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ABSTRACT 
Motivation: DIGE-based protein expression analysis allows as-
sessing the relative expression of proteins in two biological sam-
ples differently labeled (Cy5, Cy3 CyDyes). In the same gel, a 
reference sample is also used (Cy2 CyDye) for spot matching 
during image analysis and volume normalization. The standard 
statistical techniques to identify differentially expressed (DE) pro-
teins are the calculation of fold-changes and the comparison of 
treatment means by the t-test. The analyses rarely accounts for 
other experimental effects such as CyDye and gel effects, which 
could be important sources of noise while detecting treatment 
effects.   
Results: We propose to identify DIGE DE proteins using a two-
stage linear mixed model. The proposal consists of splitting the 
overall model for the measured intensity into two interconnected 
models. First, we fit a normalization model that accounts for the 
general experimental effects such as gel and CyDye effects as 
well as for the features of the associated random term distribu-
tions. Second, we fit a model that uses the residuals from the first 
step to account for differences between treatments in protein-by-
protein basis. The modeling strategy was evaluated using data 
from a melanoma cell study. We found that a heteroskedastic 
model in the first stage, which also account for CyDye and gel 
effects, best normalized the data while allowing for an efficient 
estimation of the treatment effects. The Cy2 reference channel 
was used as a covariate in the normalization model to avoid 
skewness of the residual distribution. Its inclusion improved the 
detection of DE proteins in the second stage.  
Supplementary information:  R and SAS codes to analyze DIGE 
data with the proposed approach are available at 
http://www.uccor.edu.ar/modelo.php?param=3.8.5.15.2 
Contact: elmer.fernandez@ucc.edu.ar 

1 INTRODUCTION  
Nowadays it is possible to afford a global view of the 
state of a proteome by means of two-dimensional (2D) gel 
electrophoresis (2DE). The 2DE technique is a high-
throughput option for measuring changes in expression 
levels of hundreds of individual proteins simultaneously. 

  
*To whom correspondence should be addressed.  

The comparison of 2DE gel images from different bio-
logical samples (treatments) is a common method used to 
study protein expression. Traditional experiments rely on 
comparing images from at least two different gels.  

In 1997, a new method for protein expression analysis 
known as Difference Gel Electrophoresis (DIGE) was 
introduced (Ünlü et al., 1997). In this technique, up to 
three different biological samples are examined in parallel 
on the same gel. They are labeled with spectrally resolv-
able fluorescent cyanine CyDyes Cy2, Cy3 and Cy5. 
Samples are then mixed prior to isoelectrofocusing (IEF) 
and resolved on the same 2D gel. Each CyDye will give 
an independent channel of measurement (Marouga et al., 
2005). Usually Cy2 is used to label a reference sample (a 
mix of all the experimental samples) (Alban et al. 2003). 
This reference pool is commonly used for spot matching 
during image analysis. It has also been applied as a nor-
malization channel for spot comparison within and be-
tween gels. As claimed by creators of this methodology, 
using an internal standard labeled with a resolvable Cy-
Dye allows avoidance of major gel running effects, pro-
viding a more accurate comparison of spot volume. 

The primary goal of this kind of experiments is the de-
tection of proteins showing a statistically significant dif-
ference on expression under different experimental condi-
tions. This should be accomplished in such a way that it 
would be possible to have an optimal control of both false 
positives and false negatives differentially expressed pro-
teins. In DIGE the usual statistical analyses are based on 
Student’s t test and simple ANOVA in a spot by spot 
(protein-by-protein) basis. Some properties about the dis-
tribution of the data are assumed to apply the referred 
tests. However, in many experimental situations such dis-
tributional requirements are difficult to meet. For this rea-
son, analytical software for DIGE, provides tools for data 
normalization. Particularly, DeCyder software (GE 
Healthcare) (Amersham, 2003) uses an ad-hoc normaliza-
tion procedure based on the use of the Cy2 CyDye as a 
reference channel. However, some controversy exists 
about the impact of this internal standard on experimental 
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variance and noise (Karp et al., 2005), which suggest the 
need for further research.  

