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ABSTRACT 
 

The purpose of this work is to propose new indices for the spatial validation of hazardous 
plumes forecast, and apply and test them with data of a case study. One, the Plume-
Overlap-Area Hit index, is a modification of a widely used index that considers the overlap 
area between observed and forecast plumes. The other one, the Plume-Mean-Orientation 
Hit index, introduces a new concept in plume forecast validation, i.e., the mean direction of 
plume propagation. These two indices are combined in a new two-dimensional Combined-
Direction-Area Hit index. The new indices are applied to the spatial validation of smoke 
plume forecast for a case study of uncontrolled grassfires that took place during April and 
May 2008 in the La Plata River region in South America. Operational models at the 
Argentine National Meteorological Service (SMN) are employed to produce the plume 
forecast. The HIRHYLTAD dispersion model is used to forecast the smoke plumes, 
employing the Eta/SMN meteorological forecast model outputs. The forecast plumes are 
compared to the observed plumes in high resolution MODIS imagery from AQUA and 
TERRA satellites, from which a total of 59 smoke plumes are identified. The study 
concludes that the presented methodology that employs operational meteorological models 
and simplified dispersion models can be used to produce reasonably accurate forecasts of 
the areas affected by the smoke plumes that originate in forest and grassland fires, 
particularly in cases when limited information is available about the fires. Although the 
present study is specifically applied to smoke plumes, the validation technique with the 
proposed indices can be of utility to study pollutant plumes of diverse nature. 

 
 

 
 
1. INTRODUCTION 
 
A wide range of natural and anthropogenic phenomena can derive from hazardous plumes whose 
impacts affect humans, wild life, vegetation and ecosystems in different time and space scales, 
and their consequences can become truly severe. Among these we can mention volcanic ash 
plumes, sand and dust plumes caused by strong winds across deserts and arid regions, and 
pollution associated with stack emissions from factories or similar point sources. Sometimes they 
become international in scope for their particular nature, origin or  magnitude, like the Kuwaiti 
oil and gas well fires in 1991 during the Gulf war (Spektor, 1998), and the radionuclide 
contamination originated by the nuclear disasters in Chernobyl in 1986 (Piedelievre et al., 1990) 
and Fukushima in 2011 (Lujanienė et al., 2012). 
 
In particular, a common example of hazardous material consists of smoke plumes from biomass 
burnings, which cause a major impact on population and social activities. When forest and 
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grassland fires become uncontrolled and extended, the deterioration of ecosystems may require 
several decades to recover2. Every year in Africa, South and North America, the Russian 
Federation, Southeast Asia and other regions, a variable number of wildfires takes place 
especially during summer over dry land, and might eventually become uncontrolled and remain 
so for several days; on occasions they are due to prescribed burnings in rural zones (Schultz, 
2002; van der Werf et al., 2010). Emissions associated with these phenomena include different 
gases and a large spectrum of aerosols and particulate matter of different size and type (Andrae 
and Merlet, 2001). 
 
Real-time emergency response systems have been developed and directed during the past 
decades, to prevent, avoid, or mitigate any impact of the hazardous materials, and with growing 
concern about estimating the long-range dispersion of pollutants. More recently, the need to 
assess the accuracy of hazardous material transport and dispersion models has arisen as one of the 
most important issues to be addressed (Petty, 2000; Brost et al., 1988). 
 
Several quantities have been used to perform evaluation analysis. For example, statistical 
measures of bias, scatter and correlation have been generally applied to point-to-point 
comparisons (observations and predictions paired in space and time). More recently, the concept 
of spatial forecast validation was introduced, with the definition of indices that analyze the 
distribution of both plumes on a single image and, particularly, the areas of overlap. Mosca et al. 
(1998) and Boybeyi et al. (2001) used different meteorological and dispersion models to perform 
aerosol and gas hazard prediction, and verified their predictions against the European Tracer 
Experiment (ETEX) measurements. Warner et al. (2003) used the Project Prairie Grass 
experiment results for validating his simulations by means of overlap area indices. However, it is 
the National Oceanic and Atmospheric Administration (NOAA) that routinely produces forecasts 
and validation of plumes originated from biomass burning. The NOAA’s Smoke Forecasting 
System (SFS) comprises three parts: observation, prediction and validation of smoke plumes. Full 
details about the descriptions of the components can be found in Rolph et al. (2009) and 
Ruminski et al. (2006, 2007), while SFS products are available in real time at 
http://www.arl.noaa.gov/smoke.php. Also, a verification of the 2007 fire season in North 
America and a sensitivity study of the plume injection height were performed by Rolph et al. 
(2009), and Stein et al. (2009).  
 
