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The absence of much literature on the Patagonian fish fauna in comparison with that of the neotropics,
has previously been blamed on its poor species diversity. Knowledge of the fishes of Patagonia, how-
ever, rose sharply at the beginning of the present century, allowing for an understanding of the complex
biogeographical history that has led to the present diversity and distribution patterns. There are several
new and potential threats to biodiversity and conservation of Patagonian fishes, such as the introduction
of exotic species, damming, climate change and changes geared to safeguard economic interests, often
acting synergistically. A great amount of new information is now available and the aim of the present
review is to articulate this knowledge in a comprehensive way in order to aid in the development of
tools to face the increasing challenges posed by environmental change and human activity. Knowledge
about fishes of Patagonia has grown at the same time as human actions, and presence.
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INTRODUCTION

The Patagonian Province is a biogeographical area (Dyer, 2000) that has two parts,
that between the Atlantic Ocean and the Andes, described as east Patagonia, and that
between the Andes and the Pacific Ocean known as west Patagonia (Fig. 1). The
poor diversity of the Patagonian fish fauna (Ringuelet et al., 1967; McDowall, 1971)
in comparison with the exuberant diversity of the neotropics, is one of the reasons
for its poor representation in the literature (Hubert & Renno, 2006; Barletta et al.,
2010). Knowledge of fishes in Patagonia, however, rose sharply at the beginning of
the present century thanks to several review papers on species distribution (Baigún
& Ferriz, 2003), biogeography of the family Galaxiidae (Cussac et al., 2004), an
exhaustive revision of the fishes of Argentina (Menni, 2004), updates on Patagonian
species (Habit et al., 2006; Pascual et al., 2007), a conceptual rearrangement of
zoogeographic provinces of Argentina (López et al., 2008), discussions about the
role of temperature in the biogeographic history of southern South American fishes
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(Cussac et al., 2009), the effects of ultraviolet radiation and temperature on temperate
aquatic organisms (Gonçalves et al., 2010), and two notable books on salmonids in
Patagonia (Wegrzyn & Ortubay, 2009a, b).

Notwithstanding the brief lapse of time, a great amount of new information is now
available, and the aim of the present review is to articulate this knowledge in a com-
prehensive way in order to aid the development of tools needed to face the increasing
challenges of environmental change and human actions.

THE INCREASING COMPLEXITY OF ANTHROPOGENIC
PERTURBATIONS

A major update that needs to be considered is that of renewed threats to fish biodi-
versity in Patagonia, such as introduction of exotic species, damming, global change
and changes geared to safeguard economic interests (Hulme, 2005), all of which may
act synergistically (Vince, 2010a, b).

The effects of resident, escaped and anadromous salmonid populations on freshwater
communities have been studied around the world (McDowall, 2006). In Patagonia, the
process of salmonid introduction, well documented by Macchi et al. (2008), resulted
in severe impacts on native fish populations (Quirós et al., 1986; Quirós, 1991; Baigún
et al., 2007; Aigo et al., 2008; Arismendi et al., 2009, 2014; Vigliano et al., 2009;
Habit et al., 2010, 2012; Young et al., 2010; Correa & Hendry, 2012; Correa et al.,
2012; González, 2012). Beginning in the 1980s, the marine cage culture of salmonids in
Chile grew sharply, from 53 t harvested in 1981 to well over 600 000 t year−1 today. The
dominant species is Atlantic salmon Salmo salar L.1758 (over 60%), followed by rain-
bow trout Oncorhynchus mykiss (Walbaum 1792) (20%), coho salmon Oncorhynchus
kisutch (Walbaum 1792) (17%) and Chinook salmon Oncorhynchus tshawytscha
(Walbaum 1792) (<1%). Intriguingly, the species that was farmed the least, O.
tshawytscha, had invaded almost every major basin in Patagonia (Fig. 2).

Several negative effects are associated with this industry in different areas: wastes,
chemicals, diseases and escapees straying into rivers in Chilean and Argentine Patag-
onia (Correa & Gross, 2007; Soto et al., 2007; Pascual et al., 2009; García de Leaniz
et al., 2010; Montory et al., 2010, 2011; Consuegra et al., 2011; Elgueta et al., 2013).
Salmonid aquaculture has developed into a highly globalized trade-dependent industry,
where fish meal and fish oil, produced in fisheries around the world, are key inputs to
produce the feed for farmed fishes, transforming schooling fishes into salmonids flesh
(Deutsch et al., 2007). Although salmonid cage culture in Patagonian reservoirs is sub-
jected to the negative effects of global warming (Báez et al., 2011), O. mykiss farming
activities have increased and impose the threat of fish escapes both on native fish pop-
ulations and on the wild salmonid sport fishery (Cussac et al., 2014). The impacts may
not only be in the reservoirs where the farms are placed (e.g. Alicura Reservoir) but
also in headwater lakes (e.g. Traful) (Vigliano et al., 2008a, b).

THE FISHES IN THE STREAMS OF PATAGONIA

East and west of the Andes, Patagonia comprises a diverse hydrographical net-
work draining into the Pacific and Atlantic Oceans as well as endorheic drainages
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Fig. 1. Principal basins of southern South America: 1, Colorado; 2, Negro; 3, Chubut; 4, Deseado; 5, Chico; 6,
Santa Cruz; 7, Coyle; 8, Grande; 9, Ovando; 10, Puelo; 11, Futaleufu; 12, Palena; 13, Aysén; 14, Baker; 15,
Pascua; 16, Serrano. Red lines indicate the northern limits of Andean Region (Andean Cuyan and Patagonian
Provinces of López et al., 2008) in Argentina and the northern limit of the Patagonian Province (Dyer, 2000)
in Chile (modified after http://patagonia.byu.edu/es/areas/general.aspx).
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Fig. 2. Oncorhynchus tshawytscha invaded geographic range in Patagonia. River basins where self-sustaining
populations were established ( ). Basins where free-ranging individuals of O. tshawytscha were recorded,
but not establishment probed are also shown ( ). Presence data derived from Correa & Gross (2007) and
Riva Rossi et al. (2012).

(Pascual et al., 2002; Habit et al., 2010). Knowledge about stream fishes is much
scarcer than that of corresponding lake-inhabiting fishes. Even the fishes of Negro
River, one of the most important rivers in terms of basin size and socioeconomic
importance, have been surveyed only recently (Alvear et al., 2007), and new loca-
tions for riverine native fishes (Table I) continue to be reported since the review of
Aigo et al. (2008).

