
repeated indexes should be understood. But, since the Jacobian datfbd,;, is diagonal(26) reduces to
1 28&)1'
Ho(I) ~ Ho(J) + €w - Vo@ + —€"—
2 9l
Let us now split perturbatio(?2) into two, namelyVyy, and Vy,, which, by introducing the integer vectaks=
(I1,12,0), k = (k1, 0, k3) and the new coefficients,;, anday,,, read

(@62 (27)

Vay(I1, I2; 01, 02) = Va2 Y _ Guyp, COS(a01 + [a2), Vi1, I3: 01, 03) = Vi3 ) ey COS(K1O1 + kata)
I1,l2 k1.k3
so that the full Hamiltonian, up t®(e?), becomes

1 ,0w;
H(J.0) ~ Ho(J) + e(@ - Vod + Viy+ Vi) + 5628—‘;@992. (28)
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Therefore, in order to avoid terms 6¥(¢) in 4, the function® should be of the form:

D(J.0) = 10 sin(aby +l262) + Y di2y. Sin (ka1 + kada) (29)

l1l2
l1,l2 k1,k3

with the amplitudes verifying

o0 = _ V20,1, @ _ _ V130qks (30)
hiz lho1 + bwy’ kiks kiw1 + kaws

Hence, provided thatiw; + lowz # 0 andkiw1 + kzws # 0, all terms of ordek will be removed from the
Hamiltonian. Actually, the non-resonance condition should be stated properly in terms of a suitable Diophantine
condition in order to avoid too small divisors(29). Thus, being “far away” from primary resonancéxg) reduces

to

1 ,0w;
H(J.0) ~ Ho(J) + Efza_?@‘“z' (31)

Let us note that the presence(ciffgl.)2 leads to new harmonics. Indeed, on compuﬁqlbgl)2 we obtain
> 3PPl cost - 8) cosl - 0) + Y ¢\7 ¢\2 kak’ cos(k - 8) cos(k’ - 8)
Lr kK

+23 ¢ ¢2 k1 cosl - 8) cos(k - 6),
k.1

all degrees of freedom being coupled in the last term. When compmi@gz and (0593)2, instead, degrees of
freedom 2 and 3 remain uncoupled. The new harmonics corresponding H)AS which verify thatjm| < 5 are

ASZ = {(4’ 0? O)? (i21 07 O)? (0’ :|:27 0)’ (01 07 :t2)1 (01 il, il)! (:t27 :t27 O)? (izi 0’ :|:2)}7
while, retaining terms up t@(1/23%) also satisfying thaim| < 5, we obtain
A% = AL = A% U{(—4,0,0), (0,+4,0), (0,0, +4), (0, £1, £3), (0, £3, £1), (£2, £1, +1)}.

From AS, Ag, Af, AS ,Ael2 and Afz we learn which harmonics would become a resonance (since;theare
always positive) and at which order, in both the coefficients of the expansion and the perturbation parameter, they

would appear.
Note that for those harmonics in which one of thgis zero, the resonant polynomi@4) can be easily solved

to yield

4
~ mlA
ho = —4h1, mqimo < 0, m3 =0, (328.)
m3
4 4
~ msy+m ~
hy=1-— (%) h1,  mimz<0,  my=0, (32b)
ms
4
N m3 N
ho = ——3 A - hy), mom3z < 0, m1=0 (32c)
my +mg

with &; = h;/ h, showing that those resonances associated to resonant vectors with at least sneapgkar as
straight lines on the energy surfate+ hp + hz = 1.
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The width of any of those resonances can be computed by means of a simple pendulum approximation, which
indeed is a suitable description whenever we assume each resonance to be isolated from the rest. Let us, for example
take a resonance él(¢), the resonant vector being = (m1, —mo, 0), with m, mo > 0. Its amplitude, assuming
orderO(1) for the coefficients, is

Vin = V1205 = 33 17° 153, (33)

but, since the resonant valugsand I, verify myw1(I7) — mow2(I;) = 0, which yieldsr}, = (m1/m2)3I", there
results

3,3 mi g3

7 mzalli (34)

Then, the amplitude depends only #n which varies on the intervaD, I.(h)), with I, defined through both the
resonance condition and the energy conservation. Notice that resonances of thg fer® w, = 0 orwz = 0
should not show up since their corresponding amplitudes are zero.

In action space the width of the resonance is given by the vectoffhee

e en () () (5),
2

M al ol
and, in thei; action-like variables, it can be computed as (see below)

Vim =

(Ahi)py = & (AL, (36)

where(Ah;)!, and(AI)), denote theth-component of vectoréAk)!, and(35), respectively. A straightforward
calculation leads to

N 1\(i—Do3/4 3 ,r7/8 . m1/m2 -
(Ahz)m = (-1 2 Km\/ ()!16]’11 , Km= 1/ —1+ (mz/m1)4, i=12 (37)

Then, sinc€Ah1);, = —(Ah2),, andm3 = 0, the width (half-width to be precise) in energy spac¢/Btimes the

amount given by37). Numerical factors aside, the width, belﬂ@3/ 2[ hﬂ/ 8 increases almost linearly with.

