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DNA‐based methodologies have revolutionized our thinking on
reproductive behavior and mating systems in birds, revealing that
reproductive strategies alternative to genetic monogamy occur in
variable proportions in nature. For example, conspecific brood
parasitism (CBP)—a behavior characterized by females laying eggs
in the nests of other conspecific females—has been shown to occur
in over 150 bird species (Yom‐Tov, 2001; Lyon and Eadie, 2008;
Eadie and Lyon, 2011). Moreover, modernmolecular methods have
demonstrated that many species of socially monogamous birds
show variable levels of extra‐pair paternity (EPP, fertilization of
the female by a male other than its social partner; Griffith
et al., 2002). CBP has recently been studied using molecular
techniques, which allowed researchers tomore profoundly explore
the role of kin selection in the evolution of this behavior (see
references in Eadie and Lyon, 2011). Colonial waterbirds represent
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an especially interesting group in which to study reproductive
behavior (Miño et al., 2011) because nesting in colonies is one of
the breeding habits proposed to promote CBP (Brown, '84; Møller
and Birkhead, '93; Lyon and Everding, '96; Brown and
Lawes, 2007). Although the literature on mating systems in
colonially breedingwaterbirds is still notably scarce (Miño andDel
Lama, 2009), the few genetic studies available on this group have
proposed that both EPP and CBP can occur in natural populations
(e.g., Lyon and Everding, '96; Miño et al., 2009, 2011).
The white‐faced ibis Plegadis chihi Vieillot, 1817 (Pelecani-

formes: Threskiornithidae) is a colonially breeding medium‐sized
bird that inhabits wetlands along the American continent
(Ryder, '67; Dark‐Smiley and Keinath, 2003); in Brazil, it can be
found, for example, in the South region, in Rio Grande do Sul state
(Petry and Fonseca, 2005). P. chihi is socially monogamous (Ryder
andManry, '94; Dark‐Smiley and Keinath, 2003), but observations
of the adults' reproductive behavior and the occurrence of
occasional supernumerary clutches suggest that CBP can also
occur (Kaneko, '72; Capen, '77). Besides, the breeding of this
species is highly synchronic—courtship, nest building, incubation,
and fledglings can all occur at the same time (Belknap, '57)—a
characteristic that might promote CBP.
DNA‐based parentage studies, which involve comparing the

genotypes of the candidate parents to those of the supposed
offspring, have been traditionally used to characterize a species'
mating system (Jones et al., 2010). However, those studies are not
possible in colonially breeding birds such as the white‐faced ibis,
due to the extreme difficulty of sampling the candidate parents. In
such a situation, genotypes from candidate parents are not
available. An appealing approach in those cases is to infer the
reproductive behavior of adults by examining the genetic
relatedness and kinship patterns among the offspring within the
broods (Blouin et al., '96; Avise, 2004), as exemplified in recent
studies (Oliehoek et al., 2006; Miño et al., 2009, 2011). Studies of
kinship and relatedness in natural populations have preferably
used microsatellite markers due to ease of alleles' detection, high
levels of polymorphism, random distribution across the genome
and selective neutrality (Webster and Reichart, 2005).
The aim of this study was to infer aspects of the genetic mating

system of P. chihi in nature, using a genetic approach in the
absence of parental information. We used data on five micro-
satellites and applied a multi‐steps methodological approach
(Miño et al., 2011) to determine the relationship categories among
white‐faced ibis nestlings that belong to the same broods.

