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Abstract The placement of source points constitutes a key
issue for the method of the fundamental solutions. In
particular, for problems with singularities of any kind the
determination of the optimal placement of source points
becomes relevant, as no linear combination of arbitrarily
located source points can guarantee a reasonable approx-
imation to the solution. This paper investigates the use of a
‘‘Simulated Annealing’’ algorithm in the optimal placement
of source points in singular problems. The algorithm is
essentially an iterative random search with adaptive moves
along the coordinate directions. It permits uphill moves
under the control of a probabilistic criterion, thus tending
to avoid the first local minima encountered. The proposed
methodology is employed with a variety of test problems.
Results are compared to those of an analytical optimisation
routine and their relatively merits and disadvantages dis-
cussed. Simulated annealing is shown to be an attractive
option for the optimisation of singular problems, with a
high rate of success, and able to solve problems for which
analytical optimisation routines fail.

1
Introduction
The method of fundamental solutions (MFS) is attributed
to Kupradze in a paper published in Russian in 1964. The
method has recently reappeared in the literature and
solutions of an extraordinary accuracy have been reported
using relatively few data points. The MFS has found
extensive application in computing solutions to a broad

range of problems such as potential problems, acoustics,
elastostatics and biharmonic problems (Fairweather and
Karageorghis, 1998).

The MFS can be viewed as either an indirect boundary
element method or a modified Trefftz method. The basic
idea is to approximate the solution by a linear combina-
tion of fundamental solutions with sources located outside
the problem domain (Fairweather and Karageorghis, 1998;
Bogomolny, 1985; Kita and Kamiya, 1995). The coefficients
of the linear combination are determined so that the
approximate solution satisfies the problem boundary
conditions as accurately as possible. Advantages of the
method are its relatively easy implementation and its
adaptivity since it can easily incorporate difficult
boundary conditions.

In the MFS, the locations of the sources are either
preassigned or determined along with the coefficients of
the linear combination. Simpler MFS approaches involve
fixed (preassigned) singularities with the solution being
determined by linear least squares or by collocating
boundary conditions at boundary points. Most papers in
the engineering literature use the version of the MFS with
fixed sources but this not always guarantees that, the
computed solution converges to the exact solution as the
number of source points increases. This is the case of
problems with singularities of any kind, as no linear
combination can assure a reasonable approximation to the
solution since the computed solution will be analytic
everywhere except at the sources.

The MFS with moving sources has been considered by
several authors (Fairweather and Karageorghis, 1998).
Most of the approaches use nonlinear analytical optimi-
sation algorithms to determine the position of the sources.
It has been reported that the initial placement of the
sources is extremely important in the convergence of these
algorithms, as they converge to the first local minima
encountered.

In the present work the use of a simulated annealing
(SA) algorithm is investigated for optimising the place-
ment of source points for potential problems possessing
singular behaviours. SA is based essentially on iterative
random search with adaptive moves in such a way that
transitions out of local minima are possible. It does not
ensure the finding of a global minimum, but it is able to
discriminate between ‘‘gross behaviour’’ of the function
and finer ‘‘wrinkles’’. Results are presented for a number
of test problems and compared to those of analytical
optimisation routines. Its relative merits and
disadvantages are discussed.
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2
The MFS formulation for Laplace’s equation with mixed
boundary conditions
Consider a two-dimensional potential problem in a
bounded region. The governing equation and the bound-
ary conditions are given by

r2u ¼ 0 in X ð1Þ
and

ui ¼ �uui on C1

ou

on
¼ �qq on C2 ð2Þ

where r2 denotes the Laplace operator; u and q are the
potential and its derivative in the normal direction (flux),
respectively; X, C1 and C2 denote the object domain, its
potential- and flux-specified boundaries, respectively; n
denotes the unit outward normal vector on the boundary
and (�) the prescribed value on the boundary.

