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The wide scatter of data observed in the strength of bone cements based on 
poly(methy1 methacrylate) (PMMA) can be described properly by the two-parameter 
Weibull function. However, the statistical character of the distribution leads to an 
uncertainty in the parameters evaluated from a limited number of experiments. 
This study is concerned with the analysis of the methods of estimation as well as 
sample size on the estimates of the Weibull parameters. The maximum likelihood 
method, moments method, and linear regression method were studied. Monte Car10 
simulations were carried out in order to assess the influence of the number of spec- 
imens tested on the Weibull parameters calculated by the different methods. The 
number of specimens tested displayed a large influence upon the calculated Weibull 
modulus. By applying weighing factors to the linear regression method, the stand- 
ard deviation of Weibull parameters decreased significantly. As a compromise be- 
tween minimizing both the dispersion of the evaluation method and the experimen- 
tal effort, the use is suggested of the linear regression method with a minimum 
number of 20 specimens in a nonweighted analysis and 10 in a weighted analysis. 

INTRODUCTION 

MMA-based bone cements are widely used in or- P thopedics to fix joint replacements into the bone. 
The main function of the cement is to transfer load 
from the prosthesis to the bone. Therefore, the effective- 
ness of surgical cement is viewed in light of its mechan- 
ical properties (1). Currently, there are two standards 
and specifications for the evaluation of bone cements, 
the ASTM F-451 (2) and the I S 0  5833 (3). These stand- 
ards specify methods for determination of compressive 
strength, flexural modulus and flexural strength under 
static conditions. Clinically, the cement is cyclically 
loaded and would most likely fail in fatigue (4-8). How- 
ever, owing to the existence of the aforementioned 
codes of practice, many of the mechanical characteri- 
zations have been carried out under static conditions. 

In clinical practice, liquid methylmethacrylate mon- 
omer is mixed with powdered PMMA polymer in order 
to obtain a dough capable of being introduced into the 
cavity of the bone. The mixing results in air entrap- 
ment creating pores of variable size. In addition, bone 
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cements usually contain a particulate filler providing 
radiopacity. Thus, the hardened material contains var- 
ious defects, such as pores, voids and inclusions due 
to the presence of additives (1, 9-16) These defects 
control the initiation of brittle fracture, and their ef- 
ficiency as crack initiators is dependent on their size 
and shape. The random distribution of defects leads 
to a random distribution of the measured values of 
strength; therefore, the fracture characterization of 
bone cements should be carried out in the frame of a 
statistical analysis. 

A statistical model commonly used in characteriza- 
tion of brittle materials is that given by Weibull (17), 
who proposed an empirical formula to relate the prob- 
ability of failure to the rupture stress. It is given by: 

where Pfis the failure probability, u is the fracture 
strength, u, is the strength below which p f  = 0 and uo 
and rn are the Weibull parameters, the scale parame- 
ter and the Weibull modulus respectively. On a nor- 
malized scale, a lugher m would lead to a steeper func- 
tion and then a lower dispersion of fi-acture strength. 
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Setting uu = 0 results in an overestimate of the proba- 
bility of failure, which is desirable for a conservative 
approach. In this case, the two-parameter Weibull 
function is obtained as follows: 

[- (&>"I P f ( V )  = 1 - exp 

Knowledge of the Weibull parameters of a material 
leads to a complete characterization of the statistical 
variation in fracture strength. In addition, it brings out 
the effect of different processing parameters or subse- 
quent treatments through comparison of the Weibull 
distribution for the different cases. A limit of the de- 
scription of the fracture behavior of brittle materials 
by the Weibull model is due to the statistical charac- 
ter of the distribution itself, which leads to an uncer- 
tainty in the parameters obtained by evaluation from 
a limited number of experiments. The true values of the 
Weibull parameters are obtained only for an infinite 
number of samples. For any smaller number, only an 
estimate but not the true value can be achieved. In 
practice it is possible to test only a limited number of 
specimens, so, it is relevant to find out the method of 
evaluation that results in the most accurate estima- 
tion of the Weibull parameters. 

The aim of the present work was to compare differ- 
ent methods of evaluation as well as to study the in- 
fluence of the number of specimens tested on the cal- 
culated Weibull parameters. In order to achieve this 
purpose, Monte Carlo simulations were used to char- 
acterize the statistical properties of three evaluation 
methods maximum likelihood method, moments meth- 
od, and linear regression. The Weibull parameters of a 
theoretical distribution of known rn and u0 values were 
estimated for data produced by Monte Carlo tech- 
niques. The comparison of the calculated values with 
the known values of the theoretical distribution per- 
mits an assessment of the accuracy of each method. 