In a typical DIGE experiment several sources of varia-
tions can be identified a priori. Some of them act at a bio-
logical level –i.e. treatments-, and others depend on the 
technology itself, such as gel, CyDye and spot (protein) 
variation. A CyDye effect could arise when one CyDye 
reagent may be more efficiently coupled to proteins than 
the others, or one of the CyDyes may render consistently 
different quantum yields (Mujumdar et al., 1993). Signifi-
cant CyDye effects were described in the protein expres-
sion profile from DeCyder normalization data (Krogh et 
al., 2007). Variations due to experimental effects are not 
biologically interesting. They should be estimated and 
removed in some way before differential expression 
analysis is conducted. Otherwise, the differential expres-
sion test can lose power and miss biologically relevant 
information.  
The goal of this research is to introduce an alternative 
framework for the statistical analyses of DIGE experi-
ments. The framework is general enough to handle an 
arbitrary number of treatments and experimental effects 
that affect the development of the proteomic experiment. 
In doing so, we approach the problem by means of a two-
stage statistical mixed model. A linear mixed model 
(Demidenko, 2005) in the first stage accounts for the un-
derlying variance and covariance data structure. In this 
first step we attempt to remove noisy experimental effects 
(normalization model) over the log raw data. The internal 
standard Cy2 is introduced as a covariate in the normali-
zation model, and its impact on the detection of differen-
tially expressed proteins is analyzed. In this way the use 
of Cy2 as an internal standard and can be statistically 
evaluated. In the second stage we deal with testing pro-
tein-by-treatment interactions - i.e. the different expres-
sion of a given protein related to the treatment effects- in 
a protein-by-protein (P-by-P) basis. The P-by-P model 
(the second analytical stage) proposed here is similar to 
that used by Krogh et al. (2007). However, in our ap-
proach the residuals from the selected normalization mod-
el are used. On the contrary, the approach in Krogh et al. 
2007, uses the residuals from the DeCyder ad-hoc nor-
malization. According to the DeCyder documentation the 
resulting residual distributions are homogeneous in vari-
ances and do not contain dye nor gel effects (Amersham, 
2003). In addition, our approach involves the use of statis-
tically based techniques, such as the Akaike and Bayesian 
Information Criteria and the Likelihood Ratio Test, to 
evaluate the normalization run in the first stage. There-
fore, the selection of the normalization model, as pro-
posed here, is more objective and easy to control by the 
researcher. 
To prove the usefulness of this model-based framework, 
we performed a step by step analysis of the various effects 
in the model to quantify their impact on the residual dis-
tribution. This modeling strategy was tested with data 
from the analysis of secretome (i.e the proteome of condi-

tioned medium) from melanoma cells that express differ-
ential levels of the tumorigenic protein SPARC (Secreted 
Protein Acid and Rich in Cysteine). SPARC is a secreted 
glycoprotein overexpressed in melanoma and other tu-
mors (Bos et al. 2004). For example, SPARC expression 
by melanoma and glioma cells has been linked to an ag-
gressive phenotype in vivo (Ledda et al. 1997, Rempel et 
al. 1999). However, little is known about the molecular 
mechanisms that are affected by SPARC during tumor 
growth. In pursue of molecular mediators of SPARC pro-
tumoral activity, we have design DIGE experiments to 
compare the expression levels of secreted proteins in two 
cell lines (treatments) with differential expression of 
SPARC. By using small interfering RNA (siRNA) a sta-
ble cell clone (L2F6) of human melanoma MEL-LES 
have been developed in which SPARC expression was 
downregulated. SPARC downregulation at L2F6 abol-
ished tumor growth in a murine in vivo model (Sosa et al. 
2007). In the current research, we have analyzed quantita-
tive data from A DIGE experiment comparing protein 
levels of four different conditioned media from L2F6 with 
matched media from control cell line, LBLAST. Previous 
experiments using Western blotting (an independent 
quantitative technique) had proved quantitative differ-
ences between treatments for four proteins present in our 
study (Sosa et al., 2007). These four proteins, including 
SPARC itself, were known to be differentially expressed 
in the L2F6 extracellular medium with respect to that of 
LBLAST. We have used such four proteins in this work 
as gold standards to evaluate the power of the proposed 
model strategy for detecting differentially expressed pro-
teins. 