For resonances &9(1/23) or O(1/23%), the width is about /23 ~ 1/5 or 1/23, respectively, of that given by

(37). Just to give an idea of the order of magnitude of the theoretical resonance widths, let us say that the maximum
width of one of the strongest resonances,@e—1, 0), is about,/€/10.

Eq. (37)also provides the width of resonances of the type, 0, —m3), when replacing thereim, by ms3,
whether the minus sign is taken up on computifg:3)!,. For (0, m2, —m3) resonances, howeveB7) does no
longer apply since they appear but@te?), as follows fromASz. In such a case, we know that the width-is,
but we would need to calculate their amplitudes in order to obtain the dependence dr) lamith the harmonic
numbers.

Let us observe that the relatiqzz1)!, = —(Ah2)!, is a natural consequence of the change of coordinates
performed. Indeed, the mdp— k transforms the unperturbed energy surfadg, into a plane, so that the normal
vector (covector) taf;, becomes constand, — (1, 1, 1) andm’ — m’a)laj. Then, the invariant resonance condition,
m-w = 0, yields, in the new coordinates, the resonant vegioers, 0), withs = mlwrl = mza)g. Clearly, analogous
results are obtained for any resonance with one mullWhenever all then' # 0, the resonant vector becomes
(st, 52, —st — s?), with s = m'w{s}. From the above discussion it follows t{86)is just the law under which the
components of any vector should transform under the given change of coordinates.

Now, in order to have the actual motion a4y, let us perform a second (global) change of coordinates in such
a way that one of the new basis vectors, aays normal toM;,, namelyns = (1, 1, 1)/+/3. The remainder basis
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vectors are taken aif;, and orthogonal to each other, = (1, —2, 1)/+/6 andn, = (1, 0, —1)/+/2. Then, denoting
by (e1, e2, e3) the components di in the new basis, we have

1

el = 76(h1_2h2+h3)’ (38a)
1

e = TZ(hl—hs), (38h)
1

e3 = ﬁ(hl-i-hz—i-hs) (38c)

with
_\/?<ﬂ<i _i<e_2<i e_szi (39)
37 h =6 V2T h T V2 h 3

The map(hy, ho, h3) — (e1, eo, e3) leads toHg — +/3e3, @ — (0,0, +/3), andm — (uu1, o, u3) where

1 1
H1 = —=(miw1 — 2mowy + m3w3), H2 = —=(miw1 — m3ws),
V6 NG
1
u3 = —=(miw1 + mawz + m3ws). 40
V3 (40)

Because of the resonance condition, it is always= 0. Whenmg = 0, we haveu; = /3/2mi0] anduz =
mlwrl/ﬁ, while for nullm; there resultge; = 0 anduy = «/?mla)rl. Unlike in the(hy, ho, h3) representation, on
My, the widths(Aeq);,, and(Aep)!, are now different.

In Fig. 2(left) we plot the solution of24)for |m| = |m1| + |m2| + |m3| < 9 after the transformation &, using
(38a)—(38c) This figure displays the theoretical Arnold web, which is enclosed in a triangle of sides that, as already
indicated in the figure, correspond ig = 0 (upper side)k; = 0 (bottom side) and@, = 0 (side on the right).

The vertices of such a trianglél,/v/6, 1/v/2), (—/2/3, 0), and(1/4/6, —1/+/2), correspond to periodic solutions

of axisx, y andz, respectively. Those curves that are not straight lines have:,, m3 # 0 and are resonances

of O(2), most of them appearing MSZ (with the appropriate signs in order to be a resonance). The theoretical
Arnold web should look a bit different when actual motion is considered. Indeed, in such a case every curve should
become a layer of finite width, as we illustrateHig. 2(right). There we display, for a relatively large valuespthe

most relevant resonances@te) with their theoretical width given b§37) and transformed t¢e1, e2) by recourse

to (38a)—(38c)

3.1. Global dynamics by means of the MEGNO

Hamiltonian(17) depends, at first sight, on two parameters, namely, the ehagge. However, after rescaling
the variables in the fashiary — ex;, p; — €2p; andt — t/e, we haveH — ¢*H = H, which is independent
of ¢, being thus the scaled energy= *h, the only free parameter. Then we allevio vary and fix the energy
at the valugh = 1/(48% =~ 0.485. This adopted value for the energy leads to a pefied 27 for the y, z-axial
periodic orbits, which remain always stable despite the strength of the perturbation. The corresponding amplitudes
of oscillation are8~1 > 1. Fore # 0, thex-axial periodic orbit does not exist and it shows up, in general, as a
chaotic orbit on the invariant plane= z or h2 = h3. However, there exist some stability intervals, for example,
€ <8x 1074, 0.057< € < 0.071 and W73 < € < 0.076, where botly andz oscillate, with the same frequency,
about some negative value. This is showikig. 3a where we display the final value of the MEGNO (after a rather
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1< |myf +|my| + mg| <9

Strongest resonances, (my,-m,,0) - (M,0,-mj), with their theoretical widths
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Fig. 2. Left: solution of the resonant polynomi@4) for |m| < 9(h = 1) yielding the theoretical Arnold web on the energy surface. Right:
the strongest resonances and their width accordingl§#p-(38c) Arrows within resonance@, —3, 0) and(2, 0, —3) indicate the direction in
which AR}, oscillates about the corresponding resonant value.

long motion time) versus the perturbation parametehpna= hz = 0. There we observe that over almost all the
regarded interval, it i¥ > 2, indicating the unstable or chaotic character of the motion. Only within the above
mentioned intervals, and in some other very narrow domains, do wg ge®, revealing the existence of stable
motion. InFig. 3b we plot one stable orbit on the invariant plane= h3, corresponding te = 0.06.

