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(6.4  µmol  mg−1  h−1 at 85 °C) among the inorganic mate-
rials. In contrast, the enzymatic materials are more active 
at lower temperature than the inorganic ones. Particularly, 
ASL catalyzed the homogenous methanolysis with the high-
est specific activity (30.7  µmol  mg−1  h−1 at 40 °C) at the 
lowest temperature among the materials assayed.

Graphical Abstract 

Keywords  Heteropoly compounds · Lipases · Biofuels · 
Esterification · Free fatty acids

1 � Introduction

Biodiesel is defined as the mono alkyl ester of long chain 
fatty acids derived from a renewable lipid feedstock, such 
as vegetable oil or animal fat. This fuel is one of the promis-
ing substitutes for the petroleum derivates fuels due to its 

Abstract  The present contribution screens the specific 
activity of various inorganic and enzymatic based materi-
als in the esterification of oleic acid that is typically used 
as a test reaction for the production of biodiesel from high 
free fatty acid feedstocks. The inorganic materials investi-
gated in this contribution are bulk fosfotungstic heteropoly 
acid of the Wells Dawson structure H6P2W18O62.nH2O 
(HPA), as well as dispersed on titanium dioxide 18 % w/w 
H6P2W18O62/TiO2 and the insoluble cesium salt of the Wells 
Dawson heteropoly anion Cs2H4P2W18O62. Additionally, 
the commercial biocatalyst Novozym® 435 (immobilized 
lipase B of Candida antarctica) and a self-supported lipase 
of vegetable origin obtained from the latex Araujia seric-
ifera (ASL) were studied among the materials of enzymatic 
nature. The density and accessibility of Brønsted acid sites 
have a key role in the specific activity of the fosfotungstic 
based heteropoly compounds. The HPA dispersed over 
an oxide support catalyzed the esterification of the fatty 
acid in a heterogeneous fashion with the highest activity 
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origin obtained from the latex of A. sericifera (ASL) were 
studied among the materials of enzymatic nature. The 
method of extraction of the vegetable lipase was published 
before [14].

Furthermore the inorganic materials comprise the bulk 
fosfotungstic heteropolyacid of the Wells Dawson structure 
H6P2W18O62.nH2O (HPA), as well as dispersed on titanium 
dioxide 18 % w/w H6P2W18O62/TiO2. The synthesis of those 
materials was published before and the details are found in 
the literature [15]. Likewise, the insoluble cesium salt of the 
Wells Dawson heteropoly anion Cs2H4P2W18O62 was also 
prepared and tested in the esterification of the fatty acid. 
In this context, the protons of the heteropoly acid were 
partially substituted with cesium according to the method 
described by Poźniczek et al. [16].

Finally, a mechanical mixture of CsNO3 (0.105  g, 
Aldrich, 99 %) and the HPA (1.300  g) in the proportions 
mimicking the above salt was prepared. The cesium nitrate 
and the heteropoly acid were gently mixed and then cal-
cined at 260 °C for 4 h until the disappearance of the infra-
red signal of the nitrate.

2.2 � Esterification of Oleic Acid and Analytical Method

The esterification of oleic acid was performed in a three-
neck batch reactor equipped with a coolant to reflux, a teflon 
stirrer with speed regulation and a septum for sampling dur-
ing the reaction. The reactor further comprises a glass insert 
in contact with the reaction medium to which a thermometer 
is added and an electric furnace with temperature control.

The experiments were performed by placing 20.00 g of 
oleic acid (Anedra, 61.5 %; density: 0.892  g/ml) into the 
reactor under stirring (110 rpm). The catalyst and methanol 
(Carlo Erba, 99 %) are added to the system after the desired 
temperature is reached. In general, a 1:1 oleic acid:methanol 
molar ratio was used although a higher 1:4 ratio was also 
assayed in the case of the ASL lipase.

A series of blank experiments (similar conditions as 
described above without the addition of catalyst) were also 
performed at all the temperatures investigated. Additional 
experiments were conducted in order to establish the influ-
ence of external mass transfer. The catalytic tests were 
performed at different stirrer rates and also the addition of 
methanol was assayed through bubbling of a stream of air 
saturated with the alcohol.

The conversion of the oleic acid towards the methyl 
ester was followed through the determination of the acidity 
index according to the European normative UNE-EN 14104 
[17]. In this context, a commercial solution of concentrated 
potassium hydroxide in ethanol (KOH in ethanol, 1  M 
Carlo Erba) was used to prepare a 0.1 M solution for titra-
tion of the fatty acid. The diluted solution was subsequently 
assessed against a primary standard such as, potassium 

environmental benefits and also because of the decreasing 
amount of petroleum reserves. Biodiesel is more biodegrad-
able, has lower CO2 and sulfur emissions and almost none 
particulate pollutants, among other benefits compares with 
regular diesel [1–3].