Composition and distribution of fish assemblages along rivers varies between head-
waters and lower zones (Habit et al., 2007). In both east and west Patagonia, fish
communities vary from north to south, showing a general decline southwards in species
richness, dominated by a steep decline of non-diadromous species (Cussac et al., 2009;
Habit et al., 2012).

Non diadromous species in Chilean streams are represented by perca Percichthys
trucha (Valenciennes 1833) and Percichthys melanops Girard 1855, pejerrey Odon-
testhes hatcheri (Eigenmann 1909), catfish Hatcheria macraei (Girard 1855), recently
found Diplomystidae individuals in the Baker River (Muñoz-Ramírez et al., 2014) and
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big puyen Galaxias platei Steindachner 1898. New studies including comprehensive
sampling throughout Patagonia have described changes in the distribution and abun-
dance of some of these species (Habit et al., 2010; Zemlak et al., 2010, 2011; Habit
et al., 2012).

Distribution of P. trucha in Chile has been historically described from Aconcagua
to the Strait of Magellan (Arratia et al., 1981; Arratia, 1982; Campos & Gavilán,
1996; Dyer, 2000), but it is absent south of the Baker River basin. Moreover, in
west Patagonia, it shows a gap in its distribution, being present from the Puelo to
Futaleufú catchments, and to the south only in the Baker system. As indicated by the
phylogeographic studies of Ruzzante et al. (2006, 2011), this species occurs in west
Patagonia only in catchments that currently, or in the past, have their origin in east
Patagonia. Juvenile P. trucha is associated with low-water velocity habitats, deposi-
tional zones with silt, and submerged macrophytes that provided them with shelter
(Barriga et al., 2013a).

The presence of O. hatcheri and Diplomystidae individuals exclusively in the Baker
River basin in Chilean Patagonia supports the evidence for river capture (Turner et al.,
2005; Muñoz-Ramírez et al., 2010, 2014).

The distribution of H. macraei was recently extended by Unmack et al. (2009a,
b), from the Baker and Aysén catchments to the Baker in the south, and to the
Imperial River in the North. Larval H. macraei prefer shallow marginal pools and
feed mainly on small Chironomidae larvae. Juveniles and adults, on the other hand,
prefer zones with high water velocity, such as riffles or runs, with large interstitial
space, and prey on Ephemeroptera nymphs and chironomid larvae. Small indi-
viduals preferr gravel-pebbles and cobbles while larger fish choose cobbles and
boulders (Barriga & Battini, 2009; Barriga et al., 2013a). Studies based on individ-
ual identification may provide data about the population dynamic of this species
(Barriga et al., 2015).

Two relic groups of neotropical fishes are present in the streams of Patagonia.
Among characids, the presence of Cheirodon australe Eigenmann 1928 in Lake
Tarahuin (42∘40′S; 73∘56′W, Campos et al., 1996) and the particular endemism of
the scale-less characin Gymnocharacinus bergii Steindachner 1903 in the Valcheta
stream (40∘51′S, 66∘34′W) have been comprehensively studied (Ortubay et al., 1997;
Ortubay, 1998; Ortubay & Cussac, 2000; Lozada et al., 2000; Cussac & Ortubay,
2002; Körber & Ortubay, 2004). The recently noted presence of Cheirodon inter-
ruptus (Jenyns 1842) in the Valcheta Stream (López et al. 2013) is probably due
to southward human transport of live bait. Both east and west of the Andes, new
localities for Diplomystidae (Gosztonyi, 1988) have been recorded. Olivaichthys
viedmensis (MacDonagh 1931) juveniles have been caught in the River Caleufú
(Barriga et al., 2007) and other rivers the of Negro basin (Table I), and new records
of Diplomystes spp., previously found from the Aconcagua River to the Valdivia
River, are from the Mataquito and Baker River basins (Muñoz-Ramírez et al.,
2010). In particular, existing records of Diplomystidae individuals in the Baker
River basin in Chilean Patagonia represent the southernmost locality for the family
(Muñoz-Ramírez et al., 2010, 2014).

Galaxias platei is the most widespread species in west Patagonia. New records from
Chiloé Island and from the Puelo, Palena, Cisnes, Cuervo, Baker, Serrano and Tierra
del Fuego river basins have increased the total drainage area known to be occupied
by this species by 243% (Habit et al., 2010). A recent phylogenetic study by Burridge
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et al. (2012) recovered G. platei as a sister group of the genus Neochanna, shedding
new light on the significance of the adaptations that allowed the species to endure
glacial periods (Shuter & Post, 1990; Ruzzante et al., 2008; Zemlak et al., 2008;
Barriga et al., 2013b).

The north to south decline of diversity does not occur among diadromous species,
represented mainly by galaxiids. The species Aplochiton zebra Jenyns 1842, Aplo-
chiton taeniatus Jenyns 1842, Aplochiton marinus Eigenmann 1928 and Galaxias
maculatus (Jenyns 1842) occur in the majority of the lower zones of rivers in west
Patagonia (Puelo to Serrano river basins). Galaxias maculatus occurs in east Patag-
onia, and also in small streams of the Magellan Islands or fjord zone (Gosztonyi
& McDowall, 1974; Alò et al., 2013; Carrea et al., 2013). These four species are,
however, less abundant in Tierra del Fuego, probably due to synergetic negative
effects of salmonid and beaver Castor canadensis invasion (Boy et al., 2007, 2009).
Another two diadromous species that have been described for Chilean Patagonia are
the anadromous lampreys Geotria australis Gray 1851 and Mordacia lapicida (Gray
1851). Both species are rare in west Patagonia and are only present in the lower areas
of rivers and in lakes very close to the sea. In the east, only G. australis is present
in the Negro (Alvear et al., 2007), Chubut (Azpelicueta et al., 2001) and Santa Cruz
basins (C. M. Riva Rossi & M. A. Battini, pers. obs.).

Salmonid predation and competition has severely impacted galaxiids in streams
(Aigo et al., 2008; Habit et al., 2010). All South American Galaxiidae have been
recorded both in rivers and lakes, but G. maculatus is the best represented in lotic
systems (Cussac et al., 2004), with landlocked riverine (Ferriz et al., 2001; Barriga
et al., 2007) and diadromous populations (Boy et al., 2007, 2009). Recently, Carrea
et al. (2013) obtained the first results regarding the degree of isolation of populations
in the Negro and Santa Cruz Rivers, the largest Patagonian rivers east of the Andes.
Another galaxiid that splits its life between lakes and rivers is A. zebra. Adult A. zebra
were captured starting their reproductive migration up the Pocahullo Stream at Lake
Lácar, and eggs have been found adhering to the substratum in this inlet river (Lattuca
et al., 2008a). Probably, the newly hatched free embryos drift into the lake and grow,
as larvae, in the limnetic zone. Juveniles and adults are usually found in lake littoral
zones (Lattuca et al., 2007, 2008a, b).