2 METHODS 

2.1 Sample and Data Preparation 
Melanoma cell lines and clones were grown following 
protocols described in Sosa et al. 2007. For preparation of 
the conditioned media of human melanoma, cells were 
seeded according to similar percentages of confluence and 
grown for 24hrs in serum-containing medium, washed 
three times with PBS and kept in serum-free medium for 
additional 24 hrs. Conditioned media were collected and 
processed as in Sosa et al. 2007. After quantification, pro-
teins were labeled with CyDyes as suggested by manufac-
turers (GE Healthcare). Table 1 summarizes the labeling 
and gel experimental design. Cy2, Cy3 and Cy5 labeled 
samples were mixed according to the experimental design. 
For this purpose, the reference pool was prepared by mix-
ing equal amounts of proteins from each biological sam-
ple in the experiment and labelling them with Cy2 Dye. 
IEF was performed in an Ettan IPGphor isoelectrofocus-
ing system (GE Healthcare), using 18-cm strips covering 
pH 4-7. The resulting strips were then loaded and run on 
12.5% acrylamide gels using the Ettan Dalt Six system 
(GE Healthcare). 
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For image acquisition, labelled proteins were visualized 
using the Typhoon 9400 Imager (GE Healthcare). Cy2 
images were scanned using 488 nm laser and an emission 
filter of 520nm. Cy3 images were scanned using a 532nm 
laser and an emission filter of 580nm. Cy5 images were 
scanned using a 633nm laser and a 670nm Band Pass 
30Hz emission filter. A narrow BP emission filter ensures 
that there was negligible cross-talk between fluorescence 
channels. Photomultiplier voltage was selected for each 
channel to ensure no spot was signal-saturated. All gels 
were scanned at 100 µm resolution, and images were 
cropped using ImageQuant V5.0 (GE Healthcare) prior to 
analyses. 
Fisrt, gel image analysis was performed using DeCyder 
6.5V (GE Healthcare). Spot detection was carried out on 
image pairs consisting of the pooled standard and each 
sample from the same gel. These two images overlay and 
allow direct measurement of volume ratios of spots be-
tween the standard and the sample. Standard spot maps 
were matched between gels in order to identify the same 
spot/protein across gels. DeCyder Batch Processor (Am-
ersham, 2003) provides two different data sources: the 
raw data, which are the volume measured over each inten-
sity channel, and the corresponding normalized volume 
based on its internal standard. Raw data were log trans-
formed. 

2.2 Experimental Design 
Table 1 displays the experimental design that yielded the 
data used in this paper. Four gels were used with three 
biological samples in each gel. In all cases, the Cy2 chan-
nel corresponds to the same reference pool composed by 
equal amounts of all samples analyzed in the experiment. 
Biological variation was addressed by conditioning four 
samples of each cell line at different times. Gels 3 and 4 
are CyDye swaps of gels 1 and 2. From the experimental 
design one can identify the factor effects that could be 
included in the statistical model. In this design Cy3 and 
Cy5 are neither confounded with treatment, nor with gel 
effects. However, the Cy2 effect is not separable from the 
gel effects.  

Table 1: Experimental design of a DIGE proteomic study. 

