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ABSTRACT: One of the main goals in the studies of fiber suspensions is the prediction
of fiber orientation in a short fiber composite part, using the processing variables, mold
geometry, and material characteristics. The rheological properties of the fiber suspen-
sions are strongly associated with the fiber orientation distribution. The understanding
of the relations between the fiber structure in the suspension and its rheological
properties is a key step in the design and implementation of processing operations. The
fiber motion in shear flow is analyzed in this article. The study is focused on the relation
between fiber orientation and rheological properties for a suspension with uniform
(delta function) fiber orientation distribution in a Newtonian fluid. The study shows
that the rheological properties of the suspension, measured during the start up of
steady shear flow, can be used to determine the fiber orientation in the sample. The first
normal stress coefficient is the property to measure in order to determine whether or
not the suspension has a random fiber orientation. Any of the shear flow transient
rheological properties can be used to determine the fiber initial orientation. It was
found that the normal stress coefficients can show negative or positive values depend-
ing on the fiber orientation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38:
1788–1799, 2000
Keywords: short fiber composites; fiber motion; fiber orientation; fiber suspensions;
rheology of fiber suspensions

INTRODUCTION

There is currently great interest in the flow of
concentrated suspensions of fibers in Newtonian
solvents and polymers, because these composites
can provide lightweight, strong substitutes for
metals in many manufacturing operations.

Whereas processability is the main advan-
tage of short fiber composites, the mechanical
properties of the final product are strongly re-
lated to the fiber orientation distribution, which
is determined during the processing. The extent
to which these composites can be used is pres-

ently limited to a large degree by our under-
standing of the rheology of the composites and
our ability to exploit the rheological properties
in the design and implementation of processing
operations. Ability to predict and control the
distribution of fiber orientations in the final
part depends on the rheological description of
these suspensions plus the ability to simulate
flows of suspensions numerically. Currently,
satisfactory fiber configuration designs are ar-
rived at by trial and error procedures, which
can be quite costly.

The understanding of the relation between the
fiber structure in the suspension and its rheologi-
cal properties is a key step in the design and
implementation of processing operations. Basi-
cally, the principal approaches to describe these
relations are the following.
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The “hydrodynamic approach” where the fore-
runner was Jeffery.1 In 1922, he calculated the
instantaneous angular velocity of a neutrally
buoyant ellipsoid in a Newtonian medium under
creeping flow. In 1970, Batchelor2,3 developed a
generalized equation for the hydrodynamic stress
for a suspension of long axisymmetric rigid parti-
cles with negligible inertia, subject to a constant
strain rate. Dinh and Armstrong,4 extending
Batchelor’s approach and using Jeffery’s equa-
tion, have developed a constitutive equation for
semiconcentrated suspensions of rigid fibers with
infinite aspect ratio (L/D) in a Newtonian solvent
undergoing homogeneous flows. It has been
shown5–10 that the model prediction is in excel-
lent agreement with the complex rheological be-
havior, which is a strong indication that the con-
stitutive equation is capturing the important
physics of the problem. Ausias et al.11 using a
similar approach to Dinh and Armstrong, devel-
oped a model for dilute suspensions of long rigid
fibers and extended it to concentrated suspen-
sions. They introduced one parameter to relate
the coupling between stress and fiber orientation.

Folgar and Tucker12 proposed a phenomeno-
logical approach to model fiber rotations based on
the combination of two effects: a diffusion effect,
which takes into account fiber–fiber interactions
and a convection effect, which depends on the flow
field applied. They introduced an empirical coef-
ficient to take into account the effects of the sus-
pension parameters in the interaction. Other au-
thors13–15 followed a similar approach extending
the model to higher fiber concentrations.

Bercraft and Metzner16 performed a “molecu-
lar approach” based on a modification of the mo-
lecular theory of Doi for liquid crystalline poly-
mers17,18 to take into account the macroscopic
dimensions of the fibers. They obtained good pre-
dictions for steady rheological measurements.

