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The dwarf planet Eris is a trans-Neptunian object with an orbital
eccentricity of 0.44, an inclination of 44 degrees and a surface
composition very similar to that of Pluto1. It resides at present at
95.7 astronomical units (1 AU is the Earth-Sun distance) from
Earth, near its aphelion and more than three times farther than
Pluto. Owing to this great distance, measuring its size or detecting
a putative atmosphere is difficult. Here we report the observation
of a multi-chord stellar occultation by Eris on 6 November 2010 UT.
The event is consistent with a spherical shape for Eris, with radius
1,163 6 6 kilometres, density 2.52 6 0.05 grams per cm3 and a high
visible geometric albedo, pV~0:96z0:09

{0:04. No nitrogen, argon or
methane atmospheres are detected with surface pressure larger
than 1 nanobar, about 10,000 times more tenuous than Pluto’s
present atmosphere2–5. As Pluto’s radius is estimated3–8 to be
between 1,150 and 1,200 kilometres, Eris appears as a Pluto twin,
with a bright surface possibly caused by a collapsed atmosphere,
owing to its cold environment. We anticipate that this atmosphere
may periodically sublimate as Eris approaches its perihelion, at
37.8 astronomical units from the Sun.

The dwarf planet (136199) Eris was discovered9 in 2005. Its radius
has been estimated to be 1,200 6 100 km on the basis of direct
imaging10, although detection of its thermal flux provided another
estimate11 of 1,500 6 200 km, potentially making it larger even than
Pluto, and the largest known dwarf planet. The motion of Dysnomia
(Eris’ satellite) provides Eris’ mass, ME 5 (1.66 6 0.02) 3 1022 kg, 27%
larger than Pluto’s mass12. No short-term (day-scale) brightness vari-
ability has been detected for Eris at the 1% level13,14, suggesting either a
spherical body with no albedo variegation, or—if elongated—a finely-
tuned, pole-on viewing geometry. The spectrum of Eris is very similar
to that of Pluto and reveals a methane-ice-rich cover, and another
dominant ice, presumably nitrogen, but not excluding argon1.

Stellar occultations by Eris are rare, as it subtends a minuscule
angular diameter (,0.03 arcsec) while currently moving in severely
depleted stellar fields at an angular rate of ,1.5 arcsec h21 at most.
Using the techniques described in ref. 15, we predicted one Eris
occultation in 2010, on November 6 UT. We attempted observations
from 26 stations, and the occultation was detected from two sites in
Chile, with two detections at San Pedro de Atacama (San Pedro for
short) with the Harlingten and ASH2 telescopes, 20 m from each other,
and one detection at La Silla, with the TRAPPIST telescope (for details,
see Fig. 1, Supplementary Figs 1 and 2, and Supplementary Tables 1
and 2). Another station further south at Complejo Astronómico El
Leoncito (CASLEO), Argentina, provided a light curve without
occultation, but went close to Eris’ shadow edge (,200 km; see Fig. 2).

The San Pedro and La Silla observations provide two occultation
segments—or ‘chords’—whose four extremities are used to constrain
Eris’ size (red segments in Fig. 2). When deriving the occultation times,
it appeared that two equally satisfactory solutions for the star reappear-
ance time at the Harlingten telescope in San Pedro are possible, yield-
ing two different chord lengths. These two solutions are separated by
1.2 s, and are respectively called solution 1 and solution 2, in chronolo-
gical order. This ambiguity is due to the fact that the star reappearance
occurred during a gap between consecutive exposures, corresponding
to a net loss of information. The ASH2 data collected next to
Harlingten did not provide enough signal-to-noise ratio to discrim-
inate between these two solutions, and are not used in the fit described
below (see Supplementary Information). As a dwarf planet, Eris is
expected to be in hydrostatic equilibrium under gravity and centrifugal
forces. The most general apparent limb shape is then an ellipse with
semi-axes a9 . b9 with effective radius RE~

ffiffiffiffiffiffiffi

a0b0
p

, defined as the
radius of a disk that has the same apparent surface area as the actual
body. This shape stems either from an oblate Maclaurin spheroid
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Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil. 32Instituto Nacional de Pesquisas Espaciais (INPE-MCT), Divisão de Astrofı́sica, Avenida dos Astronautas, 1758, São José dos Campos, 12227-
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(small angular momentum regime) with assumed equator-on viewing,
or an elongated triaxial Jacobi ellipsoid (large angular momentum
regime) observed pole-on, as implied by the absence of brightness
variations.