Gel Cy2 Cy3 Cy5 

1 Reference Pool LBLAST L2F6 

2 Reference Pool LBLAST L2F6 

3 Reference Pool L2F6 LBLAST 

4 Reference Pool L2F6 LBLAST 
 
If rows 2 and 3 of Table 1 are interchanged, the design 
can be easily interpreted as a repeated Latin Square design 
(Cochran et al. 1957).  

2.3 Statistical modeling 

Classical statistical linear models assume that the ob-
served variable can be described as Y~N(µ, σ2) where the 
mean µ can be decomposed as Xβ, a linear combination of 
experimental effects β related to Y  by means of covari-
ables x, which are the columns of matrix X. In DIGE the 
observed variable Y can be expressed as Yd=log(Id) where 
Id is the measured intensity on channel d and d=Cy3 or 
Cy5. The vector β is composed of the fixed effects that 
could provide an additive contribution to the mean.  
From the experimental design in Table 1, the model is 
written as  
Ytdgp=µ+ Tt+ Dd+ Gg+ Pp+ TPtp + εtdgp (Eq.1) 
where Ytdgp  is the observation for Treatment “t”, within 
CyDye “d” in Gel “g” for Protein (spot) “p” . The con-
stant µ represents an overall mean value; T, D, G and P 
represent the main effects of Treatment, CyDye, Gel, and 
Protein, respectively. The term TP represents the interac-
tions between main effects. The last term is an stochastic 
error for which we assume a N(0,σ2) distribution. 
The overall model on Eq. 1 can be decomposed into two 
interconnected equations, as proposed by Wolfinger et al. 
(2001) for the microarray technology. The first equation 
will be referred as the normalization model. This first 
model is expected to remove all the experimental effects 
not related to differentially expressed proteins, and in-
cludes the following terms: 
Ytdgp=µ + Tt + Dd + Gg + εtdgp (Eq.2) 
The difference between the observed value Ytdgp and the 
model predicted value is the residual term, 

gdttdgptdgp GDTYr ˆˆˆˆ +++−= µ  

where the hat over the symbol for the effect means “the 
estimate of”. In a second stage, and assuming that residu-
als from the first model have a normal distribution, we 
define a protein model as: 
rtdgp=Pp+ TPtp+ γtdgp (Eq.3) 
where γtdgp ~N(0, σγ2).  
From this model, the interaction term TP allows testing 
differential expression between treatments for each pro-
tein in the experiment. 
In the classical approach provided by DeCyder, the ob-
served data used for analysis is ( )g

g gCyIY δ2log* = , 

where g refers to gels and “δ” is a “centering” constant 
(Amersham, 2003). Here we decompose the previous ex-
pression as ( )gggg CyYY 2log* ⋅−= δ . In this way the nor-

malization in Eq. 2 can be extended by the inclusion of 
the covariate log(Cy2), 
Ytdgp=µ + Tt + Dd + Gg + δg ⋅ log(Cy2g) + εtdgp  (Eq.4). 
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In all equations above, it was assumed that εtdgp~N(0,σ2), 
meaning that all error terms have the same mean and vari-
ance.  
We observed in our experiment that the standard assump-
tions about the distribution of the error terms (homoske-
dasticity) were not fulfilled by either the DeCyder Nor-
malized volumes, or by the log raw data. Therefore, we 
suggest that the error distribution of both, the log raw data 
and the normalized data, is best described by several 
N(0,σ2