THE LIMNETIC ZONES OF THE LAKES

Another conspicuous gap in information about Patagonian fishes was the lack of
knowledge of the use of the limnetic zone of lakes. The only early works considering
the limnetic zone were those of Cussac et al. (1992), Barriga et al. (2002) and Buria
et al. (2007) about intra-lacustrine movements of larval G. maculatus, larval G. platei
and adult P. trucha.

Vigliano et al. (2008a, b) generated the first absolute estimates of fish abundance
in Andean lakes, and Rechencq et al. (2011) found sound scattering layers (SSLs)
both in the nearshore and pelagic habitats at different times of the day. These SSLs,
formed by galaxiid larvae and adults, underwent displacement at dawn and dusk,
displaying different behaviours depending on moon phases and showing, in agreement
with Barriga et al. (2002), that the deep pelagic habitats provide diurnal refugia for
native galaxiids. Rechencq et al. (2014) observed that fish >12 cm total length (LT)

© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, doi:10.1111/jfb.13008
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showed preference for the nearshore habitat during lake stratification and always
appeared as individual targets. As previously described by Carrea et al. (2012), fish
larvae and small fishes <12 cm LT mainly used the pelagic habitat during mixis, where
they formed dense SSLs. During lake stratification however, many individual targets
from this group were found both in pelagic and nearshore habitats. Lindegren et al.
(2012) demonstrated, by means of hydro-acoustics and advanced spatial modelling,
how native fish species, as a result of previous exposure to native predators, may
successfully respond to invasive novel predators through a complicated game of
hide and seek, minimizing spatio-temporal overlap with predators, and potentially
facilitating coexistence between native prey species (galaxiids) and introduced novel
predators (salmonids).

Recent results regarding the predation activity of O. mykiss on G. maculatus larvae
and juveniles, along with simulations of stocking strategies normally proposed for this
region, showed that consumption demands on prey would increase to unsustainable
levels for native fish populations (Vigliano et al., 2009). In particular, Juncos et al.
(2011) provided evidence for the plasticity of O. mykiss, regarding different growth
strategies, facilitating the successful colonization of environments with different food
availability. Juncos et al. (2013, 2015) highlighted the importance of keystone prey
for the coexistence of native species with non-native top predators, providing new
quantitative and qualitative evidence of the high predation pressure exerted on G. mac-
ulatus, the keystone prey species, during the larval to juvenile transition from pelagic
to littoral-benthic habitat in Patagonian lakes.

ANADROMOUS SALMONIDS

Feral freshwater salmonid populations have been introduced in several river basins
around the world, but most worldwide attempts to establish anadromous populations
have failed (Pascual & Ciancio, 2007). Anadromous O. mykiss and anadromous Salmo
trutta L. 1758, however, successfully established in Atlantic Patagonian basins and
O. tshawytscha, introduced in Chilean Patagonia only 30 years ago, are establishing
populations in virtually all the main Pacific river basins and in some of the southernmost
Atlantic river basins (Ciancio et al., 2005; Correa & Gross, 2007; Fernandez et al.,
2010; Riva Rossi et al., 2012) (Fig. 2).

Anadromous salmonids grow larger than resident fishes, and are considered the top
sport salmonid fisheries. In the last 20 years, fishing for anadromous salmonids in
Patagonia has become a high-revenue economic industry (Pascual et al., 2009). The
main income of some traditional sheep farms in Tierra del Fuego has turned almost
completely to sport fishing. These anadromous populations raise concerns about poten-
tial effects on resident native fish communities, either in marine or freshwater environ-
ments. For example, blooms of the invasive algae Didymosphenia geminate that were
recently found in many Patagonian rivers, were probably introduced by contaminated
anglers’ waders (Segura, 2011) and have spread quickly (Beamud et al., 2013).

Feral anadromous salmonids are top predators that can affect host communities.
Salmonid smolts are prey of other fishes and sea birds during their initial entry to
the ocean, but rapidly grow to become top predators. Salmonids have high feeding
rates (Quinn, 2005) and they can exert considerable predation pressure on localized
food resources at sea, particularly in confined areas such as fjords or estuaries (Ciancio
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et al., 2010). Anadromous salmonids can compete for food with other upper trophic
level predators on the Atlantic Patagonian Shelf. Stable isotope analysis revealed that
anadromous O. mykiss showed the same trophic level as other macro zooplankton feed-
ers, including the rockhopper penguin Eudyptes chrysocome. Anadromous S. trutta and
O. tshawytscha fed at the same trophic level as the piscivorous Magellanic penguin
Spheniscus magellanicus, feeding mainly on schooling fishes, such as sprat Sprattus
fuegensis (Jenyns 1842) and silversides Odontesthes sp. (Ciancio et al., 2008a).

In Chile, recent studies have explored the effect of anadromous salmonids from two
different perspectives. The first relates to their effect as temporary residents during their
juvenile period in lakes and rivers, and the second to their role as carriers of persistent
organic compounds. Ibarra et al. (2011) studied the diet and age of O. tshawytscha
juveniles in rivers and lakes of four catchments in Chilean Patagonia (Puelo, Blanco,
Aysen and Futaleufu River basins). They concluded that age 1 year (or having reached
LT > 8·5 cm before completion of the first year) juvenile O. tshawytscha enter Patag-
onian systems as piscivorous predators. In all cases, prey fishes were composed of
native fishes, both G. maculatus and G. platei. This implies a new negative interac-
tion for the native fish fauna of Patagonia; predation and possibly also competition for
allochthonous organisms. Montory et al. (2010) analysed the role of O. tshawytscha
in the transport of pollutants from the sea to these pristine rivers. They accumulate
95% of their biomass in the sea (Naiman et al., 2002) and transport marine nutrients
and pollutants accumulated during their life to the headwaters where they die after
spawning. This situation could cause ecosystem disruptions due to perturbation in the
natural biogeochemical cycles of ultra-oligotrophic systems such as those of Patago-
nian systems (Soto et al., 2006, 2007). Persistent organic pollutants (POPs) are among
the compounds that andromous salmonids could transport and, in agreement with this,
Montory et al. (2010) found that O. tshawytscha act as bio-vectors of POPs in Patag-
onia, with similar levels to those reported for the same species in the northern hemi-
sphere. Furthermore, Montory et al. (2011) showed that concentration of POPs varies
among farmed, escaped and wild O. kisutch and O. mykiss. Considering that Chile has
at the moment the second highest production of salmonids in the world, this situation
is not only of ecological concern, but also an important concern for human health.