The spatial validation of plume forecasts usually considers observed and predicted plume layout 
to qualify the forecast. For example, NOAA’s SFS uses different indices based on combinations 
of overlap and non-overlap areas covered by both plumes (Mosca et al., 1998; Boybeyi et al., 
2001; Warner et al., 2004), which are discussed in detail in the following section. The objective 
of this paper is to propose new indices for the spatial validation of plume forecasts, i.e., a 
modification of a widely used index for the overlap area, and a new plume-mean-orientation 
index. Furthermore, they are combined in a new two-dimensional index that takes into 
consideration both the overlap area and the direction of propagation of the observed and forecast 
plumes. Section 2 discusses different spatial validation techniques and presents the new indices. 
A case study of smoke plumes originating from grassfires, that took place in the La Plata River 
region of South America during April and May 2008, is described in Section 3, in which the 
spatial validation methodology is applied, and the indices are evaluated. Finally, Section 4 
presents a summary of results and the conclusions of this work. 
 
 
                                                 
2 Fire is an essential ecological process and many ecosystems (particularly prairie, savanna, chaparral and conifer 
forests) require it as a contributor to habitat vitality and renewal.  
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2. SPATIAL VALIDATION OF PLUMES 
 
2.1. Overlap area index  

 
Before introducing the overlap area indices, it is convenient to briefly review the different types 
of areas covered by observed and forecast plumes. The areas covered by the observed (or 
measured) and forecast plumes (Aobs and Afor, respectively), determine three other areas, 
namely: intersection or overlap area (Aint), false detection area (Afal), and no detection area 
(Anod), which can be seen in Fig. 1 and Table 1. The sum of these three areas corresponds to the 
union area (Auni). In fact, a fourth category could be considered, but of less relative importance 
since it corresponds to the empty or blank area, that is, all the space in the domain with neither 
forecast nor observed plumes.  
 

   
b) 

   
 
Figure 1: Examples of area types, a) case 1, b) case 2. Left: observed plume. Center: simulated plume. Right: 
Overlap area in red, no detection area in blue, false detection area in green. 
 
Relationships among these areas can be established in order to define validation indices. For 
example, the verification analysis at the NOAA’s SFS uses two overlapping area indices, namely 
the Figure of Merit in Space –FMS- (Mosca et al., 1998 and Boybeyi et al., 2001), and the two-
dimensional Measure of Effectiveness –MOE- (Warner et al., 2004). 
 
The FMS index is defined as the ratio between the intersection area of observed and forecast 
plumes and their union area, i.e., FMS = Aint/Auni, which can be rewritten as 
 

AintAfalAnod

Aint

AintAforAobs

Aint
FMS

++
=

−+
=  (1) 
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FMS is also called the threat score or critical success index (CSI), for categorical forecast 
validation. The index is calculated at a fixed time and for a fixed concentration level. Scores 
range between 0 (no match at all) and 1 (ideal case, all pixels match). However, a limitation of 
this index is that it cannot distinguish whether the observed plume footprint is smaller or larger 
than the predicted plume footprint (i.e.: over- or under-prediction of area are “weighted” 
identically). Therefore, an event with an observed plume fully circumscribed to the simulated 
plume, can score exactly the same as an event with the latter contained into the former. For some 
applications, the distinction between these two alternatives can provide insight to a model user 
for subsequent calibration. 
 
The two-dimensional MOE index used by NOAA’s SFS to measure the overlap area of the two 
plumes is given by MOE(x,y) = (Aint/Aobs , Aint/Afor), which can be rewritten as: 
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In terms of categorical forecasts, the first ratio is also called the Probability of Detection (POD), 
and the second one, the Success Ratio (SR). Scores for all analyzed events can be plotted in a 
single x-y diagram, and Fig. 2 shows an example with two events. The point (100%:100%) 
represents the perfect match between the observed and forecast plumes; that is, both shapes have 
the same size and location. Points along the 1:1 line represent the cases in which the two shapes 
are identical in area (same number of pixels) but are shifted in space, so that a point at (0:0) 
means no overlap at all. Points in the upper-left portion of the plot represent cases in which the 
forecast plume is nearly covered by the observed plume; however, the latter is larger than the 
former (i.e.: under-prediction). Conversely, the over-prediction cases are located in the lower-
right portion of the plot. 
 