Basic, acidic and enzymatic catalysts are currently inves-
tigated in order to develop new technologies in heteroge-
neous phase for the simplification of the production process 
of biodiesel [4]. In this context, it is well known that het-
eropoly compounds (HPCs) with Keggin structure are suit-
able catalytic materials in esterification [5]. For other hand, 
Matkovic et al. showed that Wells Dawson type has a higher 
number of acid sites and acid strength than the Keggin het-
eropoly acid, which makes it a promising material for the 
production of biodiesel [6].

Immobilized lipases are biocatalysts of growing interest 
in the field of biodiesel production from oil feedstock [7]. 
Novozym® 435 is the commercial biocatalyst used indus-
trially in production of biodiesel [8]. However, Novozym® 
435 is a manufactured biocatalyst consisting in Candida 
antarctica lipase B immobilized in a metacrylate polymeric 
matrix, which makes it expensive for extensive use, and 
could produce harmful by-products when applied in this 
kind of systems by potential degradation of the support. An 
interesting alternative is represented by plant lipases, which 
are relatively easy to obtain [9]. In this sense, some plant 
latex-producing families such as Caricaceae, Euphorbia-
ceae, and Apocynaceae showed lipase activity [10]. From 
these lipases, Carica papaya latex lipase (CPL) has been, by 
far, the most studied in different industrial applications due 
to the abundance of this resource, its easy production and 
versatility [11]. Araujia sericifera (Apocynaceae), a native 
Argentinean milkweed which contains at least three prote-
ases as some of their water-soluble components of its latex, 
showed also lipase activity in the insoluble fraction [12, 13]. 
This lipase (named ASL), was characterized in terms of its 
hydrolytic and esterification activity, demonstrating to be an 
interesting alternative to Novozym® 435 [14].

Online with the worldwide trend of developing new strat-
egies to produce renewable fuels, this contribution presents 
the characterization and catalytic screening of inorganic 
and enzymatic materials as potential catalysts in biodiesel 
production.

2 � Materials and Methods

2.1 � Materials

The materials investigated in the esterification of oleic acid 
possess inorganic and enzymatic nature. The commercial 
biocatalyst Novozym® 435 (batch LC20217 kindly donated 
by Novozymes) and a self-supported lipase of vegetable 
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vs. ~1 m2 g−1 of the bulk HPA) without perturbing the het-
eropoly anion structure. The presence of the characteristic 
Brønsted acid sites of the Wells Dawson heteropoly anion 
based materials such as, bulk and supported HPA, cesium 
salt, and the cesium nitrate-HPA mixture, is evidenced by 
the infrared signal at ~3400 cm−1 (see Fig. 1c). The cesium 
salt was synthesized through the partial substitution of the 
acid sites with the alkaline element in order to obtain an 
insoluble material and somehow tune the acidity of the 
material. Previous investigations demonstrated that the 
replacement of protons of the fosfotungstic heteropolyacid 
with cesium ions diminishes its acidity. The studies of Mata-
chowski et al. demonstrated that the higher the amount of 
cesium in the CsxH3 − xPW12O40 (X = 2, 2.5, 3) Keggin salt 
the lower the acidity [19].

The mixture between cesium nitrate and the HPA was 
synthesized in order to mimic the coprecipitated cesium salt 
described before. The use of this mixture as catalytic mate-
rial will provide evidences of the role of the heteropoly acid 
in the esterification of the fatty acid as will be discussed 
later on.

The Fig. 1b shows the infrared spectra of Novozym® 435 
that is the well known commercial biocatalyst composed by 
the lipase B of C. antarctica (an enzyme of fungal origin) 
dispersed over beads of polymethylmethacrylate. Addition-
ally, the naturally immobilized lipase found in the gums 
of the fruit of the native plant called A. sericifera is also 
shown [14]. In general, the spectra of both materials pos-
sess the characteristic infrared signals of the proteins such 
as the stretching vibration of the NH bond at ~3300 cm−1 
(known as Amide A); the Amide I due to the stretching 
vibration of the C–O bond at 1650 cm−1; the Amide II that 
is the out-of-phase combination of the NH in plane bend 
and the CN stretching vibration at 1543  cm−1 and the 
Amide III signal ascribed to the in-phase combination of 
the NH bending and the CN stretching vibration at 1240 
and 1170 cm−1 (see Fig. 1b, c) [20]. In the particular case 
of Novozym® 435, the intense signal at 1735  cm−1 cor-
responds to the polymeric matrix that supports the lipase 
(PMMA polymethylmethacrylate).