Also the plane(x, p,) = (0,0), or hy = 0, is invariant, as follows from the equations of motion fér the
remainder 2D Hamiltonian igy, py, z, p;) being integrable. The resulting motion is in general quasi-periodic,
unlesshy = h3. Nevertheless, the normal variational equations toxtineotion ath; = 0 show that the motion
could be either stable or unstable bp = 0, as seen ifrig. 3c. There we plot, foe = 0.005, the value of the
MEGNO after a certain motion time; (see below), for 1000 orbits along the lihg+ h3 = 1, and we observe an
unstable zone around the center.

For each adopted value afwe take values df; andh, with O < h1, ho < h, h3 = h — h1 — ho, beinghi andhy
of the formjh/250, j =0, ... , 250 This leads to 31,626 initial conditions for which we takey, z) = (0, 0, 0).

We integrate the equations of motion together with their first variationals over a total motioryten85007. For

the tangent vector, we adopt the initial valdgs= é, = §; = 0 ands,,, chosen at random in the interv@al 1, 1)

and then normalized to 1. For each orbit we compute b_’cﬁtya) and the rate at which the MEGNO grows with
time. When performing the least squares fitlom) to obtain the LCN, only the last 80% of the time interval is
considered in order to avoid the initial transient. The actual enekgigs, i3, are scaled to the interval [@] (by
division through) and(38a)—(38c)re used to pass to the energy pléng e2). We have considered 20 values of

¢, ranging from 10° to 1, but only the most representative results concerning the global dynamics of the system
are here enclosed.

In Figs. 4 and Sve present the obtained values fa s) in a contour-like plot, for comparatively small and large
values ofe, respectively. The values &f(z ;) were binned in six intervals, one of them being very narrow and close
to 2 (see figures for details). The gray-scale was simulated using different point sizes for diffegenntervals.
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Fig. 3. (a) Plot off ((Y) in the figure) against on s, = h3 = 0. (b) Stable orbit on the invariant plahg = hz for hy = h, hy = hz = 0, xo = 0 ande = 0.06. (c) Values off ((¥) in
the figure) on the invariant plarig = 0 for e = 0.005 (see text).
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(Y)-levels {Y)-levels
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Fig. 4. )_’(tf)—levels (indicated agY)-levels in the picture) on the energy surface. The contour plot in gray scale (from white to dark-gray)

corresponds t& binned in six intervals: (a) [0, 1.9965), [1.9965, 1.9979), [1.9979, 2.1), [2.1, 3), [3, 10), [10,33); (b) [0, 1.9965), [1.9965, 1.998),
[1.998, 2.1), [2.1, 3); [3, 15), [15, 98); (c) [0, 1.994), [1.994, 1.999), [1.999, 2.1), [2.1, 20), [20, 100), [100, 189); (d) [0, 1.991), [1.991, 1.999

[1.999, 2.1), [2.1, 10), [10, 55), [55, 251).

Let us say, however, that, in order to highlight some details at different perturbation values, the point sizes were not
kept constant throughout all figures.

Fig. 4 exhibits most of the regular regime of the system. Indé&eégl, 4a, which corresponds to the integrable
model under a small perturbation, is in good agreement with what expecteBi¢sex(right) for comparison).
All resonances inAf as well as some iraélf2 can be clearly distinguished in the figure as light gray channels
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Fig. 5. I?(tf)—levels (Y)-levels in the figure) on the energy surface. The contour plot in gray scale (from white to dark-gray) corresgbnds to
binned in six intervals: (a) [0, 1.993), [1.993, 2.005), [2.005, 5), [5, 45), [45, 150), [150, 383); (b) [0, 2.005), [2.005, 5), [5, 35), [35, 115), [115
260), [260, 543); (c) [0, 2.005), [2.005, 30), [30, 100), [100, 200), [200, 350), [350, 738); (d) [0, 2.005), [2.005, 20), [20, 200), [200, 300), [300,
500), [500, 1026).

surrounded by dark boundaries. Thus, for instance, four resonances are seen to intersect at the origin, the three line
corresponding to thél, —1, 0), (1,0, —1), (0, 1, —1) resonances and the curve being associated to-tBgel, 1)
resonance. Let us mention that the origin corresponds to exact energy equipaititiorh, = h3 = h/3, which

yields to a stable periodic orbit (see below). The global amount of stochasticity as a functioarobe measured
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by counting how many pixels have a valuefdfzf) which exceeds some threshold. A convenient value is 1.998.
Then, the fractions of stochasticity for the four values af Fig. 4 are 5.8, 16.4, 32.6 and 44.3%, respectively.
These figures do agree with a behaviour of the f@r/e).