A limitation of the aforementioned FMS and MOE indices that consider the shape matching 
approach is that their scores are often too low, due to the nature of the FMS and MOE ratios 

 
 

 
Observation 

Yes No 

Forecast 

Yes Aint: “hit” Afal: “false alarm” 

No Anod: “miss” Ablk: “correct rejection” 

 
 
 
 
 

 
 
 
 
 

total number of pixels N = Aint+Afal+Anod+Ablk 
 

Table 1: Area types in the typical arrangement of a 2x2 contingency table for forecasting a categorical event, in 
which each box indicates the number of pixels that verify the respective condition. Aint is the intersection or overlap 
area, Afal is the false detection area, Anod is the no detection area, Ablk is the empty or blank area, and  N is the 
total number of pixels in the domain.  
(Adapted from  http://www.swpc.noaa.gov/forecast_verification/Glossary.html) 
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themselves. Thus, they could indicate an apparently much poorer performance than what a 
qualitative examination of the spatial distribution of observed and forecast plumes on a same 
image would suggest. For this reason, we define a variant of FMS, namely the Plume-Overlap-
Area Hit (POAH) index, which is obtained by adding Aint to the numerator and denominator of 
Eq. (1): 
 

AforAobs

Aint
POAH

+
= 2

 (3) 

 
 

 
 
Figure 2: MOE plot associated to the examples of Figure 1. MOE scores are (39.22; 69.41) and (38.56; 51.04), 
respectively, for cases 1 and 2. 
 

 
 
Figure 3:  CDAH plot associated to the examples of Figure 1. CDAH scores are (50.12; 95.66) and (43.93; 3.48), 
respectively, for cases 1 and 2. 
 
 

1 
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Conceptually identical to FMS, this index not only ranges between 0 and 1, but also scores better 
for the intermediate cases since FMSPOAH ≥ , always, as can be easily demonstrated. If errors 
are to be accounted for, then the Plume-Overlap-Area Error (POAE) index can be defined as 
POAE = 1 – POAH. 
 
There is another index used in categorical forecast very similar to FMS, with the fourth and last 
area category included, i.e., “correct rejections” (for our purposes, the blank area), which is 
summed both at the numerator and denominator. It is called percent correct (PC) and is given by: 

( ) ( )AblkAfalAnodAintAblkAintPC ++++= . This metric, however, is impractical because it 
is dependent on the size of the domain (the same configuration of the pair observed-predicted 
plumes in a larger or smaller domain will imply different Ablk and hence, different PC scores). 
Moreover, given any domain, Ablk  will generally be much bigger than the other three area types, 
and PC will tend to 1 for most events. Although POAH was defined in order to obtain better 
numerical results than with FMS, the scores behavior with PC becomes extreme.  
 
Finally, it is important to mention that if we apply the categorical forecast analogy to the POAH 
index we have ( )AfalAnodAintAintPOAH ++= 22 , that is, a simple function of FMS. As a 
matter of fact, any k integer number could replace the “2 factor” in the definition of POAH, to 
establish a generalized ratio ( )AfalAnodkAintkAintPOAH ++= . As k increases, the ratio 
tends to unity, and gradually the same problem stated for the PC metric arises. For this reason, k 
was set to a value of 2, so that it is large enough to ensure reasonable overlap scores (partially 
counteracting the FMS limitation), and at the same time, small enough to keep the POAH 
expression simple (eq. 3) and avoiding exaggerated and useless scores. 
 
  
2.2. Direction of propagation index 
 
In recent years, many authors have addressed the topic of inadequacy of the traditional approach 
for the spatial verification of forecast, based on simple area overlays (i.e.: simple pixel-to-pixel 
correspondence), generally while evaluating precipitation fields (Zhu et al, 2011). As we 
explained above for plume analysis, the results of the validation with such technique (metrics 
such as CSI, POD, SR, FAR, PC, etc.), are often not consistent with what a forecaster or analyst 
might infer by more subjective visual evaluation of a forecast. This tangle has led to the idea that 
an objective approach that would more closely mimic the subjective approach could provide 
more useful, diagnostic information about the quality of spatial forecasts (Davis et al, 2006; 
Wernli et al, 2008). For this reason, object-based verification approach, itself not new, has 
become widely used, and simultaneously, updated and enhanced (Davis et al, 2009). Object-
based assessment identifies “objects” in the forecast and observed fields that are relevant to a 
human observer. These objects can then be described geometrically, and the attributes of forecast 
and observed objects can be compared. Because different users may need or have different kinds 
of information, it is important to allow flexibility in the definition of these attributes. Some object 
features are listed in Table 2. 
 
There is a distinctive difference between object-based verification for plumes and for other type 
of meteorological phenomena such as precipitation, icing, turbulence, etc. For the latter, the 
evaluation can be performed for unmatched objects as well as those that have overlay areas of 
forecast and observation (see schematic examples on either Fig. 1 of Davis et al, 2006 or Fig 1 of 
Wernli et al, 2008), while for the former, the two objects are typically matched in the source 
region. As a matter of fact, the number and position of point sources are inherent object attributes 
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of smoke plumes, and were not included in Table 2 because forecast will not differ from 
observation on this issue for the general case.3   
 

Object property Description 

Intensity or 
concentration 

Thresholding is useful to define an object’s boundary. Different thresholds may lead to 
changes in the other object’s properties. In particular, by narrowing the threshold, the 
object can be subject to partitioning into two or more pieces or elements, which can 

eventually be considered as separate objects. 