tg) densities, where  “tg” refers to a specific treat-
ment × gel (TG) combination, i.e heteroskedastic or non-
homogeneous variance models are more realistic for the 
data. The observed/suggested heteroskedasticity across 
TG combinations can be modeled by a linear mixed 
model accounting for the residual covariance structure. A 
proper estimation method of the dispersion parameters in 
these models is restricted or residual maximum likelihood 
(REML, Patterson and Thomposn, 1971). In this paper, 
several mixed models based on different combinations of 
fixed and random effects and different co-variance struc-
tures were tested as normalization models (Table 2). The 
fitted models were compared by means of likelihood 
based statistics such as the Akaike Information Criteria 
(AIC), the Bayesian Information Criteria (BIC), and the 
likelihood ratio test (LRT). The first two criteria attempt 
to select the most informative and parsimonious model 
(i.e. the one that explains the variability in the data with 
the fewest possible number of parameters) by means of a 
penalized likelihood.  In both cases, and either in the cur-
rent versions of R and SAS software languages, smaller 
values of the criteria imply better models. But they do not 
provide a value for the significance of the difference be-
tween alternative models.  The LRT can be used to statis-
tically test the difference between two nested models, i.e. 
the parameters in one model are a subset of the parameters 
in the other model.  The LRT can be applied to test hy-
potheses on the fixed-effects, or on the parameters associ-
ated to the covariance matrix.  ML estimates are recom-
mended if model comparison is based on fixed-effects. 
Instead REML estimates are preferred in comparing co-
variance structures as the method takes into account the 
loss in degrees of freedom due to the need of estimating 
the variance components along with the fixed-effects 
(Harville, 1977) 
Boxplots of the residuals were used to check model as-
sumptions for the protein-by-protein model in the second 
stage of our proposal. The model that best fitted the data 
was selected to test the TP interaction. The best model 
will produce better standard errors for the parameter esti-
mates and consequently an improvement of the statistical 
efficiency of treatment comparisons for each protein.  

3 RESULTS  

From the right panel of Fig. 1 it is possible to see that the 
normalized volumes, calculated by DeCyder, show a 
symmetric distribution but the variances across treatments 
and gels are not homogeneous. Therefore, the standard 
assumption about the distribution of the error terms could 
be not fulfilled. Fig.1 suggests that the log raw data as 
well as the DeCyder-normalized data could be better rep-
resented by several normal distributions for the errors. 
Each distribution is characterized through its mean and 
variance, i.e N(0,σ2

tg) where  “tg” refers a specific TG 
combination. In Fig. 1 it is possible to observe, mainly for 
the log raw data, that the mean values for CyDye Cy5 are 
lower than for CyDye Cy3 in each gel.  

 

Figure 1: Left, boxplots of log raw data distributions for TG combina-
tions (Trat:Treatment, LB:LBLAST, L2:L2F6 and Gel 1 to 4) . Right, 
boxplots for the same distributions but using DeCyder normalized log 
volumes.  

 

Figure 2: Histograms showing the distribution of the logged raw data 
(left) and the normalized volumes from DeCyder (right) 

Fig. 2 shows the logged raw data distribution and residual 
distribution after DeCyder normalization for the whole 
data set. It is possible to observe that the distributions are 
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not symmetric for the logged raw data, showing a right 
tail. To overcome this observation, a set of normalization 
models were evaluated here (Table 2). They allowed us to 
analyze the incidence of the different experimental factors 
in the protein analysis.  
After fitting each normalization model, we analyzed the 
model residuals by each TG combination. Boxplots of the 
residual distribution from all tested normalization models, 
M1 to M6, are shown in Fig. 3. 

Table 2: Linear fixed and mixed models for normalization of DIGE data  

Model Equation Stochastic assum. 

M1 Ytdgp=µ+Tt+ εtdgp ε~N(0,σ2) 

M2 Ytdgp=µ+Tt+Dd +εtdgp ε ~N(0,σ2) 

M3 Ytdgp=µ+Tt+Dd+Gd+ εtdgp ε ~N(0,σ2) 

M4 Ytdgp=µ+Tt+Dd+Gd +δg⋅log(Cy2gp)+εtdgp ε ~N(0,σ2) 

M5 Ytdgp=µ+Tt+Dd +δg⋅log(Cy2gp)+Gg+εtdgp ε ~N(0,σ2),G~N(0, σg
2)

M6 Ytdgp=µ+Tt+Dd +δg⋅log(Cy2gp)+εtdgp ε ~N(0, σtg
2

 ) 
Y: log(I) from DIGE technology; T:  treatment effect; D=CyDye effect;  G=gel effects, TD 
treatment-by-CyDye interaction effect; Cy2 continuous covariate containing reference 
channel values and  ε random error terms. 