As long as the perturbation is increased, resonances become wider. We can clearly distinguish their actual width
as well as the narrow stochastic layers at their edges. The center of any resonance “channel” corresponds to a
sequence of 2D elliptic tori while its borders (stochastic layer) to a sequence of 2D hyperbolic tori. Note that the
MEGNO also reveals traces of many high-order resonances. As expected, for low valuas whportant part of
the energy surface is populated by 3D tori (quasi-periodic motion), while resonant motion (3D tori “trapped” in the
resonances) occupies a small fraction of the phase space=F4+8x 10~2 (Fig. 4c and d), we observe a strip of
chaotic motion close th; = 0. The presence of this region is easily understood fragn 2, as the overlap of the
strongest resonances, €8, —1, 0) and(2, 0, —1) as well as many others, for instan¢é, —1, 0), (4,0, —1) and
(6,—1,0), (6,0, —1) in .A2 (not depicted irFig. 2).

A quite interesting fact that MEGNO reveals is the common existence of stability zones at resonance intersections
(also seen irrig. 5). That is, when the system is at a multiple resonance. A chaotic domain should arise whenever
two or more resonances cross. This occurs, in general, due to the intersections of the stable and unstable manifolds
of the nearby related hyperbolic objects: either hyperbolic periodic orbits or center manifolds of elliptic—hyperbolic
periodic orbits. But that domain can appear surrounding a stability region centered at a totally elliptic periodic orbit
(intersection of at least two exact resonances)ith 4d, for instance, deeply inside the chaotic zones near the
center of the figure, we note a small stability “island” at the intersection of several resonances. Notice, however,
that a change in the sign of some coupling term can produce a dramatic effect. This can be seen, for instance, at the
lower right plot inFig. 12 which should be compared with the upper right picture. This phenomenon is discussed
in the last few paragraphs 8ection 5

Fig. 5displays the dynamics at high-level perturbation, that is, the chaotic regime. There is some vaheaof
5 x 10~2, where a transition to, let us say, global stochasticity takes place. Whitefo2 x 102 a significant
part of the energy surface still looks regular, with wide resonance domains and a broad chaotitgstéa)( it
looks very chaotic for a somewhat slightly larger perturbatieig.(5). If, as done folFig. 4, we fix a threshold
Y(t;) < 1.998 to regard orbits as regular, the fractions of regular motion in the present figure are 38.3, 8.3, 5.7
and 4.9%, respectively, as we increasblote, however, that within the weaker chaotic region, the MEGNO is still
capable to unveil the relics of resonance structures. For larger perturbdtignSa and d), only the central zone
and a few other small stability domains are present. Thus, while all these stability domains become sraaller as
increases, the one at the origin grows, about a factor 2, wigees from 2x 102 to 4 x 102, and then persists
without significant changes up¢o~ 0.1075, when the central periodic orbit becomes unstable, the stability domain
disappears and almost all the energy surface becomes completely chaotic.

Very similar pictures to those fd_f(tf) given inFigs. 4 and &re obtained when we plot the LCkg, derived by
a least squares fit on(r) (seeFig. 6corresponding te = 4 x 10-2). Anyway, and since the MEGNO is a measure
of hyperbolicity, a rough estimation of the positive LCN is also given by @ge(14) 61(ty) = 21?(tf)/tf ~
10—417(tf). Indeed, taking, for instance, the value of the MEGNO corresponding to the center of the highest interval,
[260, 543), inFig. B, we get logo1) ~ —1.437, in agreement with the values.55, —1.3) corresponding to the
highest interval irvis in Fig. 6. On the other hand, the lowest values of(lag), ~—7, are much smaller than those
given by logé1), ~—3.7. This shows that a least squares fitltn) to get its time-rate is a very efficient procedure
to separate stable and unstable motion in comparatively short times, as well as provide a good estimation of the
positive LCN (seq7] for further details).

Turning back toFigs. 4 and 5we observe that diffusion over the energy surface may occur. This is obvious
in the case of large perturbationsi. 5c and d), but for smaller perturbatiofBigs. 4c, d and 5 a, b} looks
like diffusion could take place along the chaotic layer of a given resonance and eventually spread over the whole
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Fig. 6. logois)-levels (Y)-levels in the figure) on the energy surface. The contour plot in gray scale (from white to dark-gray) corresponds to
log(ois) binned in six intervals: 8.2, —4.2), [-4.2, —2.55), [-2.55, —2.25), [-2.23, —1.78), [-1.78, —1.55), [-1.55, —1.3).

energy surface through the intersecting zones (this conjecture is usually quoted in physical literature as “Arnold
diffusion”). However, as we show below, such intersections of resonances have a rather complicated structure and
instead of being a source where chaotic motion spreads, they could act as a barrier to diffusion. Let us mention tha
preliminary studies on diffusion on the energy surface at moderate-to-high perturkatiotO( ) reveal that, for

typical timest; 2 108T, “fast” diffusion only takes place on the chaotic strip closeifo= 0. But this is still a
research in progress and will be the subject of a forthcoming work. For related experiments with symplectic maps
we refer t0[26].