Object boundary 
and area 

Primary properties of an object: the region enclosed by the object’s boundary is the area, 
which is a simple measure of its size. 

Centroid or center 
of mass 

Measure of mean location of object, for which the intensity or concentration of the 
property might be used as a weighting factor. 

Overall direction 
or axis angle 

A line drawn through the centroid of an object best characterizes its overall direction or 
orientation. This line represents the major axis of the object; if the object is bounded by a 

minimum, enclosing rectangle, the major axis is parallel to the longer sides. 

Aspect ratio 
Given the major and minor axes of an object, the ratio of the length of the minor axis to 

the length of the major axis is the aspect ratio. 

Curvature 
Fitting a circular arc to an object instead of a line gives a measure of the object’s overall 

deviation from straightness. 

 
Table 2. Summary of object attributes relevant to object-based verification (adapted from Davis et al., 2006)  
 
 
Herein, we apply the object-based approach using some of the attributes listed in Table 2 for the 
spatial validation of plume forecasts to define the Plume-Mean-Orientation Hit (PMOH) index as 
follows: 
 

º180
1

forobs dirdir
PMOH

−
−=  (4) 

 

where obsdir  and fordir  are the observed and forecast mean directions of plume propagation, 
respectively, ranging from 0º to 360º. The numerator is the absolute value of the angle between 
the two directions, which is always at most 180º. The best score for the index is 1, when both 
mean directions of propagation are equal, and 0 when they are opposed to each other. The error 
alternative of this index, namely the Plume-Mean-Orientation Error (PMOE), is defined as 
PMOE = 1 – PMOH. 
 

The mean direction of propagation dir  can be estimated subjectively, as was the case in Byrne et 
al. (2007) for the qualitative verification analysis of  volcanic ash plumes (direct comparison of  

obsdir  and fordir ). Instead, in the present work we apply the following automated algorithm in 

                                                 
3 We are neglecting here the possibility that a given source position of a plume forecast can result significantly 
distant from the actual position of the real plume. For real-time operational plume forecasts such as the NOAA SFS, 
the sources are identified by the time the fire is starting (or afterwards, in the simulations for our case study, i.e.: 
diagnostic mode). If this is not the case, number and location of sources can be validated separately. 
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order to calculate dir . For the case of a single-source, ( ) ( )[ ]sourcesource xxyydir −−= − /tan 1 , 

where ( )sourcesource yx ,  are the coordinates of the fire location, ( )yx,  is the centroid position of the 

plume ( Nxx i∑= , Nyy i∑= ), and N is the total number of pixels comprising the plume 

(i = 1, ..., N). In case of a multiple-source plume, ( )sourcesource yx ,  represents the centroid position 

of all fire sources, defined in a similar manner as ( )yx, .  
 
Other criteria for the calculation of ( )yx,  consider the center of mass, or the maximum 
concentration pixel. Any of these two would be more convenient than the centroid algorithm in 
the case of multiple-source plumes, because of the different contributions of various individual 
plumes onto a single pixel. In such case, the mean direction of propagation will point to the place 
of highest concentration (where the added effect is greatest), which can be distant from (and non-
aligned with) the plume centroid. A clear limitation is that concentrations are required for 
performing the calculations with these algorithms. In the case of smoke plumes, a quantitative 
analysis of the observed plume in the satellite image is necessary to account for the 
concentrations (for instance, automated products derived from the satellites such as Aerosol 
Optical Thickness -AOT- or the Goes Aerosol/Smoke Product -GASP-). Therefore, when 
concentrations are unavailable, the centroid approach is the most appropriate method for 
calculating PMOH (or PMOE). Since the case study of Section 3 uses visible satellite imagery, 
the centroid criteria is used for calculating PMOH and PMOE scores.  
 
The advantage of PMOH over FMS or POAH can be appreciated by comparing the two cases of 
Fig. 1. The scores for the overlap area and mean direction error indices of Fig 1a (single-source 
plume) are: 1-FMS = 66.56%; POAE = 49.88%, and PMOE = 4.34%. Therefore, while the 
overlap area errors are near 50% or worse, the PMOE score is less than 5%, more in agreement 
with a straightforward examination of the plumes layout. The scores for Fig 1b (multiple-source 
plume) are: 1-FMS = 71.85 %; POAE = 56.07%, and PMOE = 96.52%. Hence, in contrast with 
the previous case, the almost 50% score of POAE index is not really representative of the model 
performance, since the forecast plume is propagating in the opposite direction with respect to the 
observed plume, so that PMOE is close to 100%. 
 
