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1 Introduction

Indole derivatives present wide biological importance in 
a variety of therapeutic areas such as anti-inflammatory, 
anticonvulsant, cardiovascular, antitumor, antibacterial, 
antiparkinsonian, antiviral and antidiabetics agents, among 
others [1].

In particular, acylindoles present appreciable interest, 
not only for their biological properties but they are also 
widely used as intermediates in the synthesis of alkaloid 
and different families of heterocyclic compounds [2, 3].

There are different methods in the synthesis of acylin-
doles, among them the Friedel–Crafts reactions [4–7], Vils-
meier–Haack reaction [8] and the use of Grignard reactions 
[9].

Some of these methods present advantages and short-
comings that limit their scope and performance. The Vils-
meier–Haack acylations also give good yields, but the 
amides used are limited (e.g. formamide, alkylcarboxam-
ide) and a large amount of  POCl3 is used, causing compli-
cations in the environment.

Regarding the Friedel–Crafts reaction, the electro-
philic substitution preferably occurs at the C-3 instead of 
the C-2 position. Acylation at the C-2 position can occur 
for indoles 1,3-disubstituted or 3-substituted. However, 
in 3-substituted indole compounds, N-acylation may also 
occur [10]. The use of N-protecting groups is generally the 
chosen strategy to avoid the formation of 3-acyl derivatives 
[11]. The disadvantage of this process is the largest number 
of synthetic steps, with the initial preparation of the N-pro-
tected derivative, subsequent acylation and removal of the 
protecting group to give the final product.

Our research group is interested in obtaining 2-acyl-
3-methylindoles, which are used as substrates in the 
synthesis of complex heterocyclic compounds. Thus, 
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Friedel–Crafts acylation arises as a good synthetic way 
of mentioned compounds from 3-methylindole, using 
Lewis or Brønsted acid catalysts. Homogeneous Lewis 
acids used for these reactions include  AlCl3,  BF3,  TiCl4, 
 ZnCl2,  SnCl2,  SnCl4 and  ZrCl4 among others [7, 12–14].

These days, a number of factors demand the use of 
heterogeneous catalysts because of problems associated 
with the handling, disposal of homogeneous acids and 
environmental contamination.

We have studied the synthesis of different compounds 
through the use of homogeneous or heterogeneous acid 
catalysts. So, sulfuric acid, methanesulfonic acid (MSA) 
and trifluoroacetic acid (TFA) were used as homogene-
ous catalysts [15, 16]. Moreover, many of these pro-
cesses were performed using heterogeneous catalysts to 
compare their viability. The catalysts used were tung-
sten and molybdenum heteropolyacids  (H3PWO40 and 
 H3PMoO40) supported on silica [17], Amberlyst 15 and 
Amberlyst XN-1010 resins [15, 18–21], sulfated zirco-
nia [22, 23],  P2O5 and  HClO4 supported on silica [24]. 
In almost all cases, yields increased when heterogeneous 
catalysts were used, with simplicity in the purification 
process and a smaller amount of polluting waste.

Among those mentioned sulfated zirconia has 
attracted much attention in recent years because of 
its good catalytic activity, super-acidity, non-toxicity 
and several advantages such as short reaction times, 
high selectivity and the easiness of work-up procedure. 
Some interesting methods using this catalyst include 
Friedel–Crafts acylation [25], esterification reactions 
[26–28], synthesis of flavones [29], synthesis of cou-
marins by the Pechmann reaction [30] and 1,5-benzodi-
azepines [31].

Continuing with our work on the application of het-
erogeneous catalysts for development of useful synthetic 
methods, we decided to study the acylation of 3-methyl-
indole using sulfated zirconia as a catalyst.

Referring to the Friedel–Crafts acylation of indole 
derivatives, mono- and bi-substituted products can be 
obtained. In relation to obtaining mono acylated prod-
ucts, these may be substituted at the C-2 position (2), at 
the N-position (3) and other carbon atoms in the benzene 
ring (4) (Scheme 1).

2  Experimental

2.1  Materials

Melting points were determined with a Buchi apparatus. 
1HNMR and 13CNMR spectra were recorded on a Bruker 
AVIII 600 Biospin in  CDCl3 or DMSO-d6. Thin layer chro-
matography was performed on silica gel sheets 60  F254 
(Merck A.G.). Silica gel 60 (70–230 mesh) (Fluka) was 
used for column chromatography. Commercial 3-meth-
ylindole (98%) (Aldrich) was recrystallized from hexane 
before use. All reagents were purchased from Merck A.G. 
and Aldrich; 1,2-dichloroethane and 1,1,2-trichloroethane 
were distilled over phosphorous pentoxide and stored over 
4 Å molecular sieves. Commercial  SO4 − 2/ZrO2 from Mel 
Chemical Co was dried at 110 °C for 2 h in an air and was 
subsequently calcined for 5 h in air atmosphere at 550 °C, 
based on previous experiences [21]. All yields refer to iso-
lated products.

