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The chytrid fungus Batrachochytrium dendrobatidis (Bd) is one of the most important contributors for the decline of amphibian 
populations worldwide. Evidence indicates that the harmfulness of Bd infection depends on the species and life stage, the 
fungus strain, the season and environmental factors. In the present paper, we experimentally investigated (i) the susceptibility 
and sensitivity of five South American tadpole species (Rhinella fernandezae, Scinax squalirostris, Hypsiboas pulchellus, 
Leptodactylus latrans and Physalaemus fernandezae) to a foreign Bd strain (JEL423), (ii) the response of two populations of 
P. fernandezae to a native Bd strain (MLA1), and (iii) the virulence of native and foreign Bd isolates on tadpoles of the same 
species. We also evaluated the relationship between Bd infection and the loss of keratinised mouthparts in P. fernandezae. We 
found that all species except L. latrans were susceptible to Bd infection with lethal consequences, with R. fernandezae being 
the most sensitive species. In P. fernandezae, sensitivity to infection depended on population as well as Bd strain, although no 
relationship was found between fungal infection and the loss of keratinised mouthparts. This is the first experimental study on 
mortality rates of South American tadpoles exposed to Bd.
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INTRODUCTION

The pathogenic  fungus  Batrachochytr ium 
dendrobatidis (Bd), the etiological agent of 

chytridiomycosis (Longcore et al., 1999), is recognised 
as a proximate driver of many severe declines of 
amphibian populations worldwide (Lips et al., 2006). Bd 
infects keratinising tissue such as mouthparts of larvae 
and the skin of adults (Berger et al., 1998; Altig, 2007). 
The complexity of host-pathogen interaction in the Bd-
amphibian system has been studied extensively among 
different amphibian species, Bd strains, populations and 
environmental conditions (Searle et al., 2011; Gervasi et 
al., 2013; Ortiz-Santaliestra et al., 2013; Langhammer et 
al., 2014; Spitzen-Van Der Sluijs et al., 2014). Whereas 
some species carry constant infections in nature with 
little or no evidence of disease outbreaks (Kielgast et 
al., 2009; Reeder et al., 2012), others suffer significant 
declines (Ryan et al., 2008; Vredenburg et al., 2010). 
Sensitivity can also vary among amphibian life stages, 
and tadpoles of most species often show low sensitivity 

to Bd infection until metamorphosis (Rachowicz & 
Briggs, 2007; Symonds et al., 2007; Narayan et al., 2014), 
probably because infections only occur on the keratinised 
mouthparts (Berger et al., 1998). As a consequence, 
they can act as Bd reservoirs for the pathogen to persist 
(Blaustein et al., 2005; Mitchell et al., 2008), despite 
reports of reduced survival due to infection in a range of 
species (Blaustein et al., 2005; Garner et al., 2009; Gahl 
et al., 2012; Paetow et al., 2013; Hanlon & Parris, 2014).

Most studies on Bd and its relationship with the 
anuran host are from the northern hemisphere and 
Australia (see Voyles et al., 2011). We believe it is 
essential to generate knowledge about infection in 
South American amphibians, in order to carry out 
future conservation programs and to identify key 
species to prioritise. Therefore, we used a comparative 
experimental approach to examine host responses to Bd 
infection (susceptibility, sensitivity and loss of keratinised 
mouthparts) in tadpoles of five South American anuran 
species: the burrowing toad (Rhinella fernandezae), 
the white-banded treefrog (Hypsiboas pulchellus), 
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the striped snouted treefrog (Scinax squalirostris), the 
creole frog (Leptodactylus latrans), and the whistling 
dwarf frog (Physalaemus fernandezae). Moreover, we 
investigated the susceptibility of P. fernandezae to Bd 
depending on strain and populations. To our knowledge, 
this study represents the first experimental bioassays on 
Bd infection of native South American tadpoles. 