 
2.3. A new two-dimensional index 
 
The two spatial indices, POAH (Eq. 3) and PMOH (Eq. 4), are combined into a single two-
dimensional index, namely the Combined-Direction-Area Hit (CDAH) index, defined as: 
 
CDAH(x,y) = (POAH, PMOH) (5) 
 
The x component indicates the overlap area between the observed and forecast plumes, while the 
y component accounts for the agreement in direction of propagation. A CDAH plot associated to 
the examples of Fig. 1 is shown in Fig. 3. As in the case of the MOE index, the (100%,100%) 
point corresponds to a perfect forecast, i.e., both plume distributions are equal, while (0,0) is the 
worst possible case since the forecast plume propagates in opposite direction to the observed one, 
and there is no area of intersection. Points along the 1:1 line represent the cases in which POAH 
is equal to PMOH. By comparing both MOE and CDAH plots (Fig. 2 and Fig. 3, respectively), it 
is clear that the scores from the latter represent more adequately and insightfully the plume layout 
of the cases depicted in Fig. 1, due to the incorporation of the new property, i.e., the mean 
direction of propagation.  
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Another interesting feature of the CDAH plot is that it allows for discriminating the cases in 
which the error in overlap area is smaller than the error in direction of propagation (POAH > 
PMOH, i.e., points in the lower-right portion of the plot). As can be seen in Fig. 3, case 2 (Fig. 
1b) corresponds to an idealized situation in which the error in direction of propagation is greater 
than the error in overlap area. Moreover, using POAH instead of FMS as the x component of 
CDAH, favors a less-unbalanced difference between the total number of events in the two cases 
(in other words, the chance of more points under the 1:1 line increases), since FMSPOAH ≥  
always. Finally, an alternative Combined-Direction-Area Error (CDAE) index can be defined as 
CDAE(x,y) = (POAE, PMOE). 
 
 
3. A CASE STUDY 

 
3.1. Description of the event 
 
The case study focuses on the smoke produced by pasture burnings that took place during April 
and May 2008 in the Paraná River Delta, some 70 km to the northwest of the city of Buenos 
Aires (the study region is depicted in Fig. 4). The local authorities declared that the fires were 
intentionally ignited and did not respond to any prescribed plan. The fires soon became 
uncontrolled and extended, and the smoke propagated over a wide region according to the 
prevailing atmospheric conditions of each day.  Smoke spread northeasterly hundreds of 
kilometers across the La Plata River into Uruguay and southern Brazil, and southerly as far as the 
extreme south of Buenos Aires province. The grassfires blackened about 70,000 hectares in the 
provinces of Buenos Aires and Entre Ríos.   
 

 
Figure 4: MODIS real-color satellite image (CEILAP-BA subset) in the La Plata River region in South America, 
with the red box showing the region of the case study. The blue circle indicates the location of the city of Buenos 
Aires. 
 
 
The fires that took place between 16 and 20 April 2008 had no historical precedent because of the 
negative consequences they caused on daily life of 13 million people in the conglomerate of 
Buenos Aires city and its suburbs. Figs. 5a and 5b illustrate the situation in the afternoon of 16 
and 18 April 2008, in which the grassfires in southern Entre Ríos province created a dense smoke 
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plume that propagated to Buenos Aires city and the La Plata River. Fig. 5c shows the extended 
smoke plume over the Buenos Aires province and the La Plata River, associated with a wind 
rotation during the morning of 20 April 2008. The episode resulted in increasing health problems 
among the population, such as respiratory diseases, skin and eye irritation, etc. CO concentrations 
in the city of Buenos Aires were 17 ppm on 17 April 2008 and 15,3 ppm on 19 April 2008 (the 
typical value for a common day is less than 2 ppm); while total suspended carbonate particulate 
matter concentration on 18 April 2008 was 2,024 mg/m3 (Clarin newspaper editions, April, 
2008). Due to visibility reduction, there were hazardous driving conditions and accidents that 
forced traffic interruptions of highways, as well as inoperability of airports. The impact of the 
smoke event was reflected as the main issue addressed by local and regional media, capturing 
international attention as well (Clarin and La Nacion newspapers editions, April, 2008). The 
persistence of anomalous northwesterly winds during those days contributed to that situation 
(Marcuzzi and Hoevel, 2009). Mattio (2009) performed smoke plume dispersion simulations and 
compared them only qualitatively with visible satellite images. Berbery et al. (2008) used WRF-
ARW regional model outputs to study the predictability of the episode, although no smoke plume 
simulations were made.  
 
a) b) c) 

Figure 5: MODIS real-color satellite images (CEILAP-BA subset) from: a) AQUA, 16 April 2008 at 1800 UTC; b) 
AQUA, 18 April 2008 at 1750 UTC; c) TERRA, 20 April 2008 at 1500 UTC. The red dots correspond to MODIS 
automated fire detections, and the blue circle indicates the location of the city of Buenos Aires. 