In the MFS, N sources, the coordinates of which are to
be optimised, are placed outside the domain X, and M
fixed points are chosen along the boundary C for collo-
cation. Let Qj ¼ qjx; qjy

� �
denote the position of source j,

and Pj ¼ pjx; pjy

� �
be the position of the boundary collo-

cation point i. Then, the solution at an arbitrary boundary
point P is represented by the linear combination of the
singular fundamental solutions u� to Eq. (1) as follows:

uðPiÞ ffi ~uuða; Pi;QÞ ¼ a1u�ðPi;Q1Þ þ a2u�ðPi;Q2Þ þ � � �
þ aku�ðPi;QkÞ þ � � � þ aNu�ðPi;QNÞ

¼ aTu�ðPi;QÞ ð3Þ
where a ¼ a1; a2; . . . ; ak; . . . ; aNf gT denotes the vector of
the coefficients of the linear combination.

The fundamental solution of the two-dimensional
Laplace problem in a bounded domain, u�, is given by

u� P;Qð Þ ¼ 1

2p
log

1

rðP;QÞ

� �
ð4Þ

where r(P, Q) is the distance between the points P and Q.
Differentiating Eq. (3) in the normal direction, the

approximate solution for the flux is obtained

qðPiÞ ffi ~qqða; Pi;QÞ ¼ o~uuða; Pi;QÞ
on

¼ aTq�ðPi;QÞ ð5Þ

Following Karageorghis and Fairweather (1987) the coef-
ficients aj and the locations of the sources Q are chosen so
that the boundary conditions are satisfied in a least-square
sense, namely by minimizing the functional

Fða;QÞ ¼
XM1

i¼1

�uui � uj j2
XM1þM2

i¼M1þ1

�qqi � qj j2 ð6Þ

where M1 and M2 are the numbers of the boundary
collocation points placed on C1 and C2, respectively.

3
Optimal placement of source points
The determination of the optimal choice of collocation
points and sources has been addressed by several authors

in the case of the Dirichlet problem for the Laplace’s
equation in the plane with analytic boundary data. Bo-
gomoly (1985) showed that for this kind of problems, if
sources are chosen on a surface more or less equidistant to
the boundary C, the greater the distance from the sources
to C the better the approximation is to be expected. This
conclusion contradicts the fact that the conditioning of the
corresponding discrete problem deteriorates as the dis-
tance between the sources and the boundary C increases.
However, it is observed that this often does not affect the
quality of the numerical solution, although the resulting
system can be highly ill-conditioned.

There is unfortunately no guarantee that the computed
solution will always converge in the case of problems with
singularities of any kind. Suppose for example we wish to
solve Laplace’s equation in a circular domain, subject to
the Dirichlet boundary condition

u Pð Þ ¼ log
1

R0
ð7Þ

where R0 is the distance from P on the boundary to a point
X0 as shown in Fig. 1, and let us suppose that sources are
distributed around the contour C0. Accordingly, the exact
solution of the problem is u Pð Þ ¼ logð1=R0Þ throughout
the domain. It is easy to see that it is impossible to obtain
by any linear combination of sources on C0 a function that
is infinite at X0, whatever large the number of sources.
Convergence could be achieved if C0 were taken closer to C
than X0, or if a source were placed at X0, but for practical
problems the location of singularities in the approxima-
tion to the solution are not known in advance.

In the MFS with moving sources not only the coeffi-
cients of the linear combination but also the best locations
of the sources are determined through the minimization of
the cost function (6). This leads to a nonlinear least
squares problem that is solved using available software.
Early applications made use of the Harwell subroutine
VA07AD (Hopper, 1973) which incorporates features from
the Newton–Raphson, steepest descent and Marquart
methods. In Karageorghis and Fairweather (1987), the
MINPACK (Gargow et al., 1980) routine LMDIF, which is a

Fig. 1. Boundary value problem for Laplace’s equation in circular
domain with a singularity near the boundary
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modified version of the Levenberg–Marquardt algorithm,
is found to be more efficient than VA07AD. The perfor-
mance of the routines LMDIF and LMDER from MIN-
PACK and the routine E04UPF from NAG was investigated
by Poullikkas et al. (1998). The routine LMDER is identical
to LMDIF with the exception that the user has to provide
the Jacobian. As expected E04UPF leads to substantial
savings in both storage and cost. The routine E04UPF uses
a sequential quadratic programming, and offers a variety
of features, for example the use of constrained optimisa-
tion which can be extremely useful for certain MFS
applications.