MATERIALS AND METHODS

Sampling, DNA Extraction, and Genotyping
We plucked growing feathers from 179 nestlings from 87 nests (7
nests with only 1 nestling, 68 nests with 2 nestlings, and 12 nests
with 3 nestlings) in a breeding colony in Tapes city (Rio Grande do
Sul state, Brazil, S 30°41012″, W 51°23053″). The sampling was

carried out when nestlings were 2–3 weeks old, to ensure that they
remained inside their own nests. DNAwas extracted from samples
following Sambrook and Russell (2001). Given that species‐
specificmicrosatellite loci are not available in the white‐faced ibis,
we used heterologous markers. In a previous extensive screening
of 44 heterologous microsatellites in this species, 6 primers
produced consistent results and were polymorphic (Souza
et al., 2012). However, preliminary analyses conducted in this
study (data not shown) showed that locus NnF5 (Ji et al., 2004),
polymorphic according to Souza et al. (2012), was in linkage
disequilibrium with another locus of the set; thus, it was not
chosen for our relatedness analyses. All samples were genotyped
at five loci (Aaju3, Sawyer and Benjamin, 2006; Eru2, Eru4, Eru5,
and Eru6, Santos et al., 2006). Polymerase chain reactions (PCR)
were carried out following Souza et al. (2012) in an Eppendorf
Mastercycler Gradient® thermal cycler (Eppendorf AG, Hamburg,
Germany). Genotyping was carried out in a MegaBACE™ 1000 (GE
Healthcare, Piscataway, NY, USA) automatic sequencer and alleles
were sized using Genetic Profiler Software Suite v2.2 (GE
Healthcare) with ET 550‐R as size standard.

Population Genetic Parameters and Evaluation of Performance of
Relatedness Index
The occurrence of null alleles, allelic dropout, and stuttering was
investigated using the program Micro‐Checker v2.2.3 (van
Oosterhout et al., 2004). Number of alleles per locus, expected
(He) and observed (Ho) heterozygosities, and tests for detecting
deviations from Hardy–Weinberg equilibrium (HWE) were
computed in GenAlEx v6.4 (Peakall and Smouse, 2006). The
program Genepop v1.2 (Raymond and Rousset, '95) was used to
test for linkage disequilibrium (LD) between pairs of loci and to
compute the inbreeding coefficient (FIS;Weir and Cockerham, '84).
The effective size (Ne) of the population was estimated through
sibship reconstruction using the program Colony (Jones and
Wang, 2010). Estimation of all the above population genetic
parameters was based on 87 nestlings, taking one nestling from
each nest at random, to support subsequent relatedness analyses.
The Queller and Goodnight's ('89) index (denoted hereafter as

Q&Gr) performed better in the context of our analyses and with
our set of markers, than any of the other six relatedness estimators
evaluated in the program KinInfor (Wang, 2006; data not shown).
To further assess the performance of the Q&Gr index, we followed
the approach of Russello and Amato (2004), simulated 1,000 pairs
of unrelated individuals (UR), full‐siblings (FS) and half‐siblings
(HS) using Kingroup program v2_090501 (Konovalov et al., 2004).
The simulated r values were compared to theoretically expected r
values for UR (r ¼ 0), HS (r ¼ 0.25), and FS (r ¼ 0.5) using two‐
tailed t‐tests (as in Russello and Amato, 2004) in BioStat v5.0
program (Ayres et al., 2007), adjusting for significance with the
Bonferroni correction (Rice, '89). The sampling variance of the
Q&Gr index was calculated as the variance of the mean
relatedness estimate for each simulated data set (Russello and
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Amato, 2004). Expected misclassification rates were computed as
the fraction misclassified out of 1,000 simulated pairs of each
relationship category, as in Russello and Amato (2004), using the
“cut‐off” values method of Blouin et al. ('96) (midpoints between
the means of the distributions of pairwise relatedness estimates of
each simulated relationship category). The program iRel (Gon-
çalves da Silva and Russelo, 2011) was used to compute both “cut‐
off” values and misclassification rates.
The performance of our set of microsatellite loci for relatedness

analyses was evaluated with a rarefaction procedure in the web‐
based software RE‐RAT (Schwacke et al., 2005). A thousand
simulations were ran, randomly drawn a locus without replace-
ment and calculating a pairwise relatedness (r) matrix of Q&Gr. A
second locus was selected and another matrix was computed, the
resulting r matrix was subtracted from the first r matrix and the
average of the differences was calculated. The drawing of loci and
calculation of differences was repeated until all five loci have been
added.