 
3.2. Meteorological and dispersion models  
 
Two operative models at the National Meteorological Service of Argentina are used in this study: 
the Eta/SMN meteorological forecast model and the HIRHYLTAD dispersion model. The smoke 
plume forecasts are performed with the HIRHYLTAD puff model (for a detailed description see 
Blanco and Berri, 2011 and Blanco, 2011), which uses the meteorological forecast of Eta/SMN. 
HIRHYLTAD is based on the gaussian dispersion model and also on a lagrangian trajectory 
model, since it first determines smoke lines using lagrangian trajectories, and then simulates 
dispersion and calculates gaussian concentrations. The model uses the Pasquill stability classes 
(Pasquill, 1961), the Pasquill-Gifford dispersion coefficients according to the stability class 
(Gifford, 1976), and the Briggs scheme for buoyant plume rise (Briggs, 1969). HIRHYLTAD is a 
hybrid model because the input for calculating smoke lines is the forecast wind field at discrete 
time intervals, while the gaussian model assumes homogeneity and continuity in space, as well as 
steady-state conditions. Also, it uses a lagrangian (mobile) coordinate system to calculate the 
trajectories of individual smoke plume elements, and an eulerian (fixed) framework to calculate 
concentrations in a high resolution grid (see Fig. 6 for a schematic example of the model steps).  
 
The Briggs parameterization scheme for the plume rise ∆h requires the following emission 
parameters: smoke temperature Ts, vertical velocity ws, and ‘effective’ diameter of the smoke 
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column Ds. Since no such measurements were made during the events, we adopted the following 
values from the FireFlux experiment (Clements et al., 2007), Ts = 200ºC and ws = 1ms-1 (both at 
10m). To be consistent, the adopted smoke initial emission height is 10m, instead of the surface 
level, so that the effective emission height is hmH ∆+= 10 . A sensitivity test indicated that Ds = 
2.5m (slightly larger than a typical stack diameter), was the most appropriate value. 
 

 
 
The forecasts of the operational regional Eta/SMN model from the SMN are used as input for 
HIRHYLTAD. The Eta/SMN model has a horizontal grid spacing of 0.33º (approx. 30km), and 
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Figure 6: Schematic example of HIRHYLTAD calculations after a 2-hour simulation (5-min time step). Top (step 
1): Smoke line set-up  at the emission level, using lagrangian trajectories. Center (step 2): Smoke puff dispersion  
at the emission level, using the Pasquill-Gifford coefficients and Pasquill stability classes. Bottom (step 3): Smoke 
concentrations at the surface on a high resolution grid. The instantaneous effect is depicted on the left column, and 
the accumulated effect over the 2-hour period is depicted on the right column. The physical emission height is 
120m.  
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runs twice daily with initial and boundary conditions provided by the GFS model (0000 and 1200 
UTC). Time and space interpolation of Eta/SMN outputs are required for the high-resolution 
HIRHYLTAD simulations. The Cressman scheme (Cressman, 1959), is applied to the original 
30-km horizontal resolution grid, in order to obtain a final 5-km grid spacing of HIRHYLTAD. 
The variables at pressure levels (1000, 975, 950, 925 and 900 hPa) are converted to height levels, 
and then a linear vertical interpolation is performed to get the following HIRHYLTAD vertical 
log-linearly spaced levels: 10, 40, 80, 140, 220, 350, 550, 800, 1100 and 1500 m. The Eta/SMN 
outputs are at 3-hour intervals, so that a linear interpolation in time is applied to match the 5-min 
time step of HIRHYLTAD. 
 
3.3. Data and methodology 
 
Observed smoke plumes are identified in high resolution imagery from the AQUA and TERRA 
satellites, which are equipped with the Moderate-Resolution Imaging Spectroradiometer 
(MODIS) instrument. Visible true-color images (one per day for each satellite) are available from 
the MODIS Rapid Response System (MRRS) at http://lance.nasa.gov/imagery/rapid-response/. 
 
The AERONET_CEILAP-BA subset is used, as it best covers the study region. The coordinates 
of the 965km x 720km domain are: 63.7ºW - 53.2ºW, 31.3ºS - 37.8ºS, which is centered over the 
La Plata River region (see Fig. 4). Because of its high spatial resolution, the MODIS imagery 
dataset is the most appropriate one for the study of local scale atmospheric phenomena such as 
smoke dispersion in the atmospheric boundary layer, despite its once daily resolution. The 500-
meter resolution MODIS images were systematically cropped to a 467km x 500km domain 
centered on the La Plata River region (inner rectangle in Fig. 4). 
 
The length of the period of analysis was determined by visual inspection of the smoke 
distribution in the satellite images, and also considering the fire locations from automated 
detection algorithms of geostationary and polar-orbiting satellites. For this purpose, two datasets 
are used, namely, the Global Fire Maps from the MRRS (also available from the aforementioned 
NASA webpage), with all MODIS detections in 10-day-interval maps, and the ‘Banco de Dados 
Queimadas’ from CPTEC-INPE, Brazil (http://www.dpi.inpe.br/proarco/bdqueimadas/; 
http://sigma.cptec.inpe.br/queimadas/), with more than 20 satellites intervening, including 
TERRA and AQUA. Based on this information, a 45-day period from 1 April 2008 to 15 May 
2008 was finally chosen, totaling 90 MODIS images.  
 