Andean headwaters of Patagonian rivers are oligotrophic or ultra-oligotrophic
(Depetris et al., 2005) and anadromous salmonids are sources of marine-derived
energy and nutrients for rivers and riparian ecosystems (Naiman et al., 2002; Schindler
et al., 2003). Terrestrial ecosystems close to spawning anadromous salmonid rivers
may benefit too (Hilderbrand et al., 1999; Helfield & Naiman, 2001). Responses of
rivers to artificially added salmonid carcasses include greater production of macro-
phytes, periphyton (Wipfli et al., 1999), invertebrates (Chaloner & Wipfli, 2002) and
fishes (Bilby et al., 1998). Direct consumption of salmonids and recycling of the
products of decomposition, leaching and excretion allow marine derived nutrients to
be incorporated into terrestrial and freshwater ecosystems (Gende et al., 2002). In the
Caterina River (Santa Cruz River basin), the trophic web in areas with high salmonid
nest densities showed enriched C and N stable isotopes values when compared with a
control site upriver from spawning grounds and a neighbouring river free of salmonids
(Ciancio et al., 2008b). Similar results were found by Arismendi & Soto (2012) in
rivers draining to the Pacific Ocean.

The literature on exotic salmonids has greatly emphasized their negative effects on
native fishes and ecosystems (Simon & Townsend, 2003), but they have also provided
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unique opportunities for studying adaptation and ongoing evolution into novel envi-
ronments (Hendry & Kinnison, 1999; Quinn et al., 2001; Huey et al., 2005; Crozier
et al., 2008).

In Patagonia, a number of life-history traits linked to migration are different from
those of the original populations, indicating that adaptive capabilities to the new
environment have been displayed soon after introduction (Pascual et al., 2001; Riva
Rossi et al., 2004). Oncorhynchus mykiss were first introduced in Patagonia between
1904 and 1938 from the west coast of North America, and between 1950 and 1970
from Denmark (U.S. Fish Commission Reports, 1904–1938; Marini, 1936; Mac
Crimmon, 1971; Baigún & Quirós, 1985). Mitochondrial DNA analysis revealed a
mixed ancestry for O. mykiss in Patagonia, with major contributions of coastal anadro-
mous stocks from northern California, Oregon and Washington to northern Patagonian
basins, and inland anadromous (redband steelhead) and resident stocks from the
McCloud River, in the upper Sacramento basin (California), and from the middle
Columbia Basin (Washington) to the Santa Cruz River (50∘S), in southern Patagonia
(Riva Rossi et al., 2004; C. M. Riva Rossi, unpubl. data) (Fig. 3). An anadromous
life-history pattern failed in northern Patagonia, as the new populations only developed
freshwater-resident life histories. A partially migratory population was established
only in the Santa Cruz River (Pascual et al., 2001). Environmental characteristics differ
among these basins, such as relative food availability in fresh water and in the ocean,
flow regimes, and ocean water temperatures, giving support to the idea that the envi-
ronmental differences among these systems may have promoted between-population
variation in the frequency of anadromous behaviour of O. mykiss in Patagonia
(Riva Rossi 2004).

In the Santa Cruz River, the steelhead O. mykiss undergoes smoltification after 2 or 3
years in fresh water and migrates to the ocean to grow and mature before returning to
fresh water to spawn, spending less than a year at sea (Riva Rossi et al., 2003, 2007).
Steelhead and resident O. mykiss are genetically indistinguishable (Pascual et al., 2001)
and can interbreed (Riva Rossi et al., 2007), suggesting that the life history an individ-
ual fish adopts is the consequence of the environmental conditions it was subjected to
(Riva Rossi, 2004). Several phenotypic traits differ drastically between the two forms,
with anadromous fish displaying much faster growth, increased body size and fecun-
dity, longevity and increased iteroparity, relative to resident fish (Pascual et al., 2001;
Riva Rossi et al., 2007).

The frequency of iteroparity in Santa Cruz River steelhead O. mykiss, with rates
estimated to be as high as 84 %, is higher than in northern hemisphere populations,
where ocean migration is more often associated with reduced iteroparity (Pascual et al.,
2001). In the northern hemisphere, historical rates of repeat spawning were quite high,
averaging 58%, but current rates are much lower, ranging from 2 to 63% (Busby et al.,
1996; Hopelain, 1998; Quinn, 2005; Narum et al., 2008), due largely to high mortal-
ity of downstream migrating post-spawned adults (kelts) at hydropower dams (Busby
et al., 1996; Hatch et al., 2004; Narum et al., 2008). In pristine populations, such as
those of the Kamchatka Peninsula of Russia, iteroparity is still predominant among
individuals, with rates as high as 79% (Withler, 1966; Lohr & Bryant, 1999; Savvaitova
et al., 1999; McMillan, 2008). In native steelhead O. mykiss, reduced iteroparity and
concomitant low post-spawning survival, are the result of a higher allocation of energy
to longer, arduous migrations between feeding and spawning grounds, coupled with
increased body size and reproductive investment (Crespi & Teo, 2002; Gayeski et al.,
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Fig. 3. Ancestry of Oncorhynchus mykiss introduced into Argentina. (a) Native range distribution of O. mykiss
and (b) main rivers used for egg collection at the time of O. mykiss (varities: , coastal steelhead and
rainbow trout; , Columbia River steelhead and redband trout; , McCloud River steelhead and redband
trout) introduction in Argentina. Geographic range of coastal and inland lineages is based on Behnke (1992).

2011; Quinn et al., 2011). By contrast, in the Santa Cruz River, steelhead O. mykiss
high iteroparity appears to be accompanied by high reproductive investment and does
not come at the expense of post-reproductive growth and survival (Pascual et al., 2001;
Riva Rossi et al., 2007). The phenotypic variation of O. mykiss in the Santa Cruz
River provides a remarkable natural experiment regarding how life-history trade-offs
interplay in the displaying of anadromy and iteroparity within salmonid populations
(Pascual et al., 2001; Riva Rossi et al., 2007).

Although the negative effects of anadromous salmonids are pervasive, their scientific
value as a model system to understand fundamental ecological and evolutionary pro-
cesses raises the controversial issue of whether a conservation value should be ascribed
to the Santa Cruz River anadromous O. mykiss population, which is now at high risk of
extirpation from their novel environment. If such a value is accepted, then elucidating
the linkages between the expression and maintenance of the anadromous life history
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and ecosystem attributes could be an important first step towards developing conserva-
tion goals for salmonids in Patagonia.