METHODS

Tadpoles were collected from natural breeding sites in 
temporary ponds located at three sites in Buenos Aires 
province, Argentina. R. fernandezae (stages 29–34 
[Gosner, 1960]), H. pulchellus (30–34), S. squalirostris 
(34–37), and L. latrans (33–36) larvae were collected 
in the outskirts of La Plata [35° S, 57° W] and used for 
Bioassay 1. P. fernandezae larvae (stages 33–37) were 
collected from La Balandra [34° S, 57° W] and Pinamar 
(25–35) [37° S, 56° W], and used for Bioassays 2 and 3. 
Data from individual P. fernandezae from La Balandra were 
also used in Bioassay 1. Upon arrival at the laboratory, all 
individuals were held at 37°C for 16 h to eliminate any Bd 
(Woodhams et al., 2003); tadpoles were subsequently 
acclimated for five days at 17°C, and a photoperiod of 
16:8 hours of light:dark. After acclimation, tadpoles were 
placed individually into 500 ml cylindric polypropylene 
containers with perforated plastic lids and 56 ml of 
dechlorinated water.

Zoospores we collected from two different Bd strains: 
JEL423 isolated from an adult Agalychnis lemur from 
Panama, and MLA1 isolated from larvae of Hypsiboas 
cordobae from Argentina. Zoospore collection was done 
by washing three-day-old 1% tryptone agar plates (grown 
at 23°C) for 1 hour with 4 ml of distilled water over three 
consecutive days (the same procedure was performed 
with Bd-free agar plates for control groups), obtaining 
a final suspension of 4×106 zoospore ml-1. A Neubauer 
chamber was used for zoospore counts.

For Bd exposure treatments, we inoculated containers 
containing 56 ml of dechlorinated water with 4 ml of daily 
harvested zoospore suspension (Bd-free suspension for 
the control group) for three consecutive days (exposure 
time), obtaining a final concentration of 6×104 zoospore 
ml-1 in each container. After this period, the water in 
experimental containers was replaced with fungus-free 
water every day. Tadpoles were fed liquefied lettuce ad 
libitum and checked daily for mortality counts. Bioassays 
were ended when mortality was recorded in all exposed 
individuals, or in 10% of the individuals of the control 
group. A solution of the anesthetic MS222 (tricaine 
methane sulfonate) was used to humanely euthanise 
tadpoles, which were then fixed in 10% formalin. To 
determine the presence of abnormalities in keratinised 
mouthparts, we extracted the oral disc for inspection 
with a stereomicroscope (Wild M3 Heerbrugg). Bd 
presence was identified through direct and histological 
examination of oral structures following Berger et al. 
(1999; hematoxylin and eosin staining using a compound 
optical microscope Hund Wetzlar H600). 

Results were assessed considering three criteria: (1) 
susceptibility, defined as the ability to become infected 

with Bd (a species was considered susceptible to Bd 
when at least one individual was infected with the 
pathogen); (2) sensitivity, defined as survival time after 
Bd exposure; (3) mouthpart deformity, as partial or total 
absence of keratinised mouthparts on the oral disc. To 
investigate whether anurans species are susceptible to 
infection by Bd and to assess their sensitivity, Bioassay 
1 consisted in exposing tadpoles of R. fernandezae, H. 
pulchellus, S. squalirostris, L. latrans and P. fernandezae 
to Bd strain JEL423. Results from Bioassay 3 (using 
Bd strain JEL423) performed on P. fernandezae were 
also included in the data analysis. With Bioassay 2, we 
tested whether different populations of a single species 
were differentially affected by Bd. We used the same 
experimental design as in Bioassay 1 and compared two 
P. fernandezae populations (La Balandra and Pinamar) 
to a locally isolated Bd strain (MLA1). In Bioassay 3 we 
exposed tadpoles of P. fernandezae from the La Balandra 
population to MLA1 or to JEL423. Fungal exposures 
for each trial were conducted simultaneously, and we 
used 10 exposed and 10 control larvae for each species, 
population and Bd strain.