In order to illustrate some details of the phase space structure at moderate perturbations, we prigsamat i
plot similar to those given iffigs. 4 and 5but fore = 5 x 10~2 and with a higher resolution ihy andh; (step
10~3h in both of them, that is, 501,501 orbits). In this plot we have skipped all points wi#®51< Y(ty) <2
(corresponding to quasi-periodic motion) in order the resonances be distinguished more clearly. Near 76% of the
pixels correspond t&f(tf) < 2 and the number of pixels exceeding the value 1.998 is slightly below 37% (compare
with the data forFigs. 4 and h

Note the complexity of the picture shownkig. 7b, where we presentazoom around the intersection of resonances
at the origin. The contour plot was obtained with a higher resolutidn @nd# (step 104 in both of them) and
for a total motion time ; = 3507". There the MEGNO reveals the existence of several stability zones, which should
be responsible for restraining the spread of chaotic motion, acting in the manner of barriers to diffusion. They are
the sticky tori surrounding the periodic orbit located at the center of the resonance. This plot is also very illustrative
to see how the manifolds of lower-dimensional tori bend in a complex fashion, giving rise to the many tight loops
seen in the picture. These manifolds are important because they are the objects able to carry the motion arriving
along one of the resonances either to the “other part” of the resonance or to a different resonance.

Further details of the resonance structure are shovigin7c, where a zoom along a thin resonance channel is
displayed. For this contour plot the initial conditions were taken sparmirmmd/, intervals, so that the rectangle
appears distorted because of the transformation tqdhe)-plane. Again the total motion time considered is
¢ty = 3507 and the same magnification (step 10 as in (b)) has been used.
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Fig. 7.Y(ts)-levels on the energy surface for= 5 x 1073 (a); zoom arounde, e2) = (0, 0) (b); zoom along a thin resonance channel (c).
The contour plots correspond ibbinned in the intervals: (a) [1.99, 1.995), [2, 2.015), [2.015, 20), [20, 160), [160, 215); (b) [2.15, 2.6), [2.6,
8); () [1.969, 1.978), [2.008, 2.11), [2.11, 9). In (g),= 3,500 while in both (b) and (c);; = 3507

A few data on the computational cost of the preceding figures can be relevant. For these computations an array
of processors (HIDRA) has been used. At the time the computations were done, it consisted of 42 dual PC, most
of them Pentium at 500 MHz running under Linux. For each one of the pldtggs 4 and he CPU time was
slightly less than 2 h, whil€&ig. 7a took 34 h.
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Let us notice that similar resonance structures were obtained via Laskar’s frequency mapping technique when ap:
plied to the dynamical study of triaxial galactic models (&%28)). These resonance structures, though resembling
the ones shown above, are far less detailed, so hiding relevant dynamical information.

4. Generalization of the MEGNO

As we have already shown in the example above, the MEGNO does succeed in providing a clear indication of
regular and chaotic behaviour as well as in producing good estimates of the LCN. Let us though generalize the
MEGNO in the following fashion:

_ w [
Yin(y(@®) = (m + Dt 300 ()™ dr, (41)
now defining
_ 1 !
Ym,n(y(t)) = lm+—n+l/o Ym,n(yq(t/)) dt/ (42)

and analyze whether any benefit would turn out when taking values for the expénenysm > 0 other than the
natural choicg1, —1) which yielded(6) and (10) Note also that’, , with the choice0, —1) gives, in the limit
whenr — oo, the value ofr as defined ir{4).

The time evolution ot,, , in case of regular, quasi-periodic motion, is given by the expression:

m—1
(=D)kgmtn—k o1 N+ g0
Z W + (D T + O(y, (1), (43)

k=0

Ym,n(yq(t)) ~ (m+1) (

which obviously reduces t®) for (m, n) = (1, —1). Then, fort large enough we get

Ym,n(yq(t)) Lm +1

tm +n m (44)

so the quotient,, , /¢ *" saturates to a constant valueras- co. Moreover, from bott{42) and (43)it follows
that
m+1
mm+n+1’
which is also a fixed constant not depending on the orbit.
In the case of an irregular orbit, of LCN o;, we have

W ~ ait + Oy (1), (46)

Ym,n(yq(t)) ~ I — 00, (45)

while, on considering a sufficiently large time, we obtain
o;t

m+n+2
For a chaotic orbit then, both, ,, /¢ 1" and)"m,n grow linearly with time, at a rate that is proportional to the LCN
of the orbit.

Therefore, the asymptotic behaviour Bf , can still be recast ag,, , (y(t))
o;/(m +n + 2) andd,, ~ 0 for irregular, stochastic motion, whitg, = 0 andd,,
stable, quasi-periodic motion.