The signals at 1451 and 1379  cm−1 attributed to the 
asymmetric δas(CH3) and symmetric δs(CH3) bending of 
methyl groups respectively, are clearly seen in the infrared 
spectra of the ASL. Additionally, the asymmetrical νas(CH2) 
and symmetric νs(CH2) stretching of the methylene groups 
appears at 2924 and 2854 cm−1, respectively [21].

The investigation reported by Palomino-Schätzlein et 
al. demonstrated the complexity of the composition of the 
crude extract of the plant A. Sericifera. The leaf extract of 
the plant possesses a variety of triterpene esters, free esters, 
free carboxylic acids between others [22]. In this context, 
the signal at 1712 cm−1 of ASL could be ascribed to the car-
bonyl stretching vibration of triterpenoids and the vibration 

hydrogen phthalate (Merck, ≥99.5 %). Additionally, a solu-
tion containing toluene (Anedra, 99.5 %) and ethanol (Carlo 
Erba, 99 %) in a 1:1 v/v was also prepared according to the 
normative mentioned above.

The conversion of oleic acid was measured under initial 
conditions (i.e., low conversion range) in order to determine 
the intrinsic catalytic activity that allows a reliable compari-
son between the materials screened in the present investi-
gation. In this context, the specific activity was calculated 
as the micromols of converted oleic acid per milligram of 
catalysts per time.

3 � Results and Discussion

3.1 � Characterization of the Inorganic and Enzymatic 
Materials Through Infrared Spectroscopy

The esterification of oleic acid with methanol was chosen 
as a reaction test in order to establish the catalytic activity 
of various inorganic and enzyme based materials such as: 
bulk H6P2W18O62.xH2O (HPA) and oxide supported (18 % 
HPA/TiO2) Wells Dawson heteropolyacid; the partially sub-
stituted HPA with cesium Cs2H4P2W18O62, the mechanical 
mixture of CsNO3 and HPA mimicking the coprecipitated 
cesium salt; the commercial biocatalyst Novozym® 435, 
and the self supported lipase of A. sericifera (ASL). The 
Fig. 1a, b, c show the infrared spectra of the materials based 
on the fosfotungstic Wells Dawson heteropolyacid between 
2000 and 400  cm−1 wavenumbers; Novozym® 435 and 
ASL in the same range, and all of them between 3700 and 
2000 cm−1 wavenumbers, respectively.

The fosfotungstic heteropoly acid based materials pos-
sess the characteristic signal at 1088–1090 cm−1 ascribed to 
the stretching vibration of the P–O species of the Wells Daw-
son heteropoly anion [18]. The signals at 1600–1662 cm−1 
and the broad one centered at about 3400 cm−1 correspond 
to the bending modes δ(O–H) of water and the stretching 
of the O–H species, respectively (see Fig. 1a, c). Addition-
ally, the signals at 961, 909 and 775 cm−1 (not observed in 
the oxide supported HPA due to the strong absorption of 
titanium dioxide) are assigned to the vibration of the W–O 
species that compose the cage surrounding the central P–O 
species (see Fig. 1a).

It is worth noticing that the oxide supported heteropoly 
acid was synthesized at the theoretical dispersion limit 
loading of tungsten atoms per nm2 of titanium dioxide that 
corresponds to 11 atoms per nm2 or 18 wt %. However, pre-
vious studies of some of us demonstrated that such percent-
age exceeds the monolayer coverage providing crystals of 
HPA over the TiO2 [15]. Particularly, the dispersion over 
the oxide support provided a higher surface area than the 
non-supported materials (49.9 m2 g−1 of the supported HPA 
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of the aromatic C=C stretching might be overlapping the 
signal of the Amide I that is centered at 1640 cm−1 [23, 24]. 
Additionally, the signal at 1732 cm−1 is characteristic of the 
absorption of C=O of either α, β unsaturated or benzoate 
esters.

3.2 � Exploring the Catalytic Activity of Inorganic and 
Enzymatic Based Materials in the Esterification of 
Oleic Acid

The progress of the esterification of oleic acid with methanol 
was followed through the acidity index and infrared spec-
troscopy of the reaction medium as described in the experi-
mental section. The infrared analysis has been described in 
the literature as a reliable methodology for the identification 
of FAME (biodiesel) and quality determination [25].