The process followed for selecting the smoke events and digitizing the smoke plumes is 
completely subjective. During the selection of events the following situations were discarded: no 
smoke present, excessive cloudiness, sufficiently dispersed smoke with no clear source inside the 
domain, or well-defined plumes with associated sources outside the domain. A smoke event is 
defined as one in which a smoke plume is clearly identifiable with at least one associated fire 
location within the domain, despite the fact that the plume could extend beyond the domain 
limits. In some cases two smoke events per image were selected, provided that the second plume 
layout was clearly different from the first one, either in span, length or mean orientation. 
 
A total of 21 events were selected from TERRA images (from 18 days), and 38 events from 
AQUA images (from 31 days) within the 45-day period of analysis. For each event the plume 
boundaries were drawn manually, and digitized using a digital-image processing program. No 
quantitative estimate of the smoke concentration is considered in the process.  
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The digitization of smoke sources was performed manually, and it revealed that multiple-fire-
plumes were common, especially during the uncontrolled fires of 16-20 April 2008. The 
maximum number of fire locations detected in a single smoke event was 18. The analysis resulted 
in a total of 165 (103) smoke sources for all the AQUA (TERRA) events. Out of the 59 events, 
21 are single-source and 38 are multiple-source smoke plumes. The subjective methodology for 
determining smoke sources replaced the aforementioned MODIS automated fire detection 
product, since several cases of false detections and no detections were found. 
 
The digitized fire sources are used as input in the smoke plume simulations with HIRHYLTAD 
coupled to the Eta/SMN forecasts, for all the events. The HIRHYLTAD simulations assume the 
dispersion of a passive gaseous substance at a constant emission rate of 1 gr s-1. As mentioned 
before, the only information available about the fire sources was the satellite imagery with once 
daily frequency. Since we had no basis for specifying fire duration, each fire source was assumed 
to remain active during the entire simulation. In the case of multiple-source plumes, simulations 
are performed individually for each source, and all the contributions of concentrations are added.  
 
The resulting HIRHYLTAD concentrations are vertically-integrated for the subsequent validation 
with MODIS images. The threshold for establishing the boundaries of the simulated plumes was 
set equal to zero (i.e., any pixel with a non-zero concentration was considered as part of the 
smoke plume). 
 
a) b) 

     
c) d) 

  
Figure 7: Example of the validation steps for the event of 17 April 2008 at 1430 UTC (satellite: 
TERRA; number of smoke sources: 18); a) manually-defined smoke plume from the cropped 
original MODIS image; b) its corresponding digitized image; c) smoke plume simulations with 
the HIRHYLTAD dispersion model coupled to the Eta/SMN meteorological model (reddish 
color is indicative of higher concentrations); d) Plume area types as follows: overlap area in 
red, no detection area in blue, and false detection area in green.   
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3.4. Results of the case study 
 
A graphical example of the validation steps is shown in Fig. 7, for the 17 April 2008 event, 1430 
UTC TERRA image. Panel a) shows the smoke plume boundaries on the MODIS visible image, 
while panel b) shows its subsequent digitization, for the calculation of the observed area (Aobs) 

and the observed mean direction of propagation (obsdir ) of the plume. The simulation of the 
plume with HIRHYLTAD is depicted in panel c), with reddish color indicating higher 

concentrations, from which the forecast area and mean direction of propagation (Afor and fordir , 
respectively) are calculated; and panel d) shows the area diagram that results from the overlap of 
the observed and forecast plumes, from which the Plume-Overlap-Area Error is calculated. The 
associated validation scores for area and direction for this event are: POAE = 75.4% and PMOE = 
12.2%. 
 
The advantage of defining the modified area error POAE, and the new direction of propagation 
error PMOE, can be appreciated in Fig. 8. The frequency distribution of POAE for the 59 
analyzed events is biased towards the lower scores (maximum in the 40-50% category), in 
contrast with the 1-FMS distribution (maximum in the 60-70% category). Also, the low PMOE 
scores (red bars) are highly remarkable: except for three cases, the error in direction of 
propagation is always smaller than 40% (i.e., an angle less or equal than 72º), while in 63% of the 
events this error is of less than 10%. Additional statistics of the overall result of all analyzed 
events are summarized in Table 3, in which we can see that the average overlap error is 51% 
while in contrast the average error in direction of propagation is only 11.1%. The difference 
between the two types of error reinforces the importance of considering the direction of 
propagation for the spatial validation of plume forecasts. 
 