Genetic Relatedness and Inference of Kinship Patterns Among
Nestlings
Kingroup program was used to compute the overall level of
relatedness of the population (Q&Gr) based on the 87 supposedly
unrelated nestlings, and also, separately, the average r values
between nestlings in each nest. To assess kinship patterns for each
one of the 104 nestlings‐dyads, we applied the multi‐step
methodological approach described by Miño et al. (2011). Briefly,
the approach involves the following: (1) calculating pairwise r
values using ML‐Relate program (Kalinowski et al., 2006), which
adjusts for null alleles in microsatellites; (2) determining the most
likely relationship category compatible with the observed r value
for each dyad by applying the “cut‐off” values method (Blouin
et al., '96)—based on the previously computed values in iRel
program; (3) choosing the relationship‐hypotheses that best suites
the data through hypothesis testing using ML‐Relate program;
and (4) reconstructing kin groups using likelihood approaches
with Pedigree v2.2 program (Herbinger et al., 2006) and Colony
program (Jones and Wang, 2010) (please refer to Miño et al., 2011
for further additional details on the procedure). A final
classification of nestling‐pair into a relationship category was
achieved if, and only if, there was congruence among results of all
the methods used in this approach.

RESULTS
All of the analyzed loci were in HWE, there was no evidence of
linkage disequilibrium for any pair of loci, neither of inbreeding
(Table S1 in electronic Supplementary Material, ESM). Null alleles
were inferred to be present at locus Eru6. The Ne for the Tapes
colony was of 69 white‐faced ibises (95% CI: 50–98).
The rarefaction analysis indicated that there was little change to

the Q&Gr index after four to five loci were added (0.12 of average
difference in successive 1,000 simulations; Fig. 1). Simulations

showed that, with our allele frequencies, the estimator of Q&Gr did
not depart from the theoretically expected r values and had rather
low sampling variances (Supplementary Table S2 in ESM).
Misclassification and “cut‐off” values for distinguishing between
alternative relationships categories ranged from 20% to 36%
(Supplementary Table S3 in ESM).
The average relatedness value observed among individuals from

different nests was �0.008 � 0.002 which did not deviate from
the expected for unrelated individuals. The mean relatedness
observed inside broods was 0.334. Pairwise relatedness values for
co‐nesting nestlings ranged from �0.685 to 1 (Fig. 2). Kinship
patterns were determined for 40 nestling‐pairs (38% of all the
analyzed pairs) from 28 broods (35% of the sampled nests;
Table 1). Most of the diagnosed nestling‐pairs (60%) were
classified as full‐siblings (24 pairs), whereas 37.5% (15 pairs)
were considered unrelated nestlings and one pair (2.5%) was
diagnosed as half‐siblings (Table 1). Sixty‐four pairs of nestlings
remained undiagnosed for kinship (Supplementary Table S4 in
ESM). Some of the nests with three nestlings had all the pairs
diagnosed for relationship: for example, nests #55 and #78 had
only FS (Table 1), whereas both UR and FS were identified at nests
#64 and #77 (Table 1). Nests with only part of their pairs classified
were excluded from the computation of the overall proportion of
CBP in the population.

DISCUSSION
We performed microsatellite‐based kinship reconstruction analy-
ses to clarify the genetic mating system of white‐faced ibises

Figure 1. Rarefaction analysis. Result of the rarefaction analysis of
Brazilian white‐faced ibis population from Tapes colony, Rio
Grande do Sul, Brazil, showing the relationship between the
number of loci used and the mean difference between consecutive
average relatedness (r) estimates (Queller and Goodnight, '89) over
1,000 simulations. Standard deviations are shown as vertical lines.
Calculations were performed using the web‐based software RE‐
RAT (Schwacke et al., 2005).
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breeding in Rio Grande do Sul state, Brazil. Our results suggest that
CBP and, to a low extent, EPP can be present in this species. We
highlight the necessity of further research to disentangle the
possible causes and consequences of these alternative reproduc-
tive strategies. The molecular markers and methodological
approach applied in this study can be useful to investigate genetic
mating system in the endangered and understudied puna ibis (P.
ridgwayi).
Our genetic estimate of the effective population size constitutes