The Fig. 2 shows the infrared spectra of oleic acid before 
and after being in contact with methanol in a 1:1 molar ratio 
at 85 °C for 24 h. Additional blank experiments were assayed 
at 40 and 65 °C with a 1:4 and 1:1 oleic acid:methanol molar 
ratio, respectively. The results were similar to the ones 
obtained at 85 °C therefore are not presented for brevity. 
Additionally, the figure shows the infrared spectra of the 
reaction media obtained after the esterification of the oleic 
acid with bulk HPA (200.0  mg, 1:1 oleic acid:methanol 
molar ratio, 85 °C), 18 % HPA/TiO2 (200.0  mg, 1:1 oleic 
acid:methanol molar ratio, 85 °C), Cs salt (200  mg, 1:1 
oleic acid:methanol molar ratio, 85 °C), the mechanical 
mixture between cesium nitrate and the HPA (200 mg, 1:1 
oleic acid:methanol molar ratio, 85 °C), Novozym® 435 
(200  mg, 1:1 oleic acid:methanol molar ratio, 65 °C) and 
ASL (60.0 mg, 1:4 oleic acid:methanol molar ratio, 40 °C) 
for 24 h. The conditions presented between brackets are the 
mass of catalytic material, the molar ratio between oleic 
acid and methanol and the temperatures, that are the opti-
mum ones for the reaction to proceed.

The infrared spectra of the oleic acid before and after 
being heated at 85 °C show the stretching vibration of the 
carbonyl C=O group at 1712  cm−1. The position of this 
vibration is characteristic of dimeric species that are typically 

Fig. 1  a Infrared spectra of bulk fosfotungstic heteropoly acid 
H6P2W18O62.xH2O (HPA); 18 % HPA/TiO2 (HPA/TiO2); Wells 
Dawson cesium salt Cs2H4P2W18O62 (WDCs) and the CsNO3-HPA 
mechanical mixture (mech.mix.), in the range within 2000–400 cm−1 
wavenumbers. b Infrared spectra of the commercial biocatalyst 
Novozym® 435 and the self supported lipase ASL in the range within 
2000–400 cm−1 wavenumbers. c Infrared spectra of bulk fosfotung-
stic heteropoly acid H6P2W18O62.xH2O (HPA), 18 % HPA/TiO2 
(HPA/TiO2); Cs2H4P2W18O62 (WDCs); the CsNO3 and HPA mechani-
cal mixture (mech.mix.), the commercial biocatalyst Novozym® 435 
and the self supported lipase ASL within the 3700–2000 cm−1 range

 
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The Table 1 shows the catalytic performance of the mate-
rials expressed as micromoles of converted oleic acid per 
milligram of material per time (h) of reaction as a func-
tion of the temperature; mass of material and molar ratio 
of substrates (oleic acid:methanol). The inorganic materials 
catalyze the esterification of oleic acid at 85 °C at stoichio-
metric molar ratio of the substrates (no activity was detected 
below that temperature). The specific activity of bulk HPA 
and 18 % HPA/TiO2 were 1.10 and 6.40  μmol  mg−1  h−1, 
respectively. The higher activity of the oxide supported than 
the bulk HPA is clearly associated to the higher density of 
accessible acid sites of the dispersed heteropoly anion vs the 
bulk one. Previous investigations indicated that the number 
of active acid sites of the Wells Dawson heteropolyacid sup-
ported over titanium dioxide is 3.1 µmol m−2 [6]. In con-
trast, the accessible acid sites of bulk H6P2W18O62.xH2O is 
directly related with the degree of hydration of the mate-
rial due to the pseudo-liquid phase of the heteropolyanion. 
In fact, at 70 °C (close to the temperature of the esterifica-
tion of the oleic acid) the density of active sites of the HPA 
is 2.3 µmol m−2 [29]. Moreover, the partial dissolution of 
the bulk HPA and the catalysis in the homogeneous fashion 
can not be ruled out since the heteropolyacid is soluble in 
alcohols.

The observation that the mechanical mixture was cata-
lytically active (1.66 μmol mg−1 h−1) in contrast with the 
coprecipitated cesium salt Cs2H4P2W18O62 provide more 
evidences the role of the acid sites in the esterification.