A similar investigation was carried out, but rather 
than using computer-generated data, actual experi- 
mental results of flexural strength values measured in 
four-point bending were employed. Flexural testing is 
considered an appropriate measure of the strength of 
the cement because it combines elements of compres- 
sion, tension and shear, which probably closely mimic 
in uivo stresses than does either compression or ten- 
sion testing. The uncertainty on the Weibull modulus 
and mean strength when only a part of the total batch 
is used for the determination of these parameters was 
analyzed in a commercial bone cement. The minimum 
number of specimens to be tested in order to obtain 
reliable Weibull parameters was assessed. 

lUATERIAL!3 AND METHODS 

Materials and Mechauical  Testing 

Flexural studies were performed on three different 
preparations of acrylic bone cements. Standard vis- 
cosity (Sv) and low viscosity (Lv) cements (Subiton Lab- 
oratories, Buenos Aires, Argentina) were employed. 

Each dose of cement consists of 40 g of PMMA pow- 
der and 20 g of liquid monomer. The liquid compo- 
nent is composed of 19.76 g MMA monomer, 0.24 g 
N,N-dimethyl-ptoluidine and 18-20 ppm hydroqui- 
none. The solid component is composed of 36 g PMMA 
and 4 g BaSO, to impart radiopacity to the cement. 
Standard viscosity and low viscosity cements differ in 
the amount of benzoyl peroxide present in the powder 
phase. 

Manual mixing in accordance with manufacturer 
recommendations was performed in a bowl for 0.5 
min. The cement dough was poured into a mold and 
the mix was allowed to cure at atmospheric pressure. 
The mold consisted of two rectangular glass plaques 
spaced by a rubber cord and held together with clamps. 
An additional set of specimens of the standard vis- 
cosity cement was prepared under external pressure. 
The cement dough was poured into a steel mold and 
a pressure equal to 0.2 Mpa was applied for 15 min 
while the cement mass was polymerizing. After 15 min, 
samples were removed from the molds and machined 
to produce bars with dimensions 3.3 mm X 10 mm 
cross section and 90 mm in length. The machined 
specimens were placed into a 37°C water bath for 48 
hrs as stated by the I S 0  5833 protocol. The bars were 
loaded to failure in four-point bending and the maxi- 
mum outer-fiber stress was calculated as follows 

3Fa B=- 
b d 2  

where B is the bending strength, F is the force at 
break, b and d are the width and the thickness of the 
specimen respectively, and a is the distance between 
loading points (20 mm). The distance between support 
points was 60 mm. The samples were tested using an 
Instron testing machine, Model 4467, at a deflection 
rate of 5 mm/min. The cements tested are summa- 
rizedin Table 1. 

Estimation of the Weibull Parametars 

There are different approaches for estimating the 
two Weibull parameters from experimental data. The 
methods usually employed are as follows. 

MaximumLikelihood Method 

In this approach, values for the two parameters rn 
and a, are sought that result in a Weibull function 
which describes the experimental data that are most 
likely. The probability that for an estimated set of Wei- 
bull parameters, the experimental results would have 
occurred, is maximizd by the following equation: 

Table 1. Number of Specimens Tested for Each Bone Cement 

Cement N 

LV cured at atmospheric pressure (I) 
SV cured at atmospheric pressure (11) 
LV cured under external pressure (Ill) 

72 
58 
40 
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N 

i= 1 

in which N is the number of specimens tested and ui 
is the flexural strength of the specimen i Only the pa- 
rameter rn and the experimental data appear in Eq 3, 
which was solved by the iterative method of Succes- 
sive Substitutions. 

Method of Moments 

A set of data or a distribution may be reduced to a 
few numbers through calculating its moments. The first 
moment results in the mean value, and the standard 
deviation may be calculated from the second moment 
of a distribution. The probability density function of 
the Weibull distribution is given by: 

In the method of moments it is assumed that the mean 
and variance of the experimental data equal those of 
the whole distribution, i.e., infinite number of samples. 
Putting f (a) of the Weibull distribution in the general 
definition of average and variance of a distribution, the 
first two moments of the Weibull distribution can be 
calculated. 