valuable information on the approximate number of reproductive
white‐faced ibises in Tapes city colony, given that ecological data
is not available to date. Considering that the ratio of Ne to the
census population size (Nc) in waders is approximately 0.10
(Buehler and Baker, 2005), we estimated anNc in the range of 500–
980 birds in this breeding colony. In theory, >500 individuals
would be enough for ensuring long‐term population persistence
(Whitlock, 2000). A good survival capacity could be important to
counterbalance the relatively high rate of nest‐loss reported for
this species in Rio Grande do Sul (Petry and Fonseca, 2005).
Reproductive failure can be promoted by widespread habitat loss
due to conversion for farming (Azambuja et al., '96), poor habitat
conditions—particularly water level and quality—and exposure to
pesticides in agricultural fields, that cause eggshell thinning (King

et al., 2003; Ivey et al., 2004). Ne can be influenced by many
factors, including genetic mating system, and is an important
parameter to be considered in conservation measures.
Although based on a limited number of microsatellite markers,

the Q&Gr index performed well in the context of our analyses
(Supplementary Table S2). The moderately high misclassification
rates observed in simulation analyses (Supplementary Table S3)
suggest that if we had only relied on the pairwise r values, we
would have erroneously deducted the relationships among
nestlings, with important consequences for mating system's
inference. This emphasizes the importance of applying a multi‐
steps approach when inferring relationships, particularly if limited
genetic data are available, as already suggested by other studies
(van Horn et al., 2008). In order to be more conservative in kinship
diagnosis, given the limitations imposed by lack of parental
samples and by the small number of microsatellite loci used, we
applied the stringent multi‐steps analytical approach of Miño
et al. (2011). This method uses several different and complemen-
tary tools to identify relationships between individuals and was
aimed specifically for situations such as the one of the present
study (Miño et al., 2011). Even though locus Eru06 showed
evidence of null alleles, we included this marker in our analyses
because it was one of the most informative loci (seven alleles).

Figure 2. Relatedness values observed among nestmates. Histogram showing the distribution of Queller and Goodnight ('89) pairwise
relatedness values observed between 104 white‐faced ibis nestling‐pairs sampled within broods. Please see Table 1 and Table S4 of the
electronic Supplementary Material for all the pairwise relatedness values for each one of the analyzed pairs.
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Table 1. Inferred kinship for white‐faced ibis nestling‐pairs