RECENT KNOWLEDGE ABOUT OLD FISHES

An understanding of the biogeographic history of Patagonian fishes is one of the
fields where major improvement has taken place. Cione & Báez (2007) reviewed fossil
evidence of the presence of Percichthyidae and Siluriformes in the Eocene (58·8 and
33·9 million years ago) and of Percichthys and Odontesthes in the Miocene records
(23·0 and 5·3 million years ago) of Patagonia. Thus, the presence of Percichthys prior
to the formation of the Andes emphasizes vicariance hypotheses and agrees with the
results of Ruzzante et al. (2006, 2011) about genetic differences between P. trucha
populations east and west of the Andes. Similarly, Zemlak et al. (2008) observed two
main genetic clades within G. platei also east and west of the Andes. Molecular-clock
estimates, however, suggested that the splitting between eastern and western lineages
occurred at c. 1·5 million years ago. As the southern Andes began their uplift much
earlier, the data imply gene flow across the divide. In a different way, genetic stud-
ies (Zemlak et al., 2010) indicate that G. maculatus began to diversify in systems
of northern Chilean Patagonia and subsequently spread south along the Pacific coast,
colonizing adjacent coastal systems and eventually reaching Atlantic systems via the
southern tip of South America. On the Atlantic side, range expansion and diversifica-
tion probably continued northward and westward. These different patterns (vicariance
v. marine dispersal) between congeneric species agree with the alternative life-history
patterns of G. maculatus (Chapman et al., 2006; Barriga et al., 2007) and the lack of
strong evidence supporting a diadromous life-history pattern for G. platei (McDowall,
1971; Cussac et al., 2004, Belk et al., 2014).

Cione et al. (2005) showed the presence of loricariids in the Miocene site of Punta
Delgada, Península Valdés and suggested that the climate was much warmer than today,
perhaps at least as warm as that of the central part of Buenos Aires province. In effect,
cooling of Patagonia during the Oligocene (Cione et al., 2007) would explain the isola-
tion of G. bergii in a thermal stream (Menni & Gómez, 1995; Ortubay et al., 1997; Kör-
ber & Ortubay, 2004), the unexpectedly high thermal tolerance of H. macraei (Gómez,
1990) at Lake Buenos Aires (46∘32′S), and the positive relationship between thermal
tolerance and acclimation temperature of P. trucha (Aigo et al., 2014).

A substantial improvement has occurred in knowledge about two trichomycterids,
Trichomycterus areolatus Valenciennes, 1846 and H. macraei. Unmack et al. (2009b)
updated H. macraei distribution data and improved morphological criteria for their
identification. Unmack et al. (2009a), however, also found that H. macraei individuals
are within T. areolatus genetic dendrograms. This could be caused by introgressive
hybridization of the mitochondrial genome of T. areolatus into H. macraei, or simply
by an incorrect current taxonomy, with H. macraei actually representing an individual
lineage within T. areolatus. It must be noted that glaciations have had a major effect
on the southern distributional limit of T. areolatus, as it is not found anywhere on the
mainland of Chile south of Maullín River (41∘23′8′′S). On the other hand, H. macraei
reaches 47∘34′27′′S (Blanco River) emphasizing the view of H. macraei as being
morphologically diverged and specialized from ancestral T. areolatus lineages (Baigún
& Ferriz, 2003; Aigo et al., 2008; Unmack et al., 2009a). Preliminary phylogeographic
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analysis based on mtDNA shows three main clades within H. macraei. The first one cor-
responds with Colorado basin populations, the second includes Baker basin and Lake
Cholila (both Pacific), and the third and largest clade incorporates a mix of populations
from both Pacific (Valdivia, Bueno, Puelo, Yelcho, Palena and Aysén) and Atlantic
(Negro, Chubut and Deseado) basins (Unmack et al., 2012). Morphology was strongly
related to this phylogeographic pattern, showing the main variation on locomotion
structures, such as caudal peduncle and both dorsal and anal fins (Battini et al., 2008).

Both the native O. hatcheri and the translocated Odontesthes bonariensis
(Valenciennes 1835) occur in east Patagonia (Dyer 2006). Both species have dis-
junct original distributions; O. hatcheri in the south-west (the Andean Cuyan and
Patagonian Provinces of López et al., 2008) and O. bonariensis in the north-east (the
Pampean Province of López et al., 2008). Stocking practices of O. bonariensis in the
original distribution area of O. hatcheri, and their ability for hybridization (Crichigno
et al., 2014a), however, led to the establishment of a hybrid zone in northern Patagonia
(Crichigno et al., 2013).

EXPECTATIONS ABOUT SILVERSIDES

As the first detected effects of global warming on Patagonian freshwater fishes, Aigo
et al. (2008) obtained correlative results showing a numeric decline of introduced
salmonid populations from littoral zones of east Patagonian lakes as a consequence
of global warming. These results have been validated by causal evidence of thermal
preferences of O. mykiss and P. trucha (Aigo et al., 2014), and thermal-dependent
reproductive disturbances observed in salmonids (Pankhurst & King, 2010). This
fact leaves an unanswered question about the future of salmonid culture in northern
Patagonia (Báez et al., 2011) and about the alternative culture of O. hatcheri (Hualde
et al., 2011). Expectations about the economic activity generated by the O. bonar-
iensis sport fishery and its potential for aquaculture (Somoza et al., 2008) led to the
translocation of O. bonariensis into the original distribution of O. hatcheri during
the 20th century, generating new possibilities (Crichigno et al., 2014a). The fact that
both species hybridize and that reciprocal hybrids mature with a viable F2 suggest
that complex degrees of hybridization in natural habitats (Strüssmann et al., 1997),
leads to a possible hybrid zone. In effect, a hybrid zone between both species has
been recently documented, with lakes and reservoirs where both species, as well as
individuals with intermediate morphology, are present; reservoirs where morpholog-
ical O. hatcheri individuals show a O. bonariensis mtDNA signature, and lakes and
reservoirs where, only O. hatcheri is caught, a high percentage of which show body
and head shape resembling O. bonariensis (Conte-Grand 2012; Crichigno et al., 2013).
Based on previous studies about growth and body shape of O. hatcheri (Ruiz, 2002),
Conte-Grand (2012) indicates that growth parameters of O. hatcheri in this hybrid
zone do not differ from those of O. bonariensis. Hybrid and introgressed individuals,
however, seem to be shorter and deeper-bodied than pure breeds (Crichigno et al.,
2014a). One lake in this hybrid area, Lake Pellegrini, at present supports a small
artisanal fishery, based on gillnet capture and with small freezer facilities. Although
Argentine statistics did not regard any Patagonian river or lake (www.minagri.
gob.ar/SAGPyA/pesca/pesca_continental/04-estad%C3%ADsticas/index.php), they
did O. bonariensis coming from the Pampean Region.
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LAKE COMMUNITIES AND FISHERIES MANAGEMENT:
AN ENVIRONMENTAL APPROACH