2.2  Catalyst Characterization

The solids were characterized by FT-IR spectroscopy, 
X-Ray diffraction (XRD) and superficial acidity.

X-ray diffractograms were obtained in a Philips 
PW-1732 equipment, using Cu Kα radiation Ni filter; 
20  mA and 40  kV as the high voltage source, scanning 
angle between 5° and 50° 2θ, and scanning rate 1°/min. 
FT-IR spectra were obtained using a Bruker IFS 66 FTIR 
spectrometer.

The determination of total acid sites of the catalysts was 
measured by potentiometric titration with n-butylamine in 
acetonitrile as a non-aqueous medium. The solid (0.05 g) 
was suspended in acetonitrile, and stirred for 3 h. The sus-
pension was titrated with a 0.05 N solution of n-butylamine 
in acetonitrile using a Metrohm 794 Titrino apparatus with 
a double junction electrode.

2.3  Reaction Study

Initially, the reaction between 3-methylindole (1) 
(1.0  mmol) and acetic anhydride as the acylating reagent 
(variable amounts) was investigated as a model to optimize 
the experimental conditions. Sulfated zirconia was used as 
a heterogeneous catalyst. Parallel reactions are performed 

Scheme 1  Possible products 
in mono acylation of 3-meth-
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using acetic acid as an example of a homogeneous catalyst 
in order to compare their behavior (Scheme 1). These were 
carried out in a batch reactor with magnetic stirring under 
Ar atmosphere. The progress of the reaction was monitored 
by TLC (9:1 hexane/ethyl acetate). When the reaction was 
complete, the catalyst was separated by filtration, and the 
solvent was removed in vacuum. The crude products were 
purified by column chromatography on silica gel (9:1 hex-
ane/ethyl acetate). The known reactions products were 
characterized by comparison of their physical and 1HNMR 
and 13CNMR spectra and data with those of reported ones. 
The identification of new compound was made through 
1HNMR and 13CNMR spectra and elemental analysis.

Different reaction conditions were checked, catalyst 
amount, substrate/acylating reagent ratio and reaction time, 
for both type of catalysts.

The reactions were carried out either at 82 °C using 
1,2-dichloroethane as a solvent or at 140 °C using 
1,1,2,2-tetrachloroethane as a solvent.

2.4  Acylating Reagent

With the optimized conditions in hand, we probed the 
scope of acylation of 3-methylindole using other examples 
of acylating agents such as propionic anhydride, n-butyric 
anhydride and benzoic anhydride.

2.5  Reusability of Catalyst

The used catalysts were washed, according to the case, with 
1,2-dichloroethane or 1,1,2,2-tetrachloroethane, then meth-
anol and drying in air at 120 °C for 2 h and reused in subse-
quent following experiments.

3  Results and Discussion

3.1  Catalyst Characterization

The properties of sulfated zirconia were examined by pow-
der XRD, FT-IR spectroscopy and superficial acidity in 
catalysts calcined at 550 °C, without use and after being 
used.

The XRD patterns of samples calcined at 550 °C with-
out use (a) and after being used (b) are shown in Fig. 1. As 
can be seen from Fig. 1 sulfated zirconia calcined at 550 °C 
contained only tetragonal phases (2θ = 30.16°, 34.96°, 
50.22° and 59.98°). The catalyst recovered and reused 
shown the same pattern of bands, without changes after 
three catalytic cycles.

The total number and strength of Brønsted and Lewis 
acids sites were measured by nonaqueous potentiometric 
titration with n-butylamine in acetonitrile. In this method, 

the initial electrode potential  (Ei) indicates the maximum 
acid strength of the surface site, and the materials with 
 Ei values higher than 100 mV are defined as very strong 
solid acids. Additionally, the range where the plateau was 
reached [meq(n-butylamine)  g−1] shows the [32, 33].

The measurements were performed on an original 
sample and after being used in different cycles for the 
acylation reaction using acetic anhydride as acylating 
reagent. The potentiometric titration curves are presented 
in Fig. 2.