Voun(i(0) ~ (47)

ayt + d,, where nowa, =
(m+1)/m(@m +n + 1) for

~

~
~
~
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Further, as it turns out frorigs. (45) and (47the LCN can also be recovered by a simple linear least squares

fiton Y., (y(®).
Let us notice that the quantity ,, , = Y.,/ "1 verifies

N m + N
G1Lmn(vg(0) ~ e GLma(yi(D) ~ 0, t— 00, (48)

which show that, in case of regular motiah, ., also converges to O faster than that goes as In/¢, while
for chaotic motion, both magnitudes approach the positive LCN at a rather similar rate. Notice that the asymptotic
behaviour 0671, , in the regular regime does not depend on the exponent

From the several experiments carried out taking different values for the exponents, it looks like the: |ahger
faster the convergence Bf, ,, to a constant value in case of regular motion. Nonetheless, father large, it seems
to play a role the total time considered, as the effect of the latter points is reinforced giving rise to somewhat small
oscillations.

An exhaustive comparison of the MEGN®, n)'s performance for different exponents, n) revealed that,
besides the natural choi¢g, —1), also the values (2, 0) serve to distinguish regular from chaotic behaviour in a
quite efficient manner (see below).

Just for the sake of illustration, let us turn back to the 2D Hénon—Heiles example gi8ention 2 For the same
three regular orbits there labeled as (sp), (qp) and (up), we computed’pgtand?,, ,, by means of41) and
(42), respectively, for three different choices(f, n), namely,(1, —1), (2, 0) and (3, 1).

In Fig. 8we show that in case of regular motian, , evolves with time as predicted lg. (45) Indeed, the
temporal evolution of,, , for all the three regular orbits is seen to tend to the asymptotic valug@ 2rid 415,

3.5 T T T T

25 / u\p TSeee” N

et "" o (3‘1) ) i . 5

| 1
0 2000 4000 6000 8000 10000
t

Fig. 8. Time evolution of,, , ({¥).., in the plot) for the regular orbits (sp), (qp) and (up) in thendn—Heiles model, for different values of
the exponentém, n).
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when the exponents aré&, —1), (2, 0) and (3, 1), respectively. We observe that, for the stable quasi-periodic orbit
(gp), Y. rapidly converges to the value given#5), a faster convergence being observed the larger. islso

for the orbit close to a stable periodic one, (sp), dBgs, reach the constant valyé5) faster as a greatex is
considered. Meanwhile, for the trajectory close to an unstable periodic orbit, (up), smaller oscillations around the
asymptotic valug¢45) do show whemn = 2.

From the comparison we conclude that the MEGNO (2, 0) allows for clearly separating the regular and chaotic
regime even in rather short motion times. Furthermore, if we use the quaiity we see that for regular orbits it
tendsto 2, a§’1,_1 does, while for orbits with exponential instability it tends to behave;asThen, either a linear
fit or simply 4Y2 o(yi(f))/t supplies an estimate of the LCN. However, the chgice-1) for the exponents offers
the additional benefit of more clearly identifying stable and unstable periodic motion as well.

5. The MEGNO for maps

In this section we show how this numerical tool applies to discrete dynamical systems. For dealing with maps,
the MEGNO is defined essentially as before, but summing over the iterates of the map instead of integrating with
respect ta, and taking the differential map in place of the variational equations.

For a given initial pointQo, iterates under a given map are to be computed yielding point®, = P*(Qo).

An initial “random” tangent vectony, ||vg|| = 1, is transported under the differential m@p, to obtain vectors
v = DPX(Qp)vo. Then, afterV iterates, the MEGNO is computed by means of

N
Y n(N) = (m +DN" > In <M) k™ (49)
P llvx—1ll
and
} 1 Y
Ym,n(N) = W Zl Ym,n (k) (50)
k=

The algorithm has been tested with different values for the exponeatsdn. Again, it turned out that the larger

m, the fasten?mq,, converges to a constant value for regular motion, butyfoather large, small oscillations show

up. However, the bumpy late evolution B, , (which is also present in the continuous casesigs8shows, in the

case of (up) orbits) is diminished if the iteration is stopped when the distance between the initial and final points is
minimum (“right-stop” condition). On returning close to the initial point, the effect of the periodic or quasi-periodic
oscillations added to a regular behavior is minimized. This sort of refinement in regards to the stop time, has proven
rather efficient in smoothing such oscillations.

For the sake of illustration, two examples are included where the values (2, 0) have been adopted for the exponents
This choice, together with the “right-stop” condition, has shown to provide a fairly good fast indicator, the MEGNO
(2, O)rs. A minor additional modification is also convenient with the chaieen) = (2, 0). Let us define the
guantity

4Y5 o(N) — 2

N ; (51)

Y20(N) =
which tends to 0 in the regular case andtan the case of an irregular orbit. Negative vaIuesf’gb(N) appear for
regular orbits (provided is taken not too small), while small positive values identify mild chaos. The resolution
can eventually be improved by means of a linear fitf (V) — 2, but in the forthcoming examples we have used
simply (51) with the rs criterion.
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Fig. 9. Y2 o-levels for the RSSM (see text) correspondingute= 0.8 (left) andu = 0.85 (right). Regions of regular behaviour are depicted in
white and those of chaotic behaviour in black.