Patagonian recreational fisheries are based mostly on exotic species, introduced at
the beginning of the 20th century, representing the basis for a successful recreational
activity (Baigún & Quirós, 1985; Pascual et al., 2002, 2007; Macchi et al., 2008). Not
surprisingly after more than 100 years of intensive stocking, landlocked salmonids,
mainly O. mykiss (and S. trutta on a minor basis), have become widely distributed,
inhabiting most basins in Argentina (Baigún, 2001). This situation created a contrast
with the artisanal/commercial fishery, which historically was restricted to a few large
lakes located in the dry Patagonian plateau (Cardiel, Musters and Colhue Huapi Lakes)
and mostly focused on P. trucha (Baigún & De Nichilo, 1985). In Chile, although the
National Fisheries Agency (www.sernapesca.cl) recognizes eight sport fish species in
Patagonia, the most widespread (and the one on which sport fisheries are mostly based
on) is S. trutta (Habit et al., 2010).

Surprisingly, and despite the importance of the recreational fishery, almost no fish
yield data and no catch and effort data have been gathered, as well as data from the
main recreational fisheries being also unavailable, precluding managers from estimat-
ing long-term fish yields and detecting fishery trends. Abundance or biomass data are
still sparse and have generally been collected using different gear and capture methods
(Quirós & Baigún, 1984; Quirós et al., 1986; Vigliano et al., 1999, 2008a, b; Baigún
et al., 2007).

Alternative approaches have been considered in order to assess fishery resources,
attempting to link relative fish abundance and species composition to environmen-
tal characteristics. Such approaches were supported by the fact that Patagonian lakes
include a wide array of limnological characteristics defining a complex mosaic of water
bodies (Baigún & Marinone, 1995; Baigún et al., 2006). For example, Quirós & Baigún
(1984) used relative fish abundance as surrogate for potential fish yield for large lakes
and reservoirs whereas Baigún et al. (2007) related CPUE data and hydro-acoustic fish
biomass assessment in small-sized lakes to environmental variables. In this context, the
central tenet adopted in assessing Patagonian lakes is that fish communities and poten-
tial yield could be related and therefore become predictable from lake environmental
conditions as well as surrounding landscape characteristics.

Successful adaptation of salmonid species has been observed for more than one cen-
tury, strongly modifying original native communities (Pascual et al., 2007; Aigo et al.,
2008; Macchi et al., 2008). As noted by Aigo et al. (2008), lakes without salmonids
exhibit higher diversity, which can be related to observed salmonid impact on native
species in lakes and rivers (Macchi et al. 1999, 2007; Milano et al. 2002; Buria et al.
2007; Vigliano et al., 2009). Such premises are also useful when testing if successful
adaptation exhibited by salmonids has promoted fish assemblages that can be fore-
casted based on climatic, edaphic and morphometric lake characteristics. This approach
is in fact not new, and has been widely applied for other cold temperate areas by devel-
oping univariate or multivariate empirical models (Ryder, 1965, 1978; Matuszek, 1978;
Schlesinger & Regier, 1982; Young & Heimbuch, 1982). Baigún et al. (2007), however,
demonstrated that, since Patagonian lakes exhibit important limnological differences
from their northern hemisphere counterparts, no direct extrapolations were feasible
or if applicable, they tended to overestimate potential fish yield. For example, unlike
most dimictic cold temperate northern hemisphere lakes, the majority of Patagonian

© 2016 The Fisheries Society of the British Isles, Journal of Fish Biology 2016, doi:10.1111/jfb.13008



F R E S H WAT E R F I S H E S O F PATAG O N I A 15

Table II. Patagonian lake categories and main productive driving variables (modified from
Baigún & Marinone, 1995). Group A represents Andean oligothrophic lakes (A1 includes large
lakes; A2 and A3 comprise typical Andean lakes ranging from medium to small, from deep
to shallower, from oligo to mesotrophic, with low conductivities and high transparencies. All
group A lakes were thermally stratified, except for A3, which includes small and shallow foothill
lakes). Group B includes ecotone lakes in the Andean foothills, typically shallow, unstratified,
meso to eutrophic, with moderate to high levels of nutrients and conductivity. Group C comprises
lakes and reservoirs in the plateau (C1 includes reservoirs of the north-western boundary of the
plateau region, that are distinctively large, deep, oligotrophic and thermally stratified during
summer. C2 includes some very large lakes and reservoirs of moderate depth, which do not

stratify). Values are means with ranges in parentheses

Lake
Category Type Area (km2) Depth (m) TP (μg l−1) ZTH (m) TDS (mg l−1)

A A1 868 (580–1466) 129 (80·7–157) 2·9 (2–3·8) 74 (64–88) 34 (25–52)
A2 33 (5·4–86·7) 73 (22·4–166) 5·2 (1–20·2) 35 (0–85) 45 (19–124)
A3 2·2 (0·6–6·3) 12·6 (4·3–19·5) 6·7 (4–9) 4·2 (0–21) 44 (36–58)

B 2·4 (0·3–4·6) 4·4 (2·1–6·1) 82·8 (29–294) 0 136 (40–260)
C C1 350 (174–816) 43·1 (24·7–79·4) 5·3 (3·5–9) 19·5 (0–39) 83·8 (64–140)

C2 260 (65–460) 25·8 (9·4–49·1) 93·2 (23·5–276) 0 884 (159–2837)

TP, total phosphorous; ZTH, thermocline depth; TDS, total of dissolved solids.

lakes are either warm monomictic or cold polymictic and do not stratify if water depth
is< 20 m mean depth or 50 m maximum depth (Baigún & Marinone, 1995). Based on
contrasting different climatic, edaphic, morphometric and limnological variables these
authors were able to recognize up to three well defined main lake groups composed of
secondary categories (Table II).