It can be observed in the Fig. 2 that the initial electrode 
potential  Ei is 516.2, 303.3, 290.6, 257 and 244.2 mV for 
the original sample of  SO4/ZrO2 and samples used in four 
catalytic cycles respectively. These results indicate the 
presence of very strong acid sites.
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Fig. 1  XRD patterns of sulfated zirconia for fresh sample calcined at 
550 °C and a reused sample
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The amount of n-butylamine consumed was 0.76 meq/g 
for the original sample of  SO4/ZrO2 to 0.63, 0.80, 0.74 and 
0.75 meq/g for  SO4/ZrO2 after four cycles respectively.

The FT-IR spectra of catalysts calcined at 550 °C, with-
out use and after being used are shown in Fig. 3. The FT-IR 
spectra shown bands of the  SO4 −2 group in the region of 
1200–900 cm−1, with peaks at 999, 1041, 1072, 1142 and 
1235  cm−1, which are in agreement with those reported 
in the literature for sulfated zirconia assigned to asym-
metric and symmetric stretching frequencies of ionized 
S=O double bonds and S–O bonds. An additional broad 
peak at 3408 cm−1 corresponds to the stretching vibrations 
hydroxo- and aquo-OH of hydroxyl groups and adsorbed 
water accompanied by the band at 1628 cm−1. In addition, 
the weak unresolved band between 800 and 520  cm−1 is 
attributed to Zr–O stretching modes.

FT-IR spectra of reused zirconia sample washed and 
dried at 120 °C showed features similar to those observed 
for fresh sulfated zirconia. In addition, very low intensity 
bands at 1456, 2850 and 2927 cm−1 can be assigned to the 
bending/scissoring and stretching vibration of C–H and 
 CH3 groups. The latter were generated, due to traces of 
adsorbed reagent.

3.2  Reaction Studies

3.2.1  Comparison of Homogeneous and Heterogeneous 
Acids as Catalyst in the Acetylation 
of 3-Methylindole

The key stage of this reaction mechanism involves the 
generation of acylium ion intermediate, obtained from the 
acylating reagent in the presence of a catalyst. As can be 
found described in literature, acylation reactions can be 
catalyzed by Brønsted or Lewis acid. On this occasion, 
acetic acid and sulfated zirconia were used as examples of 

homogeneous and heterogeneous catalysts. As shown in 
Table 1 the best results were obtained by the use of sulfated 
zirconia. Two products were formed, generated mainly by 
the substitution at C-2 position (2a) and a lower yield of 
N-acylation product (3a) (Scheme 1).

3.2.2  Effect of Different Amounts of Sulfated Zirconia 
in the Acetylation of 3-Methylindole

The effect of different amounts of sulfated zirconia was 
studied in the acetylation of 3-methylindole in the range 
25–100% (w/w). An increase in the yield of the reaction 
could be observed with the increase of the proportion of 
catalyst employed, obtaining the best results with 100% 
(w/w) of sulfated zirconia (Table 1).

3.2.3  Influence of the Temperature

To study the effect of temperature, the reaction was carried 
out at 82 and 140 °C. The results indicate better results at 
140 °C using 1,1,2,2-tetrachloroethane as a solvent. At this 
temperature the products are formed in a short reaction 
time (0.25  h), greater yields and regioselectivity towards 
formation of product 2a, substituted at the C-2 position 
(Table 1).

3.2.4  Influence of Molar Ratio of 3-Methylindole 
and Acylating reagent

The effect of the molar ratio between 3-methylindole and 
acylating reagent was studied in the range 1:2–1:4. Experi-
ments showed that a ratio of 1:4 can be considered optimal 
to perform this process. As could be observed in Table 1, 
by the use a lower ratio of acylating reagent (1:2) the yields 
are lower with recovery of reagent in some cases.

3.2.5  Acylating Reagent

The reaction of 3-methylindole (1) using other anhydrides 
as acylating reagents were performed in order to study 
the selectivity in relation to the substituent. In this regard, 
reactions using anhydrides with alkyl substituent (R = Me, 
Et and n-propyl) showed limited selectivity with higher 
yields of C-2 acylated products, relative to the N-acylated 
products as shown in Table 2. In contrast, aromatic anhy-
dride (R = Ph) provide a higher selectivity, with very good 
yield of C-2 acylated product (80%), without formation of 
another isomer. The stabilizing effect of the phenyl group 
in the acylium ion generated, combined with a lower steric 
bulk of this group could lead to the better performance.
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3.3  Reusability of Catalyst

Reusability of sulfated zirconia was also studied in the 
reaction to obtain 3a. The catalyst recovered after the 
reaction was employed in new processes. Experiments 
show that the sulfated zirconia can be reused without 
significant loss of activity until three reaction cycles 
(Table 3; Fig. 4).