We used Kaplan-Meier analyses (XLSTAT software 
version 2013.5.04; Addinsoft) to generate survival curves 
for species (Bioassay 1), populations (Bioassay 2), and 
groups exposed to Bd strains (Bioassay 3), comparing 
them using a Log-Rank Test. A contingency table 
analysis was performed on infection data (Bd/no Bd) 
with characteristics of mouthparts (normal/deformed), 
to determine whether the presence of Bd was related 
to oral disc deformation in P. fernandezae (individuals 
of Bioassays 2 and 3). We considered an oral disc to be 
deformed when keratinised mouthparts (labial teeth and 
jaw sheath) were absent (Altig, 2007).

RESULTS

Bioassay 1
Nine out of ten R. fernandezae individuals, and five out of 
ten S. squalirostris individuals treated with Bd died within 
24 h of inoculation, and the remainder died on day 2. The 
other species survived longer, with P. fernandezae having 
the longest survival time (Fig. 1A). No animals in the 
control groups died except for one tadpole of L. latrans on 
day 5. Treatment and control groups differed significantly 
for all species, with the following Mean Survival Times 
(MST) in the treatment groups: R. fernandezae (p<0.001) 
1.1 d, S. squalirostris (p<0.001) 1.5 d, L. latrans (p=0.004) 
3.4 d, H. pulchellus (p<0.001) 3.9 d, and P. fernandezae 
(p<0.001) 6.5 d. We also observed significant differences 
in survival among all species (p<0.001).

We found no evident oral disc deformations except in 
P. fernandezae (nine out of ten individuals, see Bioassay 
2). Four out of the five species tested positive for the 
presence of Bd (direct examination of fresh oral disc 
surface at 400 × without stain; Fig. 2): H. pulchellus 
(4/10 inoculated individuals), R. fernandezae (5/10), S. 
squalirostris (4/10), and P. fernandezae (2/10); L. latrans 
tested negative (0/10). The histological analysis of 
sectioned and stained mouthparts of larvae of all species 
revealed no evidence of Bd.
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Bioassay 2
We found significant differences in survival between La 
Balandra and Pinamar populations exposed to Bd and 
their respective controls (p<0.001); MST were 3.1 d 
and 5.0 d respectively. In specimens from the Pinamar 
population, survival decreased from 100% on day 4 to 

0% on day 5, while for La Balandra the decrement was 
more gradual (Fig. 1b). All tadpoles in control groups 
survived throughout the bioassay. The survival analysis 
showed significant differences between La Balandra and 
Pinamar (p= 0.001), and neither group had survivors at 
the end of the bioassay (day 5 for Pinamar and day 7 for 
La Balandra). Oral discs were deformed in about half of 
the larvae, including the total loss of keratinised mouth 
parts in the upper and/or lower jaws (Fig. 3).

We identified Bd thalli in mouthparts of individuals 
from La Balandra (6/10 infected individuals) and 
Pinamar (3/10), although infection was mild in both 
(1–10 zoosporangia), and negative in controls. Infection 
was detected in tadpoles with normal mouthparts and 
those with some degree of depigmentation. Histological 
analyses were negative for individuals from Pinamar 
and controls, whereas Bd sporangia were present in 
individuals from La Balandra (Fig. 4).

Bioassay 3
Survival differed significantly between P. fernandezae 
tadpoles inoculated with isolate JEL423 (MST=6.5 d), 
isolate MLA1 (MST=3.3 d), and control groups (100% 
survival; p<0.001), as well as between the treatment 
groups (Fig. 1C; p=0.003). Between 50 and 90% of treated 
larvae and controls presented loss of keratinised mouth 
parts (typified in Bioassay 2). Bd thalli were detected in 
tadpoles exposed to either Bd strain in mouthparts either 
with or without deformation (6/10 and 2/10 infected 
individuals for MLA1 and JEL423, respectively), but not 
in control tadpoles. Histological analysis yielded negative 
Bd infection for both treatments and controls. The 
contingency table with all individuals of P. fernandezae 
showed a dependency between depigmentation/no Bd 
(19/40) and normal/no Bd (2/40). Although no formal 
behavioural analyses were performed, we observed a 
change in the normal activity of the exposed tadpoles 
(Bioassays 1, 2 and 3) such as slow reaction to stimuli. 