Such classification improved and refined pioneer results observed by Quirós et al.
(1986) and properly reflects lake environmental complexity in Patagonia. Never-
theless, some similar general ecological principles observed for other worldwide
temperate lakes also apply to Patagonian lakes. For example mean depth and total
dissolved solids (TDS), as encapsulated by the morphoedaphic index (MEI) (Ryder,
1965, 1978; Ryder et al., 1974), appear to reflect the potential fish production, which
allows relating lake fish assemblages to fish yield in Patagonian lakes (Fig. 4). Adams
& Olver (1977), e.g. based on the assessment of 70 Ontario lakes suggested that a
MEI from 0·8 to 5·9 represents oligotrophic conditions, a MEI from 6 to 7·3 indi-
cates meso-eutrophic characteristics and a MEI from 7·3 to 50 eutrophic conditions.
Ultra-oligotrophic to oligotrophic Patagonian lakes, with MEI ranging between 0 and
1 and mostly found in the mountain areas, are dominated by salmonids. On the other
side of the trophic spectrum, P. trucha and O. hatcheri are more abundant in lakes
with MEI> 10 reflecting eutrophic and even distrophic scenarios, mostly found in
plateau areas. Finally, mixed communities are expected in lakes with MEI between
3 and 11, showing mesotrophic characteristics. Thus, communities dominated by
Percichthys are almost absent in lakes showing MEI< 3 and conversely salmonid
dominance is almost absent in lakes with MEI> 60. The above analysis also displays
a natural species replacement driven by trophic lake status as has been also noted by
Hartmann (1977), Ryder & Kerr (1978) and Oglesby et al. (1987) for European and
North American lakes.
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Fig. 4. Trophic categorization of Patagonian lakes according to their typology (Baigún & Marinone, 1995). Group
A represents Andean oligothrophic lakes (A1 includes large lakes. A2 and A3 comprise typical Andean
lakes ranging from medium to small, from deep to shallower, from oligo to mesotrophic, with low conduc-
tivities and high transparencies. All group A lakes were thermally stratified, except for A3 which includes
small and shallow foothill lakes). Group B includes ecotone lakes in the Andean foothill, typically shal-
low, unstratified, meso to eutrophic, with moderate to high levels of nutrients and conductivity. Group C
comprises lakes and reservoirs in the plateau (C1 includes reservoirs of the north-western boundary of the
plateau region, that are distinctively large, deep, oligotrophic and thermally stratified during summer. C2
includes some very large lakes and reservoirs of moderate depth, that do not stratify). Fish community
categories [MIX, communities where salmonids, Percichthys or atherinids represent 30 to 70% of relative
abundance ( ); PER communities where Percichthys and/or atherinids represent 70% of relative abundance
( ); SAL, communities where salmonids represent 70% of relative abundance ( )] along the morhoedaphic
index (MEI) gradient (ULTRAOLIG, ultraoligotrophic; OLIGOTR, oligotrophic; MESOTR, mesotrophic;
EUTR, eutrophic; DISTR, distrophic).

This scenario is the same in west Patagonia, where small mesotrophic lakes are dom-
inated by native species, P. trucha and O. hatcheri in the Baker River basin (e.g. Lake
Maldonado), or are single species systems, inhabited only by P. trucha (e.g. Silvia
Lake) or G. platei (e.g. Lake Thompson in the Aysén basin, Habit et al. 2012; Belk
et al., 2014). Large oligotrophic lakes are highly dominated by salmonids, in Chile
predominantly by S. trutta. The only oligotrophic lakes which remain salmonid free
are the Yulton and Meullin, located in the Cuervo River basin in the Aysén Region
(Habit et al., 2010) and these lakes are severely threatened by hydropower development
(Vince, 2010a, b).

LAKE CHARACTERISTICS AND BIONOMIC FEATURES

The potential effects of lake characteristics on population bionomic characteristics
should be considered. Recently, Crichigno et al. (2012, 2014b) showed the great mag-
nitude of the effects of phenotypic plasticity on the morphology of O. hatcheri and
P. trucha. Latitude, longitude and area of lakes were significant in the explanation of
the gradient of relative abundances, the high abundances of salmonids being related
to high latitudes and longitudes, and lakes smaller than those where the abundances of
Odontesthes sp. and P. trucha were higher. Odontesthes sp. had its higher abundance at
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lower longitudes and P. trucha at lower latitudes (Aigo et al., 2008). Growth parameters
and mortality for instance, may strongly differ among lakes (Barriga et al., 2012) and
therefore strongly influence a population’s response to exploitation. Unfortunately,
information on Patagonian fish population parameters and biological attributes is still
scarce (Guerrero, 1984, 1991; Lafarga & Guerrero, 1991; Ruiz, 2002; Lopez Cazorla
& Sidorkewicj, 2008, 2011).

At a broad regional scale, it is of major interest to explore how such parameters could
be related to environmental conditions in order to use this information for fishery man-
agement. Lafarga & Guerrero (1991) noted that O. mykiss growth was positively related
to total phosphorous and total organic nitrogen. For 23 North American lakes, Donald
& Anderson (1982) noted that O. mykiss growth was related to area, TDS and mean
depth, with the lake area being the main factor governing growth of lake trout Salveli-
nus namaycush (Walbaun 1792) in Canada. Recently, Arismendi et al. (2011) proposed
a model based on condition indices of O. mykiss to estimate salmonid abundance in
Chilean lakes that can be used to improve lake and fishery management decisions for
introduced salmonids in southern South America. This is an interesting approach con-
sidering the lack of information regarding most of the Patagonian systems.

APPLICATIONS FOR FISHERIES MANAGEMENT

Management policies can be defined and considered by applying an ecological frame-
work and could even be related to expected climatic changes to which salmonids appear
to be highly vulnerable (Cussac et al., 2009; Báez et al., 2011; Aigo et al., 2014).
Predicted climate change in Patagonia may modify trophic conditions indirectly by
increasing TDS concentration or water conductivity as well as nutrient inputs related
to surrounding modifications (Jönsson et al., 2011). Such patterns would promote lakes
with higher MEI and thus greater fish yields, whereas balance between salmonids and
Percichthys dominated communities would be a direct consequence of lake thermal
shifts according to basin characteristics and lake morphometry.