                 

 
Figure 8: Frequency distribution of  overlap area errors (POAE and 1-FMS), and direction of propagation errors 
(PMOE). 
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Error type 
Scores (%) 

Median Mean 
Standard 
deviation 

Overlap area error 
POAE 

46.9 51.0 20.8 

Direction of propagation error 
PMOE  

7.2 11.1 14.1 

 
Table 3: POAE and PMOE scores of the 59 analyzed events. 

 
Finally, Fig. 9 shows a comparison between both two-dimensional indices, the MOE (Fig. 9a) and 
our proposed CDAH (Fig. 9b). While the MOE plot shows more scattered points, indicating 
variable performance according to the under/over-estimation of overlap area, the CDAH plot 
shows most points confined to the upper portion of the graphic, indicating an overall good 
agreement between the mean orientation of simulated and observed plumes.  
 
a) b) 

  
 
Figure 9: Two-dimensional MOE and CDAH indices for the 59 analyzed events, and mean value of the entire episode 
(red triangle). 
 
Because of the generally lower errors of PMOE in comparison to POAE, a natural bias towards 
the upper-left portion of the plot is expected in the distribution of points within the CDAH 
graphic. Actually, it is remarkable that for our case study, all points are in the upper-left portion 
of the CDAH plot (Fig. 9b), i.e., there was no single event with greater error in direction of 
propagation than overlap area (PMOE>POAE).  
 
An advantage of MOE becomes clear when the mean value of the whole distribution is plotted, 
because it provides the additional information about the possibility of bias towards either under or 
over-estimation of the observed plumes (distribution of points with respect to the 1:1 line). The 
results of the case study show a minor bias towards under-estimating the size of the observed 
plumes, as depicted by the red triangle in Fig. 9a, with a score of (44.96%; 57.43%). This could 
be due to either to the models employed, the methodology applied or a combination of both.  
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In contrast, no information about overall under/over-estimation is provided by CDAH, and this is 
because the x component of CDAH unifies both x and y components of MOE. Nevertheless, the 
inclusion of the direction of propagation adds a new value to the spatial validation of plume 
forecasts, which partially compensates for the low scores associated with a qualitatively good 
performance of the simulation, not clearly evident with MOE. Moreover, CDAH is more 
appropriate for situations such as the example of case 2 of Section 2 (please compare Figs. 2 and 
3), since the opposite direction of propagation of the forecast plume with respect to the observed 
plume (i.e., worst possible prediction), would be identified by CDAH but not by MOE. 
 
 
4. SUMMARY AND CONCLUSIONS 
 
Two commonly used indices for spatial validation of hazardous plume forecasts are briefly 
reviewed, namely the Figure of Merit (FMS) and the Measure of Effectiveness (MOE); and based 
on them, new validation indices are proposed and tested with data of a case study.   
 
First, we propose the Plume-Overlap-Area Hit (POAH) index, a modification of FMS, which we 
consider appropriate for evaluating plume forecasts. The advantage of POAH is that it turns out to 
be less punitive than FMS, which sometimes indicates poor model performance when simple 
visual inspection indicates an overall good similarity between forecast and observed plumes. We 
also propose a new index, namely the Plume-Mean-Orientation Hit (PMOH) that introduces a 
new aspect in plume forecast validation by considering the agreement in the mean direction of 
plume propagation. The plume overlap index POAH, and the mean direction of propagation index 
PMOH, are combined in a new two-dimensional Combined-Direction-Area Hit (CDAH) index. 
CDAH has the POAH index as x-component and the PMOH index as y-component, with 
individual scores ranging from 0 (worst case) to 100% (best case). The inclusion of the direction 
of propagation adds a new value to the spatial validation of plume forecasts, sometimes not 
clearly evident with other commonly used indices.  
 
We apply the new indices to the spatial validation of smoke plume forecasts for a case study of 
uncontrolled grassfires that took place during April and May 2008 in the La Plata River region in 
South America. High resolution MODIS imagery from AQUA and TERRA satellites are used for 
identifying a total of 59 smoke plumes. Two operational models at the Argentine National 
Meteorological Service, namely the HIRHYLTAD dispersion model and the Eta/SMN 
meteorological forecast model, are used to simulate the smoke plumes, which are then compared 
to the observed plumes in the MODIS images.   
 
We conclude that the proposed methodology that employs operational meteorological models and 
simplified dispersion models can be used to produce reasonably accurate forecasts of the areas 
affected by the smoke plumes originated in forest and grassland fires, particularly in cases when 
limited information is available about the fires. The proposed indices are not intended to replace 
other commonly used indices; instead they add a new value to the spatial validation of smoke 
plume forecasts by considering the direction of propagation. Finally, we highlight that although 
the present study is specifically applied to smoke plumes, the validation technique with these 
indices can be of utility to study pollutant plumes of diverse nature. 
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