The mean value is given by: 

- u = u o r ( i  +$) 
(5) 

and the variance is: 

S2 = u$ [ f ( l+  E) - I'(l+ :)'I (6) 

where r is the gamma function. The standard devia- 
tion is the square root of the variance. Thus, the coef- 
ficient of variation for the Weibull distribution is: 

SU [r(i + E) - r(i + h)2]1'2 
/ l \  

C",,, = z = - 17) " r I + -  \ J 
Setting the mean and variance of the experimental data 
in Eq 7, the parameter uo drops, and Eq 7 becomes a 
function of rn only and can be solved for rn using an 
iterative procedure. The Newton-Rhapson method was 
used in the present work. 

Least Square Analysis of Weibull Function 
k e a r  regression is a special case of the least-squares 

method and it is the most common way of amlyzhg 
strength data. Talang the logarithm of Eq 2 twice gives 
a linear equation: 

with a slope equal to rn and a y-intercept equal to 
- rn ln uo. The a- values are the experimentally deter- 
mined fi-acture stresses. The set of test results is con- 
verted into an experimental probability distribution. 
This is done by ordering the results from lowest stress 
to rupture to highest. The ith result in the set of N 
samples is assigned a cumulative probability of failure 
p f ?  Since the true value of pffor each ofis not known, 
it has to be estimated. Three of the most common es- 
timators for the probability of fi-acture are (18-24). 

i - 0.3 (4 i- 0.5 i 
(a); pf2 = - (b): 5 3  = p f 1 =  7 N + l  

(9) 

The method of least squares is built on the hypothesis 
that the optimum description of a set of data is one 
that minimizes the weighted sum of squares of de- 
viation of the data from the fitting function. When ap- 
plying the linear least squares analysis to Eq 8, it is 
assumed that the error is constant or randomly dis- 
tributed. However, by using the theory of propagation 
of errors, previous workers pointed out that values of 
lnln [ 1/(1 - p f ) ]  in Eq 8 should be weighted according 
to their uncertainty (18, 22). Hence, in order to com- 
pare the anaysis performed with and without weight- 
ing factors, the following weight functions were used. 

w, = 1 (10) 

w, = L( 1 - Pfl)ln(l - Pfl)"] (1 1) 

W3 = 3.3Pfl - 27.5 11 - (1 - Pfi)0.025J (12) 

Probably the best method of evaluation is least squares 
estimation using Eq 2 directly. The nonlinear fitting of 
the Weibull equation with experimental data was made 
using the following procedure. Tables of the probability 
of failure, %, calculated with a selected estjmator fi-om 
Eqs 9 la)-[c) and the corresponding flexural strength, 
ui, were build up from every experimental set of data. 
An initial set of the parameters rn and uo was selected. 
Predicted I$i values were generated using Eq 2 and the 
following summation for the selected set of parame- 
ters was calculated 

N 
s = [Pi - Pic]2 

i=l 

A minimum of the S function was searched using an 
optimization program that operates over the adjust- 
able parameters: rn and uo 

Monte Carlo Simulation 

The statistical properties of different estimators and 
methods of analysis were studied by Monte Carlo sim- 
ulation techniques. It was assumed a fictitious ma- 
terial for which the fracture stresses follow a Weibull 
distribution of known parameters. That is, the exact 
values of both parameters rn and uo of the mother pop- 
ulation were known: m, and uOm. A random generator 
procedure was used to generate N real numbers in the 
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interval [O, 11, which were taken as the fi-acture prob- 
ability. Each fi-acture probability was set in Eq 2, where 
the known values m, and uo, were already set, and 
solved for a- So, a set of N fictitious hc ture  stresses 
was obtained, which was then treated as experimental 
results. The Weibull function of this set was evaluated 
using the methods described above. The sample size, 
N, was increased progressively from 4 to 100 in order 
to study the influence of the number of specimens on 
the estimated Weibull parameters. By repeating the 
above procedrn many times, the statistical behavior of 
failure probability estimators and methods of analysis 
were assessed. The procedure was repeated lo00 times 
for each method and each sample size N in order to 
ensure statistical convergence of the results. Some sim- 
ulations were done with 1500 repetitions: however, 
the comparison of the results revealed that 1000 repe- 
titions are representative. 