Nest Pair Q&Gr ML‐R P(HP/HA)
a Pedigreeb Colonyc Inferred kinship

5 Tp10–Tp11 0.611 FS 0.0084�� FS ¼ 12.285 0.962 FS
8 Tp16–Tp17 0.723 FS 0.0003��� FS ¼ 88.515 0.074 FS
10 Tp20–Tp21 0.761 FS 0.0000��� FS ¼ 282.526 1.000 FS
12 Tp24–Tp25 0.692 FS 0.0050��� FS ¼ 19.143 0.858 FS
19 Tp38–Tp39 0.134 HS 0.0500� HS ¼ 2.043 — HS
21 Tp42–Tp43 �0.259 UR 0.0161� — — UR
26 Tp52–Tp53 0.827 FS 0.0000��� FS ¼ 4229.365 1.000 FS
29 Tp60–Tp61 0.609 FS 0.0095�� FS ¼ 12.972 0.757 FS
32 Tp66–Tp67 0.441 FS 0.0433� FS ¼ 4.025 0.974 FS
35 Tp73–Tp74 0.654 FS 0.0262� FS ¼ 6.078 1.000 FS
39 Tp82–Tp83 0.696 FS 0.0010��� FS ¼ 64.479 1.000 FS
43 Tp90–Tp91 �0.023 UR 0.0146� — — UR
45 Tp97–Tp98 0.365 FS 0.0062�� FS ¼ 19.972 — FS
48 Tp104–Tp105 0.113 UR 0.0310� — — UR
49 Tp106–Tp107 �0.075 UR 0.0164� — — UR
50 Tp108–Tp109 0.669 FS 0.0369� FS ¼ 4.340 0.987 FS
53 Tp114–Tp115 0.595 FS 0.0210� FS ¼ 7.422 0.008 FS
53 Tp115–Tp116 �0.039 UR 0.0397� — — UR
55 Tp119–Tp120 0.614 FS 0.0089�� FS ¼ 12.007 0.048 FS
55 Tp119–Tp121 0.443 FS 0.0500� FS ¼ 2.705 0.048 FS
55 Tp120–Tp121 0.610 FS 0.0008��� FS ¼ 50.487 1.000 FS
58 Tp127–Tp129 �0.304 UR 0.0066�� — — UR
58 Tp128–Tp129 �0.504 UR 0.0091�� — — UR
64 Tp141–Tp142 1.000 FS 0.0128� FS ¼ 10.377 0.955 FS
64 Tp141–Tp143 0.084 UR 0.0000��� — — UR
64 Tp142–Tp143 �0.283 UR 0.0310� — — UR
66 Tp146–Tp148 0.547 FS 0.0251� FS ¼ 5.870 0.070 FS
67 Tp149–Tp150 �0.685 UR 0.0171� — — UR
70 Tp155–Tp156 0.647 FS 0.0049��� FS ¼ 22.196 1.000 FS
71 Tp157–Tp158 0.512 FS 0.0021��� FS ¼ 44.538 1.000 FS
75 Tp167–Tp168 0.604 FS 0.0050��� FS ¼ 19.738 1.000 FS
75 Tp168–Tp169 �0.004 UR 0.0429� — — UR
77 Tp173–Tp174 0.846 FS 0.0100�� FS ¼ 8.154 1.000 FS
77 Tp173–Tp175 �0.121 UR 0.0140� — — UR
77 Tp174–Tp175 �0.071 UR 0.0102� — — UR
78 Tp176–Tp177 0.801 FS 0.0024��� FS ¼ 31.675 0.167 FS
78 Tp176–Tp178 0.820 FS 0.0017��� FS ¼ 34.752 0.835 FS
78 Tp177–Tp178 0.567 FS 0.0114� FS ¼ 12.003 0.002 FS
79 Tp179–Tp180 0.019 UR 0.0370� — — UR
79 Tp180–Tp181 0.004 UR 0.0270� — — UR

Kinship patterns inferred for 40 co‐nesting nestling‐pairs of the white‐faced ibis (Plegadis chihi) from Tapes colony, Rio Grande do Sul, Brazil. Q&GrQueller and
Goodnight's relatedness index ('89) estimated in ML‐Relate program (Kalinowski et al., 2006);ML‐R: most likely relationship indicated by ML‐Relate; P(HP/HA):
probability value of the hypothesis testing in ML‐Relate. Asterisks indicate significance at 5% (�), 1% (��), and 0.5% (���) levels; Pedigree: probability value for
the relationship reconstructed in the program Pedigree v2.2 (Herbinger et al., 2006); Colony: probability value for full‐siblings successfully recovered by the
program Colony (Jones and Wang, 2010). UR, unrelated; HS, half‐siblings; FS, full‐siblings. Results for the non‐diagnosed nestling‐pairs can be found in
Table S4 on the electronic Supplementary Material.
aHPputative hypothesis, most‐likely relationship indicated by ML‐Relate, HA: alternative hypothesis (if the most‐likely relationship was FS, HA ¼ UR, if the
most‐likely relationship was either UR or HS, then HA ¼ FS). A small P‐value indicates that HP agrees better with genetic data than HA (tests were carried out in
ML‐Relate program with 10,000 simulations).
bProbability values correspond to FS or HS, depending on the pair being inspected. Simulation‐derived minimum values for most likely unrelated individuals
were: FS ¼ 0.00097, HS ¼ 0.03125; maximum values for most likely related individuals were FS ¼ 4.229,365, for HS ¼ 157,464.
cProbability values are available only for successfully reconstructed full‐siblings.
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Wagner et al. (2006) suggested that loci with null alleles can be
included in relatedness analyses if they have a good level of
polymorphism.
Forty white‐faced ibis nestlings‐pairs from the same broods had