 
Models M1, M2 and M3 do not include the covariate 
log(Cy2). Boxplots of the three first models (top panels in 
Fig. 3) show a progressive improvement towards the pres-
ence of homoskedastic errors, when adding the effects of 
treatments, CyDye and Gel as fixed effects in the model. 
For instance, model M1 only takes into account an overall 
mean and the treatments effects. Note that the treatment 
mean value was successfully removed, but CyDye and 
Gel effects are still present (notice that boxes are biased 
between CyDyes and between gels). The effect of treat-
ments was not significant under M1 (p-value = 0.21), but 
significant under M2 (p=0.037) and M3 (p=0.034). The 
fitting criteria (Table 3) show that M3 is preferred over 
the two other previous models. Therefore, treatments, as 
well as CyDye and gel effects, should be included in the 
model. This conclusion is not evident from the histograms 
obtained from the distribution of the residuals in Fig. 4. 
However, boxplots (Fig.3) and histograms (Fig. 4) of 
these three models suggest that the residuals follow a non 
symmetrical distribution. When the covariate log(Cy2) 
was entered into the model (M4, M5 and M6), the distri-
bution of the residuals became more symmetric (bottom 
panels in Fig. 3). The inclusion of the covariate produces 
a significant decrease in the Akaike, Bayesian and log-
likelihood information criteria (Table 3). However, M6 
that accounts for different residual variances in each TG 
combination had a better fit (lowest AIC, BIC and loglike-
lihood values) than the other models (Table 3). The model 
with heterogeneous error variance (M6) produced the best 
normalization of the melanoma data. 

The estimates of the residual variances for each TG com-
bination are shown in Table 4. The estimated coefficients 
for log(Cy2) in M6 were statistically different from 1 (p < 
0.001). The pair-wise comparisons of these coefficients 
between gels displayed significant differences. Once the 
“normalization model” was applied over the whole data 
set, spot-by-spot (protein-by-protein) analyses were run 
on the residuals (Eq. 3). In this second stage, we model 
the protein main effect (Pp) and the Protein-by-Treatment 
interaction (TP - our biological target). Fig. 5 shows the 
boxplots and the histograms of the residuals ( )γ̂ for the 
protein-by-protein analysis after M6 normalization. It is 
verifiable that in both cases the new residuals obtained 
from Eq.4 follow normal distributions, assumption which 
is needed to test the hypothesis on treatment differences. 
Table 5 displays the estimated Treatment by Protein (TP) 
effects for the four known differentially expressed pro-
teins (SPARC, N-Cadherin, 1169, HSP27 - see Sosa et al., 
2007 and unpublished results). The estimates were ob-
tained using the protein-by-protein analyses from M3, M6 
and DeCyder normalization strategies. 

 

Figure 3: Boxplot of residual distributions by TG combinations from the 
six normalization models in Table 2. 

Observe that the use of residuals from models not includ-
ing the covariate log(Cy2) induces the possibility of miss-
ing some differentially expressed proteins. All the target 
proteins were detected using the residuals from the het-
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eroskedastic model (M6). The normalized log volume 
from DeCyder also allowed the detection of the target 
proteins.  

Table 3: Information criteria for each of the fitted models. 

Model Df AIC BIC logLik 

M1 3 43255 43277 -21624 

M2 4 43143 43173 -21567 

M3 5 42712 42749 -21351 

M4 9 17297 17364 -8639 

M5 10 17248 17322 -8614 

M6 16 16198 16317 -8083 
Df: degree of freedom. AIC: Akaike information criteria, BIC: Bayesian Information 
Criteria. LogLik: Log likelihood. (all the values were provided by R code) 

 
Using the residuals from model M6, the estimated fold 
change between treatments can be calculated by means of 
exp(bTP), where bTP is the estimated coefficient for the 
Treatment by gel interaction term in Eq. 3 of a particular 
protein.  
 