RESULTS AND DISCUSSION 

Monte Carlo Analysis of Theoretical 
Weibull Distribution 

In practice, the evaluation of the Weibull parame- 
ters is performed from a limited number of test speci- 
mens and it is relevant to find out which method of 
evaluation results in the most accurate estimation. In 
order to compare the methods described previously 
and to assess the influence of the sample size on the 

Weibull parameters, Monte Carlo simulations were car- 
ried out. Simulations for samples having Merent num- 
ber of specimens were performed for arbitrary chosen 
true values of the Weibull parameters m, and uom equal 
to 7, 10, 15 and 45, 50, 55 respectively. Results for 
m and uo values equal to 7 and 55 respectively are 
depicted in Figs. 1-4. 

Rgure 1 shows the calculated m value against the 
sample size N for the moments and maximum like- 
lihood methods. It is seen that for N > 10, the maxi- 
mum likelihood estimation results on average in a 
higher overestimation of the mvalue compared with the 
moments method. The average value of the estimators 
is extremely sensitive to sample size, particularly for 
the range N < 30, and it approaches the true value 
m, with increasing number of specimens. The results 
in Rg. 1 show that if N random fracture stresses of 
this material are chosen and then the Weibull modu- 
lus is determined, it will definitely result in m, as a 
consequence of the estimation procedure. This is be- 
cause the true parameters of a distriiution are known 
only when an infinite number of samples are tested. 
Monte Carlo simulations performed by the moments 
method for m values of 7, 10 and 15 at different sam- 
ple sizes are shown in Rg. 2. It is seen that the bias 
increases with increasing Weibull modulus, which is 
in agreement with results reported by previous work- 
ers (22). Conversely, the maximum likelihood method 
was demonstrated to be independent of the m value. 

11.0 

101 10.0 

9.51 0 0 
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0 

0 
7.5 * o  

7.0 t 
6-5- 6.0 0 10 20 30 40 50 60 70 80 90 100 
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0 

m. 1. Weibull modulus as afunction of sample size calculatedfrom the moments (Mml and maximum likelihood (MU methods. 
The solid line is the set m value. 

POLYMER ENGINEERING AND SCIENCE, JUNE 2002, Vol. 42, No. 6 1263 



Carmen C. Riccardi and Claudia I. VaUo 

10.0 - 

9.5 - 

E 9.0- 

cn^ - 8.5- 3 
D 
0 
E 8.0- - - 

A 

A 

E 

0 

- 0  

- 0  

0 m=7 
m=10 

A m=15 

0 10 20 30 40 50 60 70 80 90 100 1 

Number of specimens, N 
0 

Fig. 2. Weibd modulus as a_function of sample size calculatedfrom the moments method for &&rent m values. 
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Rg. 3. Weibull modulus as afunction of estimator and sample size calculatedfiom linear regression using the faslre probability in 
Eqs 9 and the weightfunction W,. 
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Fig. 4. Weibull modulus as a-tion of estimator and sample size calculated from linear regression using the fairure probability in 
Eqs 9 and the weigNfunction W,. 

I.fgures 3-5 show the results of the simulation car- 
ried out by the linear regression method given by Eq 8. 
Since for this analysis the true failure probability for 
each fracture stress is not hown,  a prescribed func- 
tion has to be used to calculate its value. The three 
estimators for fi-acture probability given in Eqs 9 a-c 
were used in each simulation procedure. The influence 
of the weight functions W,, W, and W, given in Eqs 
10-12 was also assessed. Results are presented in 
terms of Ti, which denotes the i weight function kom 
Eqs 10-1 2 along with the j estimator from Eqs 9. For 
example, W,, represents the weight function W, and 
the estimator Pfl. 

Figure 3 corresponds to the hear regression analy- 
sis performed without weighting factors, i.e., W, equal 
to 1, for the three defhitions for the failure probabil- 
ity. Similarly to the moments and maximum likelihood 
methods, the average estimate is extremely sensitive 
to sample size for the range N < 30. This method con- 
verges to the true value when the estimator p f ,  = (i - 
0.5)/N is used. However, with the definitions p f ,  = i/ 
(N + 1) and 3, = (i - 0 . 3 ) / ( N  + 0.4), which under- 
estimate the m value for all sample sizes, does not 
converge to the true value m,. The definition of proba- 
bility of fracture 3, = i/(N + 1) results in the least 
acceptable outcome. For a nonweighted analysis, the 
estimator 9, = (i - 0.3)/(N + 0.4) is the least biased for 
N < 20 M e  for N > 20 the definition p f ,  I (i - 0 . 5 ) / N  
results in better estimator. For sample slzes of 30 or 