We have five free parameters to adjust: a9, the apparent flattening
a0{b0ð Þ=a0, the ellipse position angle P in the sky plane, and the two

coordinates of its centre, fc, gc (Supplementary Table 3). With four chord
extremities, our observations allow for an infinity of limb solutions.
However, as the two chords have almost the same median lines
(Fig. 2), this strongly suggests that Eris’ shape is indeed close to spherical,

unless very special geometries occurred (see below). Using a circular
model with three free parameters (RE 5 a9, fc, gc) and adopting solution
2, we obtain RE 5 1,163 6 6 km (1s formal error). The minimum x2

per degree of freedom, x2
pdf ~1:38, indicates a satisfactory fit to the data

(Supplementary Table 3). Moreover, the r.m.s. radial residual of 2.1 km
is fully consistent with our formal timing errors. We may not exclude,
however, the possibility that random topographic features with ampli-
tude approximately 63 km exist along the limb, which would result in
a slightly larger error bar for Eris’ radius, RE 5 1,163 6 9 km (see
Supplementary Information). Solution 1 provides RE 5 1,140 km,
but with a high value x2

pdf ~30:7 (5.5s level), and radial residuals of
111 km and 216 km at the beginning and end of the San Pedro chord,
respectively. Topographic features of this size are unlikely on such a
large icy body. This indicates that the spherical assumption is not
correct for solution 1, and explains why we do not provide a formal
error bar for that value.

Allowing for a non-zero flattening of Eris’ limb, we find an infinity
of possible solutions by fixing the position angle P and semi-major axis
a9 at various values. If Eris’ rotation axis and Dysnomia’s orbital pole
are aligned, we find values of RE in the range 1,105–1,155 km, smaller
than the value 1,163 km derived above. Relaxing the constraint on Eris’
orientation, we find that elliptical limb models can satisfactorily fit the
occultation chords in 68.3% of the cases (1s level) for RE in the range
1,165 6 90 km (Supplementary Fig. 4). However, as RE departs from
1,165 km, the flattening must rapidly increase, requiring fast rotations
which are not supported by observations13,14. The extreme case of
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Figure 1 | Eris occultation light curves. The plots (black filled circles) show
the flux of the star plus Eris, normalized to unity outside the occultation, versus
time. No filter was used at any of the telescopes. a, The light curve from the
ASH2 40-cm telescope at San Pedro, using a SBIG STL-11000M CCD camera,
with 2 3 2 pixel binning and a sub-frame of 11.24 3 9.71 arcmin
(272 3 235 pixels). The horizontal error bars indicate the total time intervals
associated with each point (15 s, while the cycle time was 18.32 s). Those bars
are too small to be visible on the other data sets. b, The light curve from the
Harlingten 50-cm telescope at San Pedro using an Apogee U42 CCD camera
(2 3 2 pixel binning; sub-frame, 2.67 3 2.67 arcmin, or 100 3 100 pixels;
integration/cycle times, 3 and 3.88 s). c, The light curve from the 60-cm
TRAPPIST telescope at La Silla, using a FLI ProLine PL3041-BB CCD camera
(2 3 2 pixel binning; sub-frame, 3.25 3 3.25 arcmin, or 150 3 150 pixels;
integration/cycle times, 3 and 4.55 s). d, The light curve from the 215-cm Jorge
Sahade telescope at CASLEO, using a Roper Scientific Versarray 1300B CCD
camera (3 3 3 pixel binning; sub-frame, 2.62 3 3.50 arcmin, or 77 3 103 pixels;
integration/cycle times, 4 and 7 s). The horizontal dashed lines at the bottom of
a and c represent Eris’ contribution to the flux, showing that the star completely
disappeared during the event (Supplementary Information, section 2). The red
lines are the best square-well models fitted to the events. We show in b solution
2 for the light curve (solution 1 being very close at that scale, Supplementary Fig. 3).
The vertical arrow in d shows the time of closest approach (CA) to the shadow
edge at CASLEO, at 8,368 s UT.

N

E

P San Pedro

La Silla

CASLEO

1,000 km

14.40 mas

Figure 2 | Measuring Eris’ size. The three oblique solid lines show the star
trajectories relative to Eris, as seen from San Pedro, La Silla and CASLEO, with
the arrow pointing towards the direction of motion. The San Pedro and La Silla
timings provide the lengths of the two occultation segments, or ‘chords’ (in
red); see solution 2 in Supplementary Table 3. The median lines of the two red
segments are separated by only 5 km and coincide at that scale with the blue
line. Celestial north is up and east is left. Scale bars: 1,000 km and 14.40 mas
(1 mas corresponds to 69.436 km at Eris). The solid circle has a radius
RE 5 1,163 km, and is our preferred solution for Eris’ size and shape, with the
cross marking the position of the centre. The dot near ‘P’ indicates Dysnomia’s
orbit pole direction12 projected onto Eris’ surface. The dotted curve is an elliptic
limb fitted to our occultation chords, with semi-major and -minor axes of
a9 5 1,708 and b9 5 1,317 km, respectively, that is, an apparent effective radius
of RE 5 1,500 km, the value of Eris’ radius previously derived from thermal
measurements11. The long axis of the ellipse should be perpendicular to the
occultation chords to within 62 u in order to match our data points. This has a
low probability (2%) of occurring for a random limb orientation between 0 and
180u. Furthermore, the ellipse has an aspect ratio b/a 5 0.771 that would
require a fast rotator (with a period of 4.4 h) observed pole-on to within 18u to
suppress the rotational light curve13,14. This has also a low probability (5%) of
occurring for a randomly distributed pole orientation, making the dotted limb
solution unlikely.
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RE 5 1,500 km previously found11 can be ruled out, as it requires fine
tunings in both Eris’ limb and pole orientations (Fig. 2). Thus, the most
straightforward interpretation of our observations is that Eris is close
to spherical, remembering that larger sizes are possible in a narrow
region of the parameter space. Consequently, Eris is close in size to
Pluto, whose radius3–8 is estimated between 1,150 and 1,200 km.