 

Figure 4: Histograms of the overall residuals for the different normaliza-
tion models. 

Table 4: Estimated variances at each TG combination under M6 nor-
malization model. 

 Gel 1 Gel 2 Gel 3 Gel 4 

Treat LB L2 LB L2 LB L2 LB L2 

2
tgσ  

0.220 0.169 0.191  0.263 0.187  0.182 0.292 0.147 

LB:LBLAST, L2:L2F6 

4 DISCUSSION 
The use of DIGE technology for massive protein expres-
sion analysis has been growing since their introduction in 
the late 90’s. Based on the similarity with microarray 
technology, several approaches have been applied to 
DIGE in order to remove some specific non-biological 
effects, such as the CyDye-intensity dependence (Fodor et 
al., 2005), variance stabilization (Kreil et al., 2004), and 
some location specific effects (Kultima et al., 2006). 
However, lack of established analyses of protocols causes 
that different pre-processing strategies (normalization), 
result in different proteins to be significant (Meleth et al., 
2005). We propose a mixed model based framework for 
statistical analysis of DIGE data. This framework is flexi-
ble enough to be applied over a wide range of experimen-
tal designs, with respect to the number of treatments and 
other sources of variation. It was shown that the applica-
tion of the two stage linear mixed model allows an overall 
data normalization, and the estimation of treatments ef-
fects in a protein by protein basis. The identification of 
those non-biological effects that contribute the most to the 
normalization stage is a particularly relevant finding for 
quality control of the lab (Draghichi et al., 2003). The 
removal of noisy effects was also addressed as an impor-
tant design issue in cDNA microarray experiments (Yang 
et al., 2002). 

 

Figure 5: Boxplots and histogram of the protein-by-protein residuals 
(Eq. 3) under M6 normalization model. 

The statistical modeling approach to 2D-DIGE data pre-
sented here, allows verifying model assumptions prior to 
the protein analysis in a unified way. Model selection can 
be done by means of statistically sound fitting criteria, 
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such as the Akaike and Bayesian Information Criteria, as 
well as the Likelihood Ratio Test (Littell et al., 2006). 
Accounting for an appropriate covariance structure of the 
data provides suitable backdrops by which to assess the 
significance of interesting effects. Thus, better estimations 
of “p” value are expected to be obtained. This will impact 
positively on any function of the p-values such as the 
false discovery rate (FDR), which is a common practice in 
experimental settings involving multiple tests of hypothe-
ses (Storey et al., 2003; Qian et al., 2005; Karp et al., 
2007). 

Table 5: Estimated coefficients for TP interaction for the known differ-
entially expressed proteins using the protein-by-protein model under M3, 
M6 and DeCyder® normalization.  

 Normalization strategy 

 Linear model  

M3 

Linear mixed  

model  M6 

Software  

DeCyder 

Protein bTP P bTP P AR p 

SPARC 0.986 0.064 3.324 0.015 4.265 0.003 

N-Cadherin 0.686 0.699 2.131 0.021 2.893 0.025 

1169c 0.537 0.006 1.584 0.003 2.166 0.0003 

HSP27 -0.48 0.298 -1.27 0.008 -1.81 0.001 

bTP = the  estimated coefficient for the TP interaction term in the protein model. p: p value. a 
SPARC, b N-Cadherin (Sosa et al2007), cunpublished d HSP27 (Sosa et al2007). AR: Log Aver-
age Ratio. 