5.1. Examples

Let us first be concerned with the rational shifted standard magi{&¢for details). This is a 2D area-preserving
discrete dynamical system given by the equations:

Y=y+efr), X=x+ey (52)
with x € [0, 27), y € [0, 27/¢), and where
sin(x +
fo) = x+9) A

n

1— pcosx 4 VI—p24+1—pu2
Notice that(52) and (53Yefine a standard map modified in order to have a no longer symmetric nor entire function
f.Indeed, symmetry is lost through the introduction of the plaseéhile the parameter € [0, 1) breaks the entire
character off. The quantityA is fixed so thatf has zero average.

The MEGNO (2, 0)rs has been applied (&) in an equispaced grid of 1000 1000 pixels in the domain
(x/2m, ye/2m) € [0,1) x [0, 1), for a sample ofx € [0, 1). A maximum of N iterates has been computed, for
10,000< N < 11,000, the iteration being stopped when the dista®®& Qo) — Qo| is minimum, according to
the “right-stop” condition. The results for = 0.8 andu = 0.85 are presented iRig. 9, where we have adopted
the valuex = 0.2 andy = 1 for the remaining parameters. There the pixels corresponding to initial conditions
of regular behaviour have been plotted in white and those of chaotic behaviour in black. While<fd@.8 the
regular regime prevails (plot on the left), the dynamicsfoe 0.85 displays many chaotic components (plot on
the right), but rotational invariant curves (joining the vertical boundaries) still exist. Note that the variatidrasef
been small, but the effects are quite dramatic. A small additional increasprimduces the destruction of all these
curves and a large chaotic zone appears. Notice that the MEGNO (2,0)rs also succeeds in unveiling the resonance
structure of the system.

Fig. 10illustrates the application of the MEGNO to describe the regular or chaotic behaviour for fixed values of
. In each 1000« 1000 pixels plot values af € [0.001, 1] (vertical axes) have been used, and as initial conditions

(53)
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Fig. 10. The chaotic regions of the RSSM for different valueg oFrom left to right the values g = 0.4, 0.6 and 0.8 have been used. On
the vertical axis we displaywhile the horizontal one contains the initial valueyef 2. The initial value ofx has been taken equal to 0 in all
cases. Dark-gray pixels correspond to chaotic motion.

x = 0 andye/2m € [0,0.999] (horizontal axes). The parameteiis kept equal to 1 in all cases. The chaotic
behaviour at the boundaries of the resonant zones (where the islands are present) can be clearly seen, as well |
their evolution withu.. We refer to[12] for the analysis of the RSSM using FMA. The frequency analysis provides
information on the rotation numbers of the invariant curves, but the computational cost to correctly discriminate the
character of most of the pixels is much higher. Usfﬁg“s the computing time on HIDRA for each plot Figs. 9

and 10is less than 3 min.

A comparison with the FLI is also instructive. We consider the RSSMufet 0.5, ¢ = 1. To determine how
reliable a method is to decide about the regular or chaotic character of the orbit corresponding to some initial
conditions we have, first, set up a criterion. To this end, we have computed the maximal amplification of the length
of a random initial vector for a maximum &f = 10° iterates. A threshold equal tb = 10?4 has been selected.
Conditions exceeding. beforeN iterates are considered as chaotic. Otherwise, they are assumed to be regular.
Several independent tests have been used to rely on the resuli](Bedests to decide whether a point is on an
invariant curve). Having assigned a character to each one of thexX1@0@DO0 pixels withe and ye/2r as above,
we have computed/ffg,o,rs(N) and the amplification factod after N iterates, usingV = 10* andN = 2 x 10*
in both cases. In the MEGNO approach the last itérates have been used to select the best final peigt.11
shows the number of “discrepancies”, i.e. incorrect identifications among fhgi¥éls. The horizontal variable
denotes the value of the parameter used as an estimatipi deither N f/z‘o,rs(N) or A). The dots are located at
the respective minima of the number of discrepancies. They are 1878 and 975 for the MEGNO estimates and 320¢
and 1852 using\ at the end of each run. It follows that with the same effort (and even without using a fitting) the
MEGNO reduces the number of discrepancies by a factor around 1.8 and furthermore, the valuwherfe the
minimum is found is much closer to 0, as it should bé&Qlx 10~* and 095 x 10~ against 518 x 10~* and
2.90 x 1074, respectively). Several other choices(ef, n)rs have been tested, modifying the numeratofSih)
to(m+n+ 2)(1?,,!,,,(1\!) — (m + 1)/m(m 4+ n + 1)). The results are similar for different couples like, n) =
(2,0), (2,1), (2, 2), (3, —2), (3, —1) and, among them, (2, 0) seems to be the simplest one.