greater, the predicted modulus is essentLally independ- 
ent of sample size when the estimator 3, = (i - 0.5)/N 
is used. These results indicate that the use of a large 
sample size does not satisfactorily compensate for the 
use of a poor estimator. Even a sample size of 100 is 
not sufficient if the estimator pr2 = i/(N + 1) is used. 
On the other hand, by companng the method of mo- 
ments (Figs. 1-2) with the results shown for the lin- 
ear regression with the definition 3, = (i - 0 .5 ) /N ,  
it emerges that there are no statistical advantages in 
using the method of moments. 

The effectiveness of applying weighting factors in lin- 
ear regression analysis was assessed by Monte Car10 
simulations. Figures 4-5 show the results of applying 
the weighting factors W, and W, to the three estima- 
tors for the failure probability given in Eqs 9. The re- 
sults in Figs. 4-5 indicate that the use of weighting 
factors in linear regression with the definition p f l  = 
(i - 0.5)/N reduces the bias in determining rn The rn 
value approaches the b e  value m,. for N > 10, indi- 
cating an important reduction in the number of sam- 
ples to be tested compared with the nonweighted anal- 
ysis. The weight functions applied to p f s  = (i - 0.3)/ 
(N + 0.4) markedly improve the results for N > 30. 
However, the bias increases for N < 30 compared with 
a nonweighted analysis. In contrast, for the definition 
p f ,  = i/(N + 1) there is no significant gain for N < 60. 
Comparison of the behavior of the weight factors W, 
and W, shows that both weight functions result in a 
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Fig. 5. Weibull modulus as afunction of estimntor and sample size calculated from linear regression using the f&e probability 
i n E q s 9 a n d t h e w e i g h t w n W 3 .  

similar trend, so the choice of definition is not impor- 
tant. The plots represented in Figs. 3-5 were all deter- 
mined for an arbitrary value of rn = 7. Similar plots 
performed for m values equal to 10 and 15 indicated 
that the dispersion of the parameter rn is independent 
of the value assigned to m, for all three evaluation 
methods. Therefore. the results are valid for all values 
of rn,. 

The accuracy of the evaluation procedure is de- 
scribed by the variation coefficient, C,, which is a 
common measure for the breath of a distribution. It is 
defined for the parameter rn as the standard deviation 
divided by the mean value. Figure 6 shows the vari- 
ation coefficient as a function of the sample size com- 
puted for the maximum likelihood, the moments meth- 
od and the linear regression without weighting factors 
and the definition ql = (i - 0.5)/N. Comparison of the 
behavior of C, for the three different definitions of 
failure probability demonstrated that there is no sig- 
nificant difference among the definitions. Thus only 
the trend using p f l  = (i - 0.5)/Nis illustrated in I@. 
6. Similarly to the average value of the Weibull modu- 
lus, C,. decreases with incmasing sample size, i.e. the 
more samples are measured, the more accurate the 
results. The fitted polynomial goes through zero for 
N = 00. i.e. the true value of the parameter rn is ob- 
tained only for an infinite number of samples. The 
curvature of all curves decreases continuously with 
increasing the number of specimens. Therefore, up to 
about 30 specimens, there is a high gain in accuracy 
for each additional sample. From about 30 samples 

upwards, the gain in precision decreases with increas- 
ing sample size. It is clear from Rg. 6 that the C,, 
value of the maximum likelihood evaluation procedure 
is lower than that of the linear regression method for 
the whole range of sample size. Since the maximum 
likelihood method leads to the least dispersion, i.e., 
best reproducibility for all sample sizes, the use of this 
method was recommended by previous authors (20, 
21). w e  7 shows the trend of the C, value for the 
linear regression method for a weighted analysis. The 
linear regression without weighting factors and the 
maximum likelihood methods are shown for compari- 
son in the same plot. It is observed that C, decreases 
significantly with the use of weighting factors and 
approaches to the values of the maximum likelihood 
method. Hence, in order to have an equal measure of 
accuracy, a smaller number of samples is required if 
the linear regression with weighting factors is used. 
Results presented in Figs. 1-7 suggest that a mini- 