The esterification of the fatty acid with 18 % HPA/TiO2 
was carried under heterogeneous conditions as was verified 
by the absence of further reaction of the supernatant solu-
tion after separation of the catalyst and addition of metha-
nol in excess. Interestingly, the heterogeneous esterification 
of the fatty acid was carried with low amount of methanol 
(1:1 oil:methanol molar ratio). This is somehow interesting 

formed due to hydrogen bonding of carboxylic acids at high 
concentrations. The intensity of this signal diminishes under 
reaction conditions while a new one at 1744 cm−1 appears. 
This last one is ascribed to the stretching vibration of the 
carbonyl group within the ester. More evidences of the pres-
ence of methyl oleate are found in the signals located at 
1439 cm−1 due to of the asymmetric stretching of the methyl 
group in methyl ester, 1170 and 1196 cm−1 ascribed to the 
stretching of the O–CH3 vibration [26–28]. It is worth notic-
ing that the infrared spectrum of the Wells Dawson cesium 
salt does not show the characteristic signals of the methyl 
oleate described above. This observation coincides with the 
fact that is not catalytically active.

Table 1  Catalytic materials, molar ratio of oleic acid OA and methanol, mass of material, temperatures, specific activity and conversion (X %) of 
the fatty acid to methyl oleate

material OA:methanol 
molar ratio

mass (mg) Specific activity at indicated temperature (conversion %) 
(µmol mg-1 h-1)

40 °C 65 °C 85 °C

H6P2W18O6.xH2O 1:1 201.3 – No reaction 1.1 (8.5 %)
18 % HPA/TiO2 1:1 200.0 – – 6.4a (8.9 %)
Cs2H4P2W18O6 1:1 200.0 – – No reaction
Mechanical mixture 1:1 199.0 – – 1.66 (12.8 %)
Novozym® 435 1:1 202.0 – 8.0 (55.7 %) –
ASL 1:1 10.0 No reaction – –

1:4 10.7 60.7 (16.1 %) – –
1:4 31.4 30.7 (22.5 %) – –
1:4 61.6 14.2 (21.9 %) – –

aThe specific activity was expressed per amount of dispersed heteropolyacid over TiO2 that corresponds to 36 mg of HPA for 200 mg of material
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Fig. 2  Infrared spectra of pure oleic acid before and after being heated 
at 85 °C with methanol (blank experiment called spectra a); bulk  
fosfotungstic heteropoly acid H6P2W18O62.xH2O (spectrum b), 19 % 
HPA/TiO2 (spectrum c); Cs2H4P2W18O62 (spectrum d); the CsNO3 and 
HPA mechanical mixture (spectrum e); the self supported lipase ASL 
(spectrum f) and the commercial biocatalyst Novozym® 435 (spectrum g)
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equal to 4.3 µmol mg−1 h−1. This value again is significantly 
lower than the activity of the ASL (60.7  µmol  mg−1  h−1) 
investigated in this contribution.

Actually, the new technology for the production of bio-
diesel through an enzymatic process uses a liquid enzyme 
(Eversa® Transform commercialized by Novozymes) at 
35 °C, 0.3 wt % loading of enzyme per batch (compared 
with the 0.04 wt % of the ASL used in the present investi-
gation) and a methanol:total fatty acid molar ratio of 1:1.5 
[36]. A direct comparison of the catalytic activity is difficult 
since to the knowledge of the authors, there is not open lit-
erature about that novel biocatalyst.

4 � Conclusions

The similarity between the catalytic performance of the 
Keggin and Wells Dawson HPAs and the observation that 
the partially substituted cesium salt proved no activity (the 
acid sites are partially replaced by a non acid counter-cation) 
are evidences of the key role of the Brønsted acid sites in the 
esterification of the fatty acid. The higher specific activity of 
the supported than the bulk Wells Dawson HPA also allows 
concluding that the reaction is controlled by the density of 
available surface acid sites instead of the well known pseu-
doliquid behavior of the HPA.

The self-supported ASL lipase (extracted from a native 
plant) was more active at a significantly lower tempera-
ture of reaction than the immobilized lipase Novozym® 
435 (60.7 µmol mg−1 h−1 at 40 °C vs. 8.0 µmol mg−1 h−1 
at 65 °C). Actually, the excess of alcohol required for the 
beginning of the reaction (1:4 oil:methanol molar ratio) 
caused the dissolution of the lipase that in fact, worked in a 
homogeneous medium. The comparison with reported val-
ues about the catalytic activity of the free lipase B of C. ant-
arctica under similar reaction conditions indicates that the 
vegetable lipase is an order of magnitude more active than 
the fungal one. There is no doubt that the ASL is a promis-
ing biocatalyst in the esterification of free fatty acid and in 
turn, in the production of biodiesel.
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