Let us now turn to a 4D conservative map, the coupled rational shifted standard map, consisting of two coupled
rational shifted standard maps so that it is described by the equations:

Vi =y1+€1fi(x1) + v4 fa(x1 + x2) + y— fa(x1 — x2),
Yo = y2 + €2/2(x2) + y4 fa(x1 + x2) — y— f3(x1 — x2),
x] = x1+ €11, xp = x2 + €2)2 (54)
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Fig. 11. Number of discrepancies as a function of the estimatef¥fusing MEGNO (2, O)rs (curves on the left) and the usual Lyapunov
estimator (curves on the right). The upper curves correspont=£010* and the lower ones t = 2 x 10*.

with x; € [0, 27), y; € [0, 21/¢;), i = 1, 2, and where
sin(x + ;) i

— A, A= )
1 — u; cOSx 12412
l l

with ; € [0, 1), and the quantitied; so fixed thatf; have zero average. Notice that two coupling termint x2)
and(x1 — x2) have been addegt, andy_ being the coupling parameters.

Several experiments have been carried out using different values for the parameters. The algorithm MEGNO (2,

0)rs has been applied to an equispaced grid of XQ0@WD0 pixels in the domai€y1e1/27, y2€2/27) € [0, 1) [0, 1).
The initial values for the remaining variables afe= 0, x = 0. The “right-stop” condition has been applied, so
that for each initial condition the iteration is stopped afteiterates, 10,000< N < 11,000, when the distance

PN (Q0) — Qol is minimum.

Since we have come here to a problem of higher dimension, we have to compute the iteraté€sRuoti&vo
“random” initial vectorsvig, v20, ||lvioll = 1, which we orthogonalize and renormalize at each iterate. The MEGNO
associated with each direction is computed and the maximum of the two is used in order to determine the character
of the trajectory. The results correspondingitio= 0.5,¢01 = 1, u2 = 0.4,¢2 = 2, u3 = 0.6, 93 = 3 are displayed
in Fig. 12for €1 = 0.1, €2 = 0.2, and different values of the coupling parametersandy_, which are indicated
on top of each plot. The lower right plot has the same values @fndy_ on top of it, but the parametes is now
negative. The fact that in the coupling we face to an indefinite form rather than a positive definite one produces a
dramatic effect on the resonances. The contour-like plots in gray scale (from white to dark-gray) exhibit the obtained
values forffz,o,rs binned in three intervals. The orbits such tﬁgb,rs(N) < 0.01 have been selected as regular, while
those withf/z,o‘rS(N) > 1 are considered chaotic. The intermediate range is regarded as, possibly, mildly chaotic.

A resonance can be identified again as a light gray channel surrounded by dark boundaries. If it is thin perhaps
only some trace of the light and/or dark-gray can be seen. Hundreds of resonances can be defggtdd® in
The resonances in the vertical and horizontal directions are present exer=f0 and their amplitudes depend,
essentially, orje;|, j = 1, 2. As long as the coupling parameters are increased, resonances are seen to become
wider, their actual width as well as their narrow stochastic layers at their edges being clearly distinguished. Further
details on the CRSSM dynamics may be foun{Ri@y].

filkx) = i=1,3 (55)
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(a) gy =0.1,e =02,y =0.002, ¥ = 0.001 (b) £,=0.1,8, =027 =001,y = 0.005
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(c) £4=0.1,8,=0.2, 7" = 0.005, ¥ = 0.025 (d) gy=0.1,6=-0.2,7 =0.01,7 =0.006
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Fig. 12.¥> o-levels for the CRSSM for different values of the coupling parameterandy_. The contour plots in gray scale (from white to
dark-gray) correspond b g binned in three intervals; pixels corresponding to initial conditions of regular behaviour are plotted in white, and

those of chaotic behaviour in dark-gray.

6. Conclusions

In this paper we have shown how a rather simple technique, like the MEGNO, succeeds in providing detailed
indications on the global dynamics of Hamiltonian systems and maps.
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This technique furnishes an efficient algorithm that allows not only to clearly identify regular and irregular motion
as well as stable and unstable periodic orbits, but also to obtain a quite good estimate of the LCN in comparatively
short motion times, for both ordered and stochastic components of phase space. Thus, by the application of a single
tool it is possible to grasp the global dynamics of the system, this procedure being a first attempt to get dynamical
information about the motion using the whole orbit.

Here we have presented numerical evidence of the MEGNO being a fast indicator capable of unveiling the
hyperbolic structure of the phase space, as well as yielding a clear picture of the resonance structure, even in the
case of multi-dimensional systems, which are not easy to be dealt with. The MEGNO is shown to provide the actual
size of a resonance as well as reveal its internal structure.

The algorithm has been applied to a 3D perturbed quartic oscillator. A quite interesting result is the existence
of stability zones in almost all resonance intersections. Indeed, in this case a chaotic domain is seen to show up
whenever two or more resonances intersect, but always surrounding a stability region centered at a stable periodic
orbit. Diffusion over the energy surface may occur, which is obvious for large perturbations, but in case of smaller
perturbations, the MEGNO elucidates such a complex structure of the resonance intersections, that they could
restrain the spreading of chaotic motion.

Further results regarding diffusion on the energy surface at moderate-to-high perturbation will be the subject of
forthcoming papers.

Also has the MEGNO'’s performance when applied to conservative maps been illustrated by its application to
both the 2D rational shifted standard map and the 4D coupled rational shifted standard map. There this technique
has demonstrated its efficiency as a fast and reliable method to estimate the main dynamical features and their
significance when dealing with discrete dynamical systems.
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