The initial placement of the source points can be
extremely important in the convergence of the algorithms
quoted above as pointed out by Fairweather and
Karageorghis (1998). If the cost function has ridges and
plateaus these algorithms stop at the first minimum
encountered, and cannot be used easily for finding the
global one.

4
Simulated annealing algorithm
Simulated annealing’s roots are in thermodynamics, where
one studies a system’s thermal energy. A description of the
cooling of molten metal motivates this algorithm. After
slow cooling (annealing), the metal arrives at a low energy
state. Inherent random fluctuations in energy allow the
annealing system to escape local energy minima to achieve
a global minimum. But if cooled very quickly (or ‘quen-
ched’), it might not escape local energy minima and when
fully cooled it may contain more energy than annealed
metal. SA attempts to minimize some analogue of energy –
in a manner similar to annealing – to find the global
minimum. As reported by Goffe et al. (1994), SA has been
used successfully in computer and circuit design, pollution
control, neural networks, reconstruction of polycrystalline
structures, image processing and econometrics. The
routine employed in this work is due to Goffe et al. (1994)
and it is available from Netlib. The routine is an extension
of the continuous SA global optimisation algorithm
described in Corana et al. (1987).

The essential starting parameters to minimize the cost
function f(X) are T0, the initial ‘‘temperature’’; X, the
starting vector of parameters; and V, the step length of X.
It is worth to note that the value of the ‘‘temperature’’ T0

has no physical meaning, and that this denomination
follows from the analogy of the SA algorithm with the
cooling process in which it is inspired. Note that X and V
are both vectors of length n, the number of parameters of
the model. A function evaluation is made at the starting
point X and its value f is recorded. Next, a new X;X0, is
chosen by varying element j of X,

x0
j ¼ xj þ w � vj ð8Þ

where w is a uniformly distributed random number from
[)1, 1] and vj is the element j of V. The function value f 0 is
computed. If f 0 is lower than f, X0 is accepted, X is set to X0,
and the algorithm moves downhill. If f 0 is lower than f, it
and X are recorded since this is the best current value of
the optimum.

If f 0 is greater than or equal to f, the Metropolis crite-
rion decides on acceptance (thermodynamics motivates
this criterion). The value

p ¼ eðf
0�f Þ=T ð9Þ

is computed and compared to p0, a uniformly distributed
number from [0, 1]. If p is greater than p0, the new point is
accepted, X is updated with X0, and the algorithm moves
uphill. Otherwise, X0 is rejected. Two factors decrease the
probability of an uphill move: lower temperatures and
larger differences in the function’s value. Also, note that
the decision on uphill moves contains a random element.

After NS cycles through all elements of X (all such ‘N’
parameters are set by the user), the step length V is ad-
justed so that 50% of all moves are accepted. The goal here
is to sample the function widely. If a greater percentage of
points is accepted for xj, then the relevant element of V is
enlarged. For a given temperature, this increases the
number of rejections and decreases the percentage of ac-
ceptances. After NT iterations through the above loops, the
temperature, T, is reduced. The new temperature is given
by

T0 ¼ sT � T ð10Þ
where sT is between [0, 1]. A lower temperature makes a
given uphill move less likely, so that the number of
rejections increases and the step lengths decrease. In
addition, the first point tried at the new temperature is the
current optimum. The small the steps and starting at the
current optimum focuses attention on the most promising
area.

The algorithm ends by comparing the last Ne values of
the smallest function values from the end of each
temperature reduction with the most recent one and the
optimum function value. If all these differences are less
than a prescribed e, the algorithm terminates. This
criterion helps ensure that the global minimum is
reached.