Fig. 2. Rhinella fernandezae fresh oral disc surface 
(without stain), infected with Bd (400X). Note mature 
and empty zoosporangium in the stratum corneum 
(arrow). Scale bar=10 μm.

Fig. 1. Relative survival through time. A). Tadpoles 
of five anuran species exposed to Batrachochytrium 
dendrobatidis (Bd). Hp: Hypsiboas pulchellus, Ll: 
Leptodactylus latrans, Pf: Physalaemus fernandezae, 
Rf: Rhinella fernandezae, Sq: Scinax squalirostris. B) P. 
fernandezae tadpoles from La Balandra and Pinamar 
exposed to Bd strain MLA1. C) P. fernandezae tadpoles 
from La Balandra exposed to Bd strains MLA1 and JEL423. 
Symbols in lines of control groups show the end of the 
bioassay for each species. A) Square: Rf and Sq; triangle: 
Ll; star: Hp; circle: Pf. (no survival in exposed or control 
individuals but in 10% of Ll control individuals). B) Circle: 
La Balandra; triangle: Pinamar (no survival in exposed or 
control individuals). C) Circle: JEL423; triangle: MLA1 (no 
survival in exposed or control individuals). 

B

A
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DISCUSSION

To our knowledge, our results represent the first report of 
disease susceptibility in native South American tadpoles 
experimentally exposed to Bd.

Bioassay 1
All the species we tested died after exposure to Bd but 
varied widely in their sensitivity; whereas all individuals 
of R. fernandezae and S. squalirostris died on day 2, other 
species survived between 8 and 14 days. This low larval 
survival, recorded also in other species (Blaustein et al., 
2005; Garner et al., 2009; Paetow et al., 2013; Hanlon 
& Parris, 2014), shows that amphibian larvae not only 
act as carriers and reservoirs of Bd (Narayan et al., 2014) 
but also experience mortality. The high mortality and 
low infection degree registered suggests that the study 
species are sensitive to exposure of Bd. That Bd-exposed 
tadpoles could invest a high amount of energy to prevent 

infection, perhaps through mechanisms that inhibit 
zoospore attachment to host cells, could ultimately lead 
to larval mortality before metamorphosis (Garner et al., 
2009). High concentration of Bd zoospores also produce 
harmful chemicals which might have contributed to the 
rapid mortality observed in our experiments (McMahon 
et al., 2012).

The absence of oral disc deformation in all species 
except P. fernandezae may be linked to a short time of 
exposure. As evidenced by the examination of unstained 
mouthparts, Bd was present in all species except L. 
latrans (see Peterson et al., 2007 for a similar example 
on another species). Although tadpoles of L. latrans 
may be resistant, the presence of Bd was confirmed in 
adults and juveniles of wild populations (Herrera et al., 
2005; Ghirardi et al., 2009). Given the localised nature 
of an early stage of infection (Berger et al., 1999), false 
negatives could arise from histological analyses. This can 
be related to the absence of mouthpart deformation, 

Fig. 3. Normal (A; 25 stage; Pinamar population) and abnormal (B; 38 stage; La Balandra population) oral discs in 
Physalaemus fernandezae tadpoles (Gosner,1960). Arrows indicate lower sheath jaw (A) and lower jaw (B; showing 
lack of keratinised structures). Scale bars=200 μm (A); 500 μm (B).

Fig. 4. Oral disc sections of Physalaemus fernandezae tadpoles from La Balandra population showing empty 
Batrachochytrium dendrobatidis zoosporangia (arrow). Scale bar=14 μm.

BA
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provided there exists a strong association between oral 
disc depigmentation and histological confirmation of 
Bd (Rachowicz & Vredenburg, 2004; Knapp & Morgan, 
2006). The presence of deformations on the oral disc of P. 
fernandezae is noteworthy, and is discussed below.