A remarkable feature of most of Patagonian lakes is that the main fisheries have
been developed in oligotrophic lakes which are dominant at a large geographical scale
(Pedrozo et al., 1993; Baigún & Marinone, 1995). Thus, general guidelines can be
developed to optimize fishery management based on an ecological approach, taking
into account lake natural productivity. In this context, small or large oligotrophic lakes
should be allocated only to recreational fisheries or to a very controlled artisanal fish-
ery based on poor potential productivity. Lakes located in the ecotone and the plateau
are suitable for practicing both artisanal and commercial fisheries mostly based on per-
cychthids and atherinopsids, with salmonids as a secondary target. These lakes exhibit
the largest yield per unit area but, due to their small size, they should be managed dif-
ferently using alternative exploitation under appropriate fishing effort regulations. Is
interesting to note that ecotone lakes are usually avoided by recreational anglers due
to poor infrastructure, unfavourable climatic conditions or because they are located on
private properties.

On the other hand, differences in bionomic response to environmental conditions
suggest that fishing regulations should be adapted to local or regional lake character-
istics avoiding the application of regulations that consider similar legal sizes for most
of the lakes. Since growth is directly related to reproductive patterns, it is apparent that
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fishing regulations should adapt to local population characteristics. Such patterns could
be even exacerbated by the influence of temperature. As noted by Baigún & Marinone
(1995) water temperature decreases with latitude, thus influencing growth performance
(Conover, 1990).

THE FISHES IN FUTURE PATAGONIA

One of the major threats that the fish fauna in Patagonia faces is the high economic
pressure for hydropower development. During the last two decades in Chile there has
been a boom in constructing hydropower plants, damming and diverting a wide range
of rivers, in order to meet energy demands. Hydroelectricity is particularly attractive
in Chile, since rivers are short and torrential due to the high east to west gradient
produced in the Andes Mountain range. Patagonia contains 25–30% of Chile’s hydro-
electric potential, is barely inhabited (0·84 inhabitants km−2, source: census 2002 INE;
www.ine.cl) and its rivers have a high flow in summer, when the northern rivers have
their low flow season.

Five large rivers of Argentinean Patagonia (Colorado, Neuquén, Limay, Futaleufú
and Chubut) already have several impassable dams. While the effect of dams on fish
habitat is obviously large, the distinct effects on particular species or community char-
acteristics are poorly known (Cussac et al., 1998; Macchi et al., 1999). At present, the
only confirmed effect is the disappearance of lamprey Geotria australis Gray 1851
from the middle and upper reaches of the Limay River above dams. Both ammocoetes
and adult G. australis are regularly found in the Negro River, below dams (Pascual
et al., 2007).

While all large rivers south from Puerto Montt in Chile and Santa Cruz River in
Argentina are still free of dams, this condition is unlikely to last. Recently, five major
dams have been approved in the Baker and Pascua catchments (Vince, 2010a, b;
Nature News 17 May 2011), despite the fact that the changes that they would bring
upon these little studied ecosystems are not well understood. The knowledge gap in
the species inventory, biodiversity, eco-structure, physico-chemical and biological
dynamics, ecological integrity and loading capacity of most ecosystems (Goodwin
et al., 2006) is not sufficient to support management strategies in damming projects.
Knowledge regarding the habitat requirements, reproduction and ecology of species
is limited to a small number of fish species. This makes the assessment of the
impact of anthropogenic activities, like the construction and operation of dams,
a difficult task.

Dam effects are not only restricted to the impounded area (reservoir), but they encom-
pass the entire river downstream of the dam, due to the change in the flow regime
caused by its operation. This flow regime modification has severe effects on physi-
cal habitat availability. García et al. (2011) reported the effect of dam operation with
hydro-peaking on the habitat availability of native fishes of the Biobío River in central
Chile, showing major changes in habitat availability at a daytime scale. These changes
affect mainly the riparian zones, which are rearing, feeding and refuge habitats for the
majority of the native fish species. Furthermore, catchments like the Baker or Pascua,
with complex hydrographic networks enclose complex fish metapopulation dynamics.

Dams are frequently accompanied by fish culture cages and fish culture usually
involves fish escapes. Escaped fishes not only affect fish population in the same
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reservoir, but also their consequences may be observed at headwater lakes and rivers
(Cussac et al., 2014).

The need to understand the environmental factors driving life-history variations in
anadromous and resident O. mykiss is particularly relevant in the Santa Cruz River,
where two large hydropower dams will be built blocking the migratory corridor, alter-
ing the flow, sediments and temperature regimes downstream (M.A. Pascual, C.M. Riva
Rossi & M. García Asorey, unpubl. data). Flow and temperature influences the spawn-
ing of adults, the emergence of fry and the migration of smolts (Anguilleta Jr et al.,
2008). Changes in these variables can lead to mismatches between the environmental
cues and the anadromy triggers and could threaten the persistence of this life history
in the population.

Other threats that have not been properly quantified, but could modify the fish com-
munity structure should be also taken into account (Miserendino et al., 2008, 2011).
For example, change in land use, riparian deforestation and cattle practices could alter
dramatically main fish habitats and deteriorate water quality as reviewed by Salo &
Cundy (1987) and Mehan (1991).Baigún et al. (2006), for example, noted that lake
nitrogen input correlated inversely with Notophagus spp. forest density, pointing out
the relevance of considering surrounding land practices mostly ignored by previous
studies.

Conservation of native Patagonian fishes should be envisioned as a priority in view of
their low richness and the potential impacts of habitat deterioration and salmonid intro-
duction. A sound debate is still merited on how exotic salmonids need to be managed
according to their socioeconomic importance under an ecosystem approach. Salmonids
have been introduced everywhere in Patagonia, but their impact on native species has
not been similar in all environments. Of particular concerns are low order streams and
isolated or poorly connected small lakes where recreational fisheries are negligible. In
such lakes and streams, predation or competition with native species could be exacer-
bated due to absence of fishing and low habitat complexity, which increases species
vulnerability. It is important to note that few lakes and streams are still salmonid free,
thus such basins or areas should be not stocked without proper justification.

Fishing regulations can be used to protect native fishes. Since humans represent the
exclusive predator for salmonids, capable of controlling their population abundance
and size composition, catch-and-release strategies could be inappropriate in Patago-
nia and therefore their application waived in those basins where conservation priorities
require recovering or preserving native fishes (www.reglamentodepesca.org.ar). Such
an approach reinforces the concept that inland Patagonian fisheries can be managed by
considering regional or catchment templates based on a community perspective, instead
of on a single target species, integrating river and lake ecological complexity and sur-
rounding landscapes with bionomic population features and socioeconomic factors.

Knowledge about fishes of Patagonia has grown at the same time as human efforts,
actions and presence. Like Tantalus, as soon as being within grasp of an apprecia-
ble comprehension of the ecological status of its populations, the climate changes, the
rivers are dammed, and new exotics are dispersing.
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