5
Implementation
When applying the SA algorithm described above in the
optimisation of the source point locations in two-
dimensional MFS problems, the vector of parameters, X, is
given by the n ¼ 2N coordinates of the sources, Qj. At the
same time expression (6) constitutes the cost function
f(X), which in order to make it independent of the number
of boundary collocation points, M, can be rewritten as

f ða;XÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM1

i¼1 j�uui � uj2 þ
PM1þM2

i¼M1þ1 j�qqi � qj2
q

M
ð11Þ

where the vector of coefficients a is computed for a given X
through the solution of the system of linear equations
resulting after collocation of Eq. (3) on the M1 boundary
points on C1, and Eq. (5) on the M2 boundary points on
C2. Note that usually, this will result in systems of equa-
tions for which the number of rows is not equal to the
number of columns. For the solution of these systems, a
singular value decomposition algorithm is employed
(Press et al., 1992).
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With the exception of the initial temperature, T0, the
temperature reduction parameter, sT, and the number of
iterations, NT, all other parameters were set as suggested
by Corana et al. (1987). Thus, the number of cycles
NS ¼ 20, and the number of final function values used for
termination Ne ¼ 4. On the other hand, values suggested
by Corana et al. (1987) for NT ¼ max(100, 5N), and
sT ¼ 0.85 were found to be too conservative according to
Goffe et al. (1994), and so were left open to experimenta-
tion in the examples.

The selection of the initial temperature, T0, is an
important consideration. If the initial temperature is too
low, the step length, V, will be too small and the area
containing the optimum may be missed. If too high, then
the step length is too large and an excessively large area is
searched. The methodology suggested by Goffe et al.
(1994) was employed to find T0. This makes use of a
preliminary program run in which the temperature is set
to very high value (say 107) and the temperature reduction
parameter, sT ¼ 0.1. Rather than finding the minimum, the
goal is to quickly find the temperature at which the step
length vector adjusts to the search area.

6
Examples
The previous sections demonstrated that SA has promise
for optimising the placement of sources in the MFS. To see
if this promise holds, SA is employed in this section for
optimising the placement of source points for several
problems possessing singularities, and results compared to
those obtained using the subroutine LMDIF.

LMDIF terminates when either a user-specified toler-
ance is achieved or the algorithm estimates that the rela-
tive error between X and the solution is at most the value
of the given tolerance. Additionally LMDIF terminates
when a user-specified maximum number of iterations is
reached. This number was set to (200N + 1). The tendency
of the sources to move to the interior of the domain X is
overcome as in Karageorghis and Fairweather (1987) by an
internal check of the position of the sources during the
iterative process. If a source is found inside X, it is
repositioned at the exterior of the domain.

6.1
Laplace’s equation in a circular domain with singularities
near the boundary
The first example considered consists in the Dirichlet
problem of Laplace’s equation in a circular domain already
introduced in Sect. 3 (see Fig. 1). The radius of the domain
was R ¼ 1, and 18 collocation points were placed on its
boundary (M ¼ 18). In the first case, a singularity was

placed at (2, 0), and the position of just one source
(N ¼ 1) was optimised using the SA algorithm. The initial
temperature was T0 ¼ 0.1, with the temperature reduction
parameter, sT ¼ 0.1. The number of iterations, NT ¼ 1, 5
and 10 were explored. Initial placement of the source point
was randomly selected on a 20 · 20 square area centred
around the model domain.The termination tolerance was
arbitrarily chosen e ¼ 10)6.

Table 1 shows the results using the SA algorithm
together with those obtained by LMDIF. For all cases,
results correspond to the average value after ten runs. As
can be seen both routines had a hundred per cent success
in placing the source point coincident with the position of
the singularity. However LMDIF, did it at a fraction of the
computer cost of the SA algorithm.