Bioassay 2
Although the survival time of tadpoles from both P. 
fernandezae populations was similar, individuals from 
Pinamar died in large numbers a single day, a difference 
which may have been caused by genetic differences 
between the two groups. Natale (2006) found differences 
in the sensitivity of tadpoles to a Chromium (VI) solution 
in two populations of P. fernandezae, but studies on 
mortality variation among different tadpole populations 
exposed to Bd are largely lacking (for examples on adults 
see Tobler & Schmidt, 2010; Bradley et al., 2015; Piovia-
Scott et al., 2015). Although no individuals from either 
population survived longer than 7 days, survival in La 
Balandra tadpoles began to decrease 3 days earlier than 
for Pinamar. Individuals from Pinamar population were 
on average at earlier developmental stages compared to 
La Balandra when exposed to Bd, which might lead to a 
higher sensitivity to infection (Bd: Hanlon & Parris, 2014; 
see also Bunn et al., 2001; Johnson et al., 2011). 

The pattern of mouthpart deformation in both the 
treatment and control groups was more consistent with 
that shown by tadpoles exposed to low temperatures 
(6°C) than with the pattern of ‘gaps’ that characterises 
Bd infection (Rachowicz & Vredenburg, 2004). We also 
identified Bd sporangia in both normal and abnormal 
mouthparts, suggesting loss of keratinised mouthparts in 
the absence of Bd, as well as unaffected mouthparts in the 
presence of Bd (see also Blaustein et al., 2005; Padgett-
Flohr & Goble, 2007; Smith & Weldon, 2007). It is worth 
considering that P. fernandezae tadpoles generally have 
abnormalities in oral disc structures and in the pattern 
of ossification when reared under laboratory conditions 
(Barrasso, unpublished).

Bioassay 3
Survival of groups inoculated with the Argentina (MLA1) 
and Panama (JEL423) Bd strains differed markedly. While 
the survival of both groups declined 48 hours after 
exposure, all individuals exposed to the Argentina strain 
died twice as fast than individuals exposed to the Panama 
strain. Experiments comparing the effects of different Bd 
strains revealed differences among host species which 
may be associated with environmental factors (Berger 
et al., 2005; Retallick & Miera, 2007; Gahl et al., 2012). 
JEL423 was isolated 6 years before MLA1 from an adult 
of A. lemur from Panama, and has produced symptoms 
and mortality in different species (Becker & Harris, 2010; 
Brannelly et al., 2012), whereas MLA1 was isolated from 
larvae of H. cordobae from a mountain stream in San Luis 
province (Argentina), and these are the first bioassays 
performed with this strain. Differences in the in vitro 
handling of the strains as well as in the time since their 
isolation may cause changes in their virulence (Berger et 
al., 2005; Brem et al., 2013). MLA1 has larger sporangia 
than JEL423 (Arellano et al., 2010), supporting its higher 

virulence (see also Fisher et al., 2009). Genomic studies 
have revealed deep phylogenetic diversity, cryptic 
recombination and the existence of Bd-specific genes 
with possible pathogenicity factors (Joneson et al., 2011; 
Farrer et al., 2013; Rosenblum et al., 2013). The two 
strains used in our experiment are included in a global 
panzootic lineage (GPL) that contains the most infectious 
Bd isolates (Lips et al., 2006; Becker & Harris, 2010; 
Brannelly et al., 2012; Gahl et al., 2012; Rosenblum et 
al., 2013). Different effects on the survival of tadpoles 
can also be attributed to immunotoxicity (Piovia-Scott et 
al., 2015).

The finding that prevails in all experiments was 
high mortality of tadpoles, although reports of mass 
mortalities in the wild are lacking (but see Barrionuevo 
& Magione, 2006; Ghirardi et al., 2014). Tadpoles were 
exposed to concentrations of Bd zoospores (6×104ml-

1) which are likely higher than concentration in nature 
where Bd diffuses and becomes reduced through 
predators that forage on Bd zoospores (Searle et al., 
2013; Schmeller et al., 2014; Groner & Relyea, 2015), 
and where chemical agents can have a fungicidal effect 
(Gahl et al., 2011; Hanlon & Parris, 2014; Rumschlag et 
al., 2014). Native tadpoles also might only experience 
Bd-caused declines when subjected to more virulent or 
allopatric strains (James et al., 2009). 
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