mum number of 30 specimens is required to have an 
acceptable degree of accuracy in obtaining the Weibull 
modulus by the maximum likelihood method and 
moment method. The linear least squares method is 
preferred for its simplicity, rather than more complex 
methods involving direct curve fitting. If linear regres- 
sion in an analysis without weighting factors is to be 
chosen as the evaluation method, the defhitions p f 3  
= (i - 0 . 3 ) / ( N  + 0.4) for N <  20 or pfl = (i - 0.5)/N 
for N > 20 result in the best approach to the true 
value rn,. On the other hand, if the evaluation is per- 
formed by linear regression with weighting factors, the 
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most successful estimator seems to be ql = (i - 0.5)/N 
for which the Weibull modulus values stabilize at a 
lower sample size. While the nonweighted analysis 
requires a minimum set of 30 specimens for the evd- 
uation of the Weibull modulus, in the weighted analy- 
sis the m value stabilizes at a sample size of about 10 
specimens. 

Considering the parameter uo, it can be expected 
that as for the parameter m an increasing sample size 
results in decreasing error in estimation of u,,. Figure 
8 shows the normalized uo value as a function of the 
sample size calculated for the linear regression method, 
moments method and the method of maximum likeE- 
hood. The behavior of the three failure probability es- 
timators is similar to that observed in the evaluation of 
rn Clearly, uo may be determined with a higher degree 
of accuracy than n This is consistent with results re- 
ported by previous authors who found that compared 
with the rn determination no signiscant variation oc- 
curs in determining the scale parameter uo (20, 21). 

The uncertainty of the mean strength when only a 
part of the total batch is used for its determination 
was evaluated generating subsets of different sizes by 
Monte Carlo simulation. Figure 9 shows the relative 
uncertainly against the number of samples for differ- 
ent Weibull modulus values. It is observed that the 
scattering is sensitive to both the number of speci- 
mens and the Weibull modulus. For a material having 
an rn value equal to 20, the scattering is not in excess 
of 5% for sets of five samples. However, for materials 

A 
3 

- 0  
0 

0 

having a Weibull modulus equal to 7 and 10, which are 
typical values for bone cements, the number of speci- 
mens to test in order to obtain a 5% scattering in- 
creases to 15 and 25 respectively. Sets of 10 samples 
lead to an uncertainly of about 10Y0 on the estimated 
mean strength with regard to its value calculated from 
the whole batch. Figure 10 corresponds to the simu- 
lation canied out for an rn value equal to 7 and differ- 
ent uo values. Contrary to the trend observed when 
varying the Weibull modulus, the scattering in the 
mean strength is almost unchanged by varying the uo 
parameter. 

Analysis of Experimental Results 
A similar investigation was carried out, but rather 

than using computer-generated data, actual experi- 
mental results were employed. Although the actual 
modulus and scale parameters are not known apriori 
in this case, a good estimate of these parameters can 
be made by using a large sample size. The number 
of specimens tested for each cement are summarized 
in Table 1 and the Weibull plots of the data using pfl 
= fi - 0 . 5 ) / N  are shown in FSg. 11. The regression co- 
efficients of the flexural strength data in Fig. 11 indi- 
cate that the cements tested are satisfactorily de- 
scribed by the Weibull model. To investigate the effect 
of sample size on Weibull modulus, subsets of the 
fracture stress data were selected in groups of 4, 5, 10, 
15, 20 and so on, up to N. The subsets were selected 
randomly from the full set of experimental results by 
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assigning a computer-generated random number to 
each specimen of the set. Each subset was treated as 
an independent set of data. The procedure was re- 
p t e d  100 times for each subset. The Weibull modulus 
for each subset was obtained by linear least squares 
fitting using the estimators pfl and p f 3  and the weight 

m e  12 shows the averages and standard devia- 
tions of m calculated for the cement I as a function of 
the sample size. The standard deviation, as expected, 
decreases markedly as the number of specimens in- 
creases. It is worth noting that the standard deviation 
for a sample size of 20 using the definition pfl in a non- 
weighted analysis is approximately 16% of the mean. 
This restriction should be considered when determin- 
ing the Weibull modulus on small sets. 