A more challenging problem is considered next, in
which two singularities were placed at ()2, 0) and (2, 0).
Accordingly, the positions of two source points were op-
timised. Table 2 shows the results obtained using various
combinations of sT and NT values. The percentage of
success was higher than 80% for the values explored. A
100% success was achieved for all sT values after increasing
NT. In contrast, LMDIF had only an 8% success. (Note that
LMDIF results correspond in this case to the average of
100 runs).

6.2
Stationary heat conduction problem in a hollow cylinder
This example consists in the stationary heat conduction
problem for a hollow cylinder with constant fixed tem-
peratures u1 and u2 for the interior and exterior walls re-
spectively (see Fig. 2a). Symmetry conditions allow only
one quarter of the problem to be considered by imposing
appropriate boundary conditions. These are given in
Fig. 2b, together with the locations of the 17 boundary
collocation points employed (double collocation points
were placed at corners). The exact solution of the problem
is given by

Table 1. Results for Laplace’s equation in circular domain with
one singularity near the boundary

NT sT = 0.10

Success FCN eval

1 10/10 633
5 10/10 1961

10 10/10 3921

LMDIF Success: 10/10 FCN evaluations: 38

Table 2. Results for Laplace’s
equation in circular domain
with two singularities near the
boundary

NT sT = 0.10 sT = 0.25 sT = 0.50

Success FCN eval Success FCN eval Success FCN eval

1 9/10 1876 9/10 2045 8/10 2301
5 8/10 3951 9/10 5001 10/10 9121

10 10/10 8001 10/10 10961 10/10 18081

LMDIF Success: 8/100 Average number of function evaluations: 50
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u ¼ u1 �
lnðr=R1Þ

lnðR2=R1Þ
u1 � u2ð Þ ð12Þ

which consists of a constant and singular term, the last one
of the form logð1=rÞ.

Numerical results are given in Table 3 using source
point numbers N ¼ 4 and 8, for different combinations of
sT and NT values. As in the previous example the search
area for the source positions was adopted as a 20 · 20
square area, with their initial placements randomly se-
lected. Ten runs were performed in each case. Termination
tolerance was set to e ¼ 10)6 and initial temperature
T0 ¼ 0.5. Successful runs were considered as those for
which residuals on the boundary conditions (as given in
Eq. 11) resulted lower than 10)5. Percentage of success was
at least of 70%, and with the exception of the case
sT ¼ 0.50, no much difference can be observed between the
results obtained with 4 and 8 source points.

Source points for LMDIF were uniformly distributed
around the domain, on circular surfaces centred at the
centroid (see Fig. 2b). For the case N ¼ 4, two angular
arrays were addressed. They are indicated with hollow
circles (�) and squares (() in Fig. 2b. Forty runs were
performed for both N ¼ 4 and 8, in which sources were
initially placed on circumferences with normalized radius
ranging 0.74 < R/R1 < 2.1. As shown in Table 3, a strong
dependency in the performance of LMDIF with the initial

placement of source points was encountered for N ¼ 4.
For the case given by the (() only one of the 40 runs was
successful (R/R1 ¼ 1.06), while 34 of 40 runs ended suc-
cessfully with the initial disposition as indicated by (�).
The ratio of success with N ¼ 8 was 50%.

It is worth noting that for all cases successful runs were
found to be able to place one of the sources at the centre of
the cylinder, a position coincident with the singularity in
the exact solution (see Eq. (12)).