Table 1  Optimization 
of synthesis of acetyl-3-
methylindole 1 using acetic 
anhydride as acylating reagent

N
H

(CH3CO)2O / catalyst

N
H

+

O

1 2a

N
COCH3

3a

Catalyst w/w (%) Ratio 
substrate/
(CH3CO)2O

Tem-
perature 
(0C)

Time (h) Yield (%) (2a) Yield (%) (3a) Unreacted 
reagent (%) 
(1)

AcOH 100 1:4 82 1 – – 95
3 – – 93
6 – – 91

140 1 – – 91
3 – – 89
6 – 32 28
24 5 43 26

ZS 25 1:4 82 1 40 28 27
50 1:4 82 1 49 25 10

140 0.25 51 46 –
100 1:2 82 1 46 35 –

1:4 1 53 26 –
1:2 140 0.25 51 25 10

1 49 27 9
1:4 140  0.25 60 30 –

1 61 30 –

Table 2  Acylation of 
3-methylindole 1 and acylating 
reagents at 140 °C using sulfated 
zirconia (100% w/w)

N
H

(RCO)2O / catalyst

N
H

+

O

R

1 2 3

N
COR

Entry (RCO)2O Yield (%) (2) Mp (oC) (2) Found/Lit.* Yield (%) (3) Mp (°C) (3) Found/Lit.*

1 (MeCO)2O 60 (2a) 147–148/147–149 [34] 30 (3a) 70–72/66-67 [38]
2 (EtCO)2O 40 (2b) 166–167/161 [35] 39 (3b) 53–54/45 [39]
3 (n-PrCO)2O 60 (2c) 144–146/150–152 [36] 38 (3c) 56–58
4 (PhCO)2O 80 (2d) 140–140.5/138–139 [37] – –

Table 3  Catalyst reusability studied

Reaction cycle Yield (%) (2a) Yield (%) (3a)

1 60 30
2 58 28
3 57 26
4 40 18
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3.3.1  Physical and Spectral Data 
for N-Butyryl-3-methylindole (3c)

Mp: 56-58 °C; 1H NMR  (CDCl3, 500 MHz) δ (ppm): 8.48 
(d, J = 8.2 Hz, 1 H, H-7), 7.53 (ddd, J = 7.7, 1.4, 0.7 Hz, 
1 H, H-4), 7.38 (ddd, J = 8.4, 7.2, 1.4 Hz, 1 H, H-6), 7.32 
(td, J = 7.5, 1.1 Hz, 1 H, H-5), 7.25 (s, 1 H, H-2), 2.88 (t, 
J = 7.4 Hz, 2 H, CH2CO), 2.32 (d, J = 1.4 Hz, 3 H,  CH3), 
1.89 (h, J = 7.4 Hz, 2 H,  CH3CH2CH2), 1.10 (t, J = 7.4 Hz, 
3  H, CH3CH2). 13C NMR  (CDCl3, 126  MHz) δ (ppm): 
171.11(C = O), 135.92 (C-7a), 131.32(C-3a), 125.10 
(C-6), 123.26(C-5), 121.65 (C-2), 118.74(C-4), 118.15 
(C-3), 116.65 (C-7), 37.77(CH2CO), 18.19(CH2CH2), 
13.83(CH3CH2), 9.72(CH3). Anal. Calcd for  C13H15NO: 
C 77.58, H 7.51, N 6.96. Found: C 77.50, H 7.55, N 6.93.

4  Conclusion

In conclusion, an efficient method for the Friedel–Crafts 
acylation of 3-methylindole with acid anhydrides employ-
ing sulfated zirconia as catalyst has been developed. This 
catalyst shows an excellent catalytic activity, with good 
conversion and selectivity towards formation of the 
2-acylation products, (3-methyl-1H-indol-2-yl) ketones. 
Moreover, the catalyst is air stable and easy to handle 
with easy work up. In addition, sulfated zirconia can be 
reused up to three cycles. The characterization of the cat-
alyst performed before and after its use reveals that it did 
not undergo structural changes. Compared with the use 
of acetic acid, a better behavior and a smaller production 
of chemical waste were observed when sulfated zirconia 
was used, which gives it an additional advantage.
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