their kinship patterns inferred in the absence of parental information
(Table 1), most of which were full‐siblings, in agreement with the
hypothesis of geneticmonogamy, the expected pattern derived from
the observation of social monogamy in this species (Ryder and
Manry, '94; Dark‐Smiley and Keinath, 2003). However, unrelated
individuals were also found inside broods in a relatively high
proportion, and half‐siblings were also detected, although at a low
rate (Table 1). In addition, the average overall relatedness value
observed within broods (r ¼ 0.334) was in the range expected for
half‐siblings. The unrelated nestlings found within broods could be
explained assuming that they are product of CBP, whereas half‐
siblings could be result of EPP.
Although our findingsmay be interpreted with caution, they are

not unexpected since CBP has already been reported in natural
populations of the white‐faced ibis. Field observations of adult
females laying eggs in other females' nests and of nests with
supernumerary clutches of six to eight eggs (Kotter, '70;
Kaneko, '72) were interpreted as evidence of CBP in the wild.
Colonial breeders in general have been shown to be more prone to
CBP than solitary nesters (Brown and Brown, 2001). The greater
availability of suitable host nests and the ease of their discovery
within colonies (Geffen and Yom‐Tov, 2001; Lyon and
Eadie, 2008; Paillisson et al., 2008), as well as the lack of
territorial defense (Brown, '84), have been proposed as possible
mechanisms leading to greater CBP in colonial nesters. Moreover,
defending against parasitism is significantly challenging for
colonially breeding species, given substantially higher densities of
nests (Brown and Brown, '96). CBP has already been reported in
other waterbirds, including some of the same family as the white‐
faced ibis (listed by Yom‐Tov, 2001), and also in seabirds such as
the wiskered tern (Paillisson et al., 2008). The few studies based on
genetic data available for waterbirds also reported deviation from
monogamy within broods in natural populations of the roseate
spoonbill, the wood stork, and the great egret (Miño et al., 2009,
2011). In addition, genetic evidence supported the occurrence of
CBP in other birds, such as the northern lapwing (Grønstøl
et al., 2006), the black‐headed gull (Ležalová‐Piálková, 2011), and
the black‐capped chickadee (Otter et al., 2011). CBP is an
interesting behavior that should be seen as a complex interplay
between population dynamics and evolutionary forces (Valpine
and Eadie, 2008), and that might not have a single or a few causes.
Our results also suggest that EPP might be present in the white‐

faced ibis, as for the low proportion of pairs diagnosed as HS
(2.5%). However, given that most of the analyzed nestling‐pairs
remained without a final kinship classification, we cannot rule out
the possibility that EPP could be even more frequent in this
species. Although EPP has not been previously reported in the
white‐faced ibis, detailed behavioral field observations are still

lacking. Exhaustive observations on the reproductive behavior
can be hampered by the colonial breeding habit and by the
absence of secondary sexual dimorphism. Nonetheless, EPP in the
white‐faced ibis is not totally unexpected, since this behavior has
been proposed to occur more frequently in synchronous (Stutch-
bury and Morton, '95) and colonial breeders (Møller and
Birkhead, '93; Lyon and Everding, '96; Westneat and Sherman, '97;
Yom‐Tov, 2001; Brown and Lawes, 2007). Ecological observations
have already shown the occurrence of EPP in other waterbirds of
the same family (European shags, Graves et al., '93; scarlet ibises,
Elbin and Burger, 2005; grey herons, Ramo, '93; cattle egrets,
McKilligan, '90, Krebs et al., 2004; and Chinese egrets, Guo‐An
et al., 2005).
In summary, we present genetic evidence of the occurrence of

unrelated nestlings and, to a less extent, of half‐siblings in broods
of the white‐faced ibis. We suggest that CBP and EPP can be
present in the studied colony. Our findings help to better
characterize the reproductive behavior of this species in the
wild and suggest that a non‐strictly monogamous genetic mating
system might be present.
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