 
The use of the modeling strategy in two-stages (Eq. 2 and 
3) instead of fitting a protein model (Eq.1), has the advan-
tage of using more information in the normalization of the 
data. In addition, it provides more efficient estimation of 
the CyDye and gel effects. It was found in the melanoma 
cell experiment analyzed here that the Cy3 channel con-
sistently displayed higher values than the Cy5 channel. 
The proposed approach can account for this effect and 
handle it appropriately.  
The inclusion of the covariate log(Cy2) in the normaliza-
tion model was helpful in order to obtain symmetric re-
sidual distributions. After using the covariate, the distribu-
tions were similar to those achieved by DeCyder software. 
This fact can be understood if we identify g as the esti-
mated regression coefficient for the covariate log(Cy2g) in 
the gel “g” and rewrite the normalization model as fol-
lows 

( ) ( )
( ) ( )

g
g

g

gggg

gggg

gCy
ILog

CyLogILog

CyLogILog
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....
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2
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εδ
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⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

=+=⋅−⇒

⇒+⋅+=
 

where g =1..4, with the dots (…) indicating Treatment, 
CyDye and Gel effects. The above expression resembles 
the normalization equation published in the DeCyder® 
documentation. The main difference between both is that 
the coefficients g is here estimated by means of likelihood 

based procedures using all the data. The procedure em-
ployed by DeCyder to estimate the log(Cy2) coefficient is 
based on Least Square Means, and implemented for each 
gel-CyDye combination separately. 
When the log(Cy2) covariate was not included (models 
M1 to M3) the residual distributions showed homogeneity 
of variances but they were strongly skewed. The use of 
the log(Cy2) produce symmetric distribution of the re-
siduals, but introduce data correlations within gels. Such 
data correlation could be explained by the fact that for a 
particular protein the Cy2 effect varies across gels.  The 
estimated variance components for models including ran-
dom gels effects, with and without the covariate log(Cy2), 
were 0.455 to 0.079, respectively (data not shown). There-
fore, higher correlation between data in the same ge 
should be expected when using the covariate log(Cy2). 
Thus, the heteroskedastic model for the residual covari-
ance could be a good choice during the normalization 
stage. With the data set used here, the best normalization 
model (lowest BIC and AIC values - Table 4) was the one 
accounting for a heteroskedastic residual covariance struc-
ture in the error terms (model M6), i.e a model accounting 
for non-constant variances across TG combinations (Table 
4). 
The correlation induced by the inclusion of the Cy2 chan-
nel was also suggested by the analysis of the distribution 
of the “p” values in simulated and real self-self experi-
ments (Karp et al., 2007). In spite of this observation, the 
inclusion of the Cy2 channel seems to be relevant in 
DIGE experiments as it makes it possible to fulfill the 
required distributional assumptions in order to infer dif-
ferential expression. Although including the Cy2 channel 
induces a correlation structure, these covariances can be 
appropriately modeled using the mixed model normaliza-
tion approach. In the study of melanoma cells, most of the 
known differentially expressed proteins were not identi-
fied in those models lacking the covariate log(Cy2). 
The model accounting for the internal reference and for 
heteroskedasticity of the distribution during normalization 
(M6), allowed the proper identification of known differen-
tially expressed proteins in the melanoma cell study. The 
advantage of the use of statistical modeling for normaliza-
tion is the opportunity to control source of well known 
variation prior to protein identification. The ad-hoc nor-
malization from DeCyder, even removing experimental 
effects, does not allow the identification of the relative 
contribution of them. Even more, the statistical signifi-
cance of these sources of variation can be formally tested. 
Our approach allows fitting specific models that best de-
scribe the data at hand and verify the fulfillment of the 
required distributional assumptions for the protein analy-
sis. All the normalization coefficients are estimated by 
means of likelihood based procedures being in this way 
less sensitive to missing data. Moreover, the knowledge 
gained by fitting an experimental design-based model is a 
welcome input in the design of new 2D-DIGE experi-
ments. A more complex experimental design, where extra 
terms could be added, would undoubtedly yield more in-
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teresting data to show the advantages of this mixed model 
approach. A guide for the application of mixed model 
approach in the normalization stage is available in the 
Supplementary Material.   
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