The intluence of the subset size on the m values for 
the three cements tested is shown in Figs. 13-15. The 
solids lines are the m values calculated by each method 
from the total number of specimens. Unlike the theo- 
retical results, the m values obtained from experimen- 
tal results stabilize at lower sample sizes. It can be seen 
that the definition p f 3  yields lower Weibull modulus 
values and reaches an asymptotic value at  sample 
sizes much higher than the definition pfl. For sample 
sizes lower than about 15 specimens in a nonweighted 
analysis, the estimator p f 3  is the least biased. However, 
in contrast to pfl , for N < 15 the bias is not improved 
by the use of weighting factors. This trend was dis- 
played by the three cements and is in agreement with 

fhctio~ls Wi and Ws. 

the previous theoretical results. The most successful 
estimator seems to be Pfl, for which the predicted 
modulus is essentially independent of sample size for 
a sample size of 20 in a nonweighted analysis and 
about 10 in a weighted analysis. The use of this esti- 
mator was recommended on the basis of Monte Car10 
simulations, which is verified by these experimental 
results. 
As discussed previously, the direct least squares 

analysis of Eq 2 should yield the best estimate of the 
Weibull parameters. The study of the statistical prop- 
erties for this method by using 1000 samples for each 
sample size is much more complicated than the linear 
least squares analysis. Therefore, the nonlinear least 
square analysis was not studied in the corresponding 
complete way as for the other methods of analysis. 
However, from a limited number of samples it is possi- 
ble to compare this method with the methods of analy- 
sis described earlier. Table 2 surnrnarizes the mvalues 
of each cement calculated for the total number of spec- 
imens. mom the comparison of the m values calcu- 
lated by each method, it emerges that the linear anal- 
ysis using weighting factors yields the best agreement 
to the direct nonlinear fitting, which gives the best de- 
scription of the sample. 

From the practical point of view, the method of eval- 
uation is selected as a compromise between the accu- 
racy of the estimation and the experimental effort. 
Based on the results obtained, it may be concluded that 
a nonweighted kear  regression with the definition p f 3  
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Table 2. Weibull Modulus for the Total Number of Specimens Calculated by Linear Least Squares 
With and Without Weighting Factors and Direct Least Squares (DLS). 

Cement Wl Pfl Wl Pf3 w3 Pfl w3 Pf3 DLF Ptl DLS Pf3 

I 8.57 8.35 8.00 7.91 8.1 5 8.08 
I I  10.17 9.88 9.63 9.58 9.75 9.65 
111 12.25 1 1.82 1 1.37 11.14 1 1.47 11.30 

should be used if a limited number of specimens are 
available. For more accurate Weibull modulus values, 
the definition pfl should be applied. In this case, a 
sample size of 20 specimens is adequate in a non- 
weighted analysis and a sample size of 10 specimens 
in a weighted analysis. On the other hand, as shown 
in Fig. 7, the standard deviation of rn decreases sig- 
nificantly with the use of weighting factors, so this 
analysis should be preferred for determining Weibull 
parameters. 

CONCLUSIONS 

Monte Carlo simulations were used to characterize 
three evaluation methods of Weibull parameters: h- 
ear regression, moments method and maximum like- 
lihood method. The sample size has a large influence 
upon how well the mother population is described 
for all methods studied. From the comparison of the 
moments and maximum likelihood methods using 
the linear regression method and the definition Fjl = 
(i - 0.5)/N, it emerges that there are no statistical 
advantages in using the first two methods. Although 
the dispersion of the rn value is the lowest for the 
maximum likelihood method it decreases significantly 
by applying weighting factors in the linear regression 
method. In addition, the use of weighting factors in 
the linear analysis yields the best agreement to the di- 
rect nonlinear fitting, which gives the best description 
of the sample. 

The analysis of experimental results suggests that 
as a compromise between minimizing both the dis- 
persion of the estimator on one hand and the experi- 
mental effort on the other hand, it is suggested to use 
the linear regression method with the definition qi = 
(i - 0.5)/N and a sample size of 20 in a nonweighted 
analysis and 10 in a weighted analysis. For sample 
sizes lower than 10, the estimator q3 in a nonweighted 
analysis yields the least biased results. 

Monte Carlo analysis demonstrates that the scat- 
tering of the mean strength is sensitive to both the 
number of specimens and the Weibull modulus. Con- 
versely, uo showed no influence on the mean strength 
value. For a material having an  rn value equal to 20 
the scattering is less than 5% for sets of five samples. 
However, for rn values in the range 7-10, which are 
typical values for bone cements, the number of speci- 
mens to test in order to obtain a 5% scattering in- 
creases to 15 and 25 respectively. Sets of 10 samples 
lead to an uncertainly of about 10% on the estimated 
mean strength with regard to its value calculated kom 
the whole batch. 
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