6.3
Torsion problem in a circular sector
The torsion problem of the circular sector given by
X ¼ fðx � 1Þ2 þ y2 < 1gnfx2 þ y2 < 1g (see Fig. 3) is
analysed in this example. Under the Saint Venant’s model
the stress function u is governed by

r2u ¼ 4 ð13Þ
with the Dirichlet boundary condition u ¼ 0 along the
boundary C. The exact solution

u ¼ bðx � 1Þ2 þ y2 � 1cðx2 þ y2 � 1Þ
x2 þ y2

ð14Þ

has a strong singularity of the form 1/r at (0, 0).
When solving the Poisson equation given in (13) using

the MFS, the formulation given in Sect. 2 needs to be

Fig. 2. Stationary heat conduction prob-
lem in a hollow cylinder: a problem
geometry, b model details

Table 3. Results for the sta-
tionary heat conduction pro-
blem in a hollow cylinder

N NT sT = 0.10 sT = 0.25 sT = 0.50

Success FCN eval Success FCN eval Success FCN eval

4 5 7/10 12230 8/10 12801 8/10 21601
10 9/10 18312 10/10 27841 9/10 41423

8 5 7/10 16641 9/10 22757 10/10 39041
10 10/10 32961 10/10 47041 10/10 79041

LMDIF N = 4 (() Success: 1/40 Number of function evaluations: 1020
(ss) Success: 34/40 Number of function evaluations: 269

N = 8 Success: 20/40 Number of function evaluations: 722
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changed in order to handle the inhomogeneous term. This
can be simply done by using the method of the particular
solution. If a particular solution up is available such that

r2up ¼ 4 ; ð15Þ
the field u can be written as

u ¼ ûu þ up ð16Þ
where û satisfies Eq. (1) with boundary conditions given
by

ûuðPiÞ ¼ �uuðPiÞ � upðPiÞ : ð17Þ
In this way, the problem given by Eq. (13) was solved for û
by using the procedures outlined in the previous sections,
and considering the particular solution up ¼ x2 þ y2.

Table 4 shows the obtained results using 34 boundary
collocation points and T0 ¼ 0.5. Each result corresponds
to the average of 10 model runs. In this case an important
improvement in accuracy results from the increase of the
number of sources from 4 to 8. At the same time, and as
was observed in the other examples, increments in NT

show to have a more marked influence on the results than
increments in the value of sT. Figure 4 illustrates a typical
distribution of sources after optimisation. Note that more
than one source end up very close to the position of the
singularity.

On the other hand, results obtained using LMDIF were
very poor. Reported results correspond to the best
obtained from 40 model runs, for which following the
previous example source points were initially

distributed around the domain, on circular surfaces
centred at (1, 0).

6.4
The Motz problem
The previous examples were devoted to solve problems
with singularities outside their boundaries. Solutions for
these problems were found though the optimisation of the
source point positions. Note that for problems exhibiting
boundary singularities the referred solution scheme is not
applicable, as the optimum solution would involve the
placement of the source points on the boundary, what it is
not compatible with the MFS formulation. Hence, to tackle
these problems a new MFS is introduced which incorpo-
rates the coefficient and strength of the singularity as
unknowns.

This last example examines the ability of the SA algo-
rithm to solve the so-called Motz problem (see Fig. 5)
which has a singularity at the point O where the boundary
conditions suddenly changes from u ¼ 0.5 to ou=on ¼ 0.
This is considered as a benchmark problem for testing
various singular numerical methods.

The solution in the neighbourhood of the singularity is
of the form

u ¼
X1
j¼1

ajr
ð2j�1=2Þ cos½ð2j � 1

2
Þh� : ð18Þ

In this example a modified version of the MFS due to
Karageorghis (1992), is employed in which the unknowns
are not restricted only to the coefficients of the approxi-
mation but also the form of the singularity. In it, the so-
lution u consists of two components: the first component
approximates the ‘singular’ part of the solution, us, and the
second one approximates its ‘regular’ part, ur. As in the
standard MFS ur is approximated by a set of fundamental
solutions, while us includes only the first singular term
with angular dependence of the singularity determined by
the unknown parameter b. Then, from Eqs. (3) and (18)
results

uðPiÞ ¼ ur þ us ¼
Xn

j¼1

aju
�ðPi;QjÞ þ a � rb cosðbhÞ

ð19Þ
The problem was solved for two different number of
sources (N ¼ 4 and 8) and collocation points (M ¼ 17, 41