Our radius value implies a density of r 5 2.52 6 0.05 g cm23, when
combined with Eris’ mass12. This is comparable to Haumea’s den-
sity16,17 (,2.6 g cm23), for which a typical rock/ice ratio of 0.85/0.15
is derived18. This suggests that Haumea (and thus also Eris) is a large
rocky body with a thin overlying ice shell. Note that the densities of
trans-Neptunian objects (TNOs) span a large range, with r values of
1.0, 1.6 and 2.0 g cm23 for Varuna17, Charon19 and Pluto19, respec-
tively, pointing to diverse origins and/or evolutions. Our radius value
provides a geometric albedo of pV~0:96z0:09

{0:04 in the visible range
(Supplementary Information). This makes Eris almost as bright as a
perfect isotropic Lambert surface (for which pV 5 1 by definition), and
one of the intrinsically brightest objects of the Solar System. For com-
parison, Saturn’s satellite Enceladus is even brighter, with a geometric
albedo of pV < 1.4, associated with its geologically active surface20. In
contrast, Eris’ brightness and lack of light-curve variations may stem
from the collapse of a nitrogen atmosphere (see below). We find that
Eris is brighter than the TNO 2002 TX300, whose high albedo
(0:88z0:15

{0:06) is probably due to the exposure of fresh water-ice21.
We now reassess Eris’ surface temperature in the light of our new

results. Measurements by the Spitzer22 and IRAM11 satellites imply
disk-averaged brightness temperatures of Tb 5 30 6 1.2 K and
Tb 5 38 6 7.5 K at 70 and 1,200mm, respectively. As a completely
absorbing surface at Eris’ distance has a temperature T0 5 40 K, the
second value is surprisingly high (and consistent with the fact that the
previously found radius11 of 1,500 km is about 30% higher than our
value), but we note that a unique brightness temperature Tb < 31 K
matches both the Spitzer (at 70mm) and IRAM (1,200mm) measure-
ments at the 1.5s level (Supplementary Fig. 5). However, Eris’ surface
temperature is probably not uniform, because an atmosphere (if any)
would be too tenuous to isothermalize the surface frosts, as occurs for
Triton and Pluto. We therefore consider two extreme standard tem-
perature distribution models, corresponding to (1) a warmer slow
rotator (or equivalently, pole-on orientation, or zero thermal inertia,
the standard thermal model, STM) with sub-solar temperature Tss, and
(2) a cooler fast rotator with equator-on geometry (isothermal with
latitude model, ILM), with equatorial temperature Teq.

In the STM, both Spitzer and IRAM fluxes are reproduced satis-
factorily with Tss < 35 K (Supplementary Fig. 5, Supplementary Tables
4 and 5). The thermal equilibrium equation Tss 5 T0[(1 2 pVq)/
(eg)]1/4 then provides a relationship between the beaming factor g
(describing the effects of surface roughness), the phase integral q
and the surface emissivity e, where A 5 pVq is the Bond albedo, which
measures the fraction of reflected solar energy. Using a standard
value22 e 5 0.9 and a plausible range from g 5 1 (no roughness) to
0.7 (large surface roughness), we obtain q 5 0.49–0.66, fully consistent
with the values for Saturn’s brightest icy satellites20,23. The ILM in
contrast leads to the extreme condition 0 , q , 0.24, which is an
implausible range as bright objects also have large phase integrals24.
Essentially, the fast rotator model does not provide enough thermal
flux given the new, smaller size of Eris. We therefore strongly favour
the STM, implying either a pole-on orientation or a very small thermal
inertia, as observed in other TNOs25,26.

The occultation puts an upper limit on a putative atmosphere
around Eris. As discussed in Supplementary Information, our pre-
ferred model is an isothermal N2 atmosphere near 30 K, for which
we can place an upper limit of about 1 nbar (1s level) at the surface
(Fig. 3). Similar limits are obtained for hypothetical CH4 or Ar atmo-
spheres. Also discussed in Supplementary Information is the possibility
that a Pluto-like atmosphere sublimates as Eris approaches its peri-
helion, at 37.8 AU from the Sun. In that case, Eris would currently be a

dormant Pluto twin, with a bright icy surface created by a collapsed
atmosphere. Detailed models are required, however, to confirm this
model.
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