Fig. 3. Torsion problem in a circular sector

Table 4. Results for the tor-
sion problem in a circular
sector

N NT sT = 0.10 sT = 0.25 sT = 0.50

Residual FCN eval Residual FCN eval Residual FCN eval

4 1 0.57Æ10)3 11203 0.71Æ10)3 8177 0.56Æ10)4 5761
5 0.26Æ10)4 12081 0.37Æ10)4 16241 0.11Æ10)4 21440

10 0.32Æ10)4 19841 0.25Æ10)4 28641 0.21Æ10)4 41281
8 1 0.13Æ10)5 5548 0.12Æ10)5 5441 0.42Æ10)6 7894

5 0.22Æ10)6 17441 0.16Æ10)6 23681 0.11Æ10)6 39521
10 0.15Æ10)6 34561 0.43Æ10)7 47361 0.53Æ10)7 79361

LMDIF (Best results)
N = 4 Residual 0.11Æ10)1 Number of function evaluations: 37
N = 8 Residual 0.15Æ10)2 Number of function evaluations: 2376
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and 65), with the sources initially placed at random in a
100 · 100 square around the model domain. The param-
eter b was incorporated into the optimisation process
within the range [)10, 10]. The parameters for the SA
algorithm were chosen as T0 ¼ 0.001, sT ¼ 0.5, NT ¼ 5. In
Table 5, comparison is made between the computed and
the exact values of a and b. Each of the computed values
correspond to an average of 20 runs. Karageorghis and
Fairweather (1987) studied this problem using LMDIF
obtaining very similar results at almost the same com-
puting cost. However, for LMDIF convergence was
achieved only for restricted initial positions of the sources.

An interesting fact of the SA algorithm when applied to
the Motz problem is that the angular dependency b as well
as the coefficient of the singularity a are determined early
during the optimisation process (see Fig. 6). This suggests
that for the sake of reducing computing time, stopping
criteria can be relaxed for analyses focused on the deter-
mination of a and b only.

7
Conclusions
The application of a SA algorithm was investigated in this
work to optimise the position of source points in the
solution of singular problems with the MFS. SA algorithm
resulted easy to integrate into the point collocation MFS
formulation, and it was applied to the solution of well-
known singular problems for both Laplace’s and Poisson’s
equations.

The proposed methodology demonstrated a high rate of
success, being able to solve problems for which analytical
optimisation routines fail. Very good results were obtained
using a small number of sources and relatively low tem-
perature reduction parameters (sT ¼ 0.1). At the same
time the number of iterations per cycle (NT) showed to
have in most cases a marked influence on the results.

SA was also employed with a modified version of the
MFS, in which the optimisation parameters are not
restricted only to position of the sources but also the form
of the singularity. In addition to the very good results for
the complete solution of the problem, SA showed an
excellent performance in capturing the singularity
exponent very early during the optimisation process. This
is found as a powerful feature to explore when it is

Fig. 4. Typical distribution of the sources
after optimisation

Table 5. Calculated values of a and b for the Motz problem; the
exact values are 0.5 and 0.1516 respectively

M = 17 M = 41 M = 65

N = 4 N = 8 N = 4 N = 8 N = 4 N = 8

a 0.452 0.461 0.471 0.487 0.472 0.490
b 0.1443 0.1452 0.1480 0.1523 0.1492 0.1609
FCN eval 26659 43490 28790 48734 33206 52611

Fig. 5. Geometry and boundary conditions for the Motz problem
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intended to study the behaviour of problems for which
singularities are not known a priori.

The sole drawback of simulated annealing is the
required computational power, but this problem is
disappearing or has disappeared with the continuous

improvements in computer power. At the same time, the
combined use of SA and analytical optimisation routines
can be seen as an interesting option to explore. SA could
be employed in the early stages of the optimisation process
to discriminate ‘‘gross behaviour’’ of the function, after
which a much faster analytical optimisation algorithm
could be used to deal with the fine optimisation. In this
way, the benefits of both methodologies are exploited.
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