The last model, reported by Ghosh et al.,19 is a
“thermodynamics approach”. They developed the
model using a conformational tensor to represent
a fiber orientation in orientation space and a
Hamiltonian structure to derive the evolution of
the conformation tensor. They avoided numerical
problems, and with fitting parameters they have
been able to predict rheological properties in
steady state.

We compare the fiber motion predicted by the
Dinh and Armstrong equation with that of Jef-
fery’s model, which has been developed for dilute
suspensions with finite fiber aspect ratio. We an-
alyze the fiber contribution to the rheology of the

suspensions. Comparison is made between uni-
form and random initial fiber orientation distri-
bution.

We prepare a method to determine whether a
suspension has a random fiber orientation distri-
bution or not, and how the angles that describe
the orientation can be obtained if the suspension
has a predominant alignment.

FIBER MOTION IN START-UP OF STEADY
SHEAR FLOW

We consider here a homogeneous shear flow, vx
5 ġ y, vy 5 vz 5 0 where the shear rate ġ 5 0 for
t # 0 and is a constant for t . 0. The fiber
structure is described by a distribution function,
c(u,f), which is a probability density, and
c(u,f)dudf representing the probability of finding
a fiber with orientation angles in a range du and
df around u and f. In Figure 1 we show the
angles u and f, which describe the fiber orienta-
tion and the velocity profile vx 5 ġy in a fixed
coordinate system. For this flow field the distri-
bution function is given by:

c~u, f! 5 @4p~1 2 g sin2u sin 2f

1 g2sin2u sin2f!3/2#21 (1)

where g 5 ġt is the shear strain accumulated
from the inception of the flow at t 5 0. In obtain-
ing eq 1, it is assumed that c(t 5 0) 5 1/4p, that
is, that the fibers are initially randomly oriented.4

The equations of motion for the fiber, in terms
of the spherical angles, are

Figure 1. Fiber in shear flow: vx 5 ġy, vy 5 vz 5 0. u
and f are the spherical polar angles that describe the
orientation of the fiber.
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du

dg
5 sin u cos u cos f (2)

df

dg
5 2sin2f. (3)

These equations can be integrated to give

tan u 5 tan u0@g2sin2f0 1 2g sin f0cos f0 1 1#1/2

(4)

tan f 5
1

cot f0 1 g
. (5)

The Dinh and Armstrong model neglects the
thickness of the fibers. For this reason the equa-
tions of motion, 2 and 3, are independent of the
fiber aspect ratio.

The fiber motion for a very dilute suspension in
a Newtonian fluid (using Jeffery’s equation of mo-
tion), for the velocity field described is given
by:20,21

du

dg
5

@~L/D!2 2 1#

@~L/D!2 1 1#
(6)

df

dg
5

2 1
~L/D!2 1 1 @~L/D!2sin2f 1 cos2f#. (7)

Integration of these equations yields

tan u 5
CL/D

@~L/D!2sin2f 1 cos2f#1/2 (8)

tan f 5
1

L/D tanFg
1

L/D 1 D/L 1 kG (9)

where

tan k 5
1

L/D tan f0
(10)

C 5
tan f0

@~L/D!2sin2k 1 cos2k#1/2 . (11)

C is known as the orbit constant, and k is the
initial phase angle.

These equations, which have been obtained for
particles with finite thickness show that the fiber

motion depends on the fiber aspect ratio. It is
interesting to note that if the limit for L/D3 ` is
taken in eqs 6 to 7, then eqs 2 and 3 are obtained.

The orientation distribution c(u,f) completely
describes the changes in the fiber structure of an
initially random fiber suspension during the
start-up of steady shear flow. Once the strain is
specified eq 1 allows us to calculate the number of
fibers in each specific orientation.

The motion of a single fiber can be studied by
using eqs 4 and 5, which describe the fiber orien-
tation as a function of the initial fiber orientation
at t 5 0 and the shear strain. The change in fiber
orientation, represented by the two angles u and
f, during the start-up of steady shear flow for
different initial fiber orientations, uo and fo, is
presented in Figure 2.

The results shown in Figure 2 are for fo 5 175°
and uo between uo 5 20° and uo 5 90°. The solid
line is for f, and the dashed lines are for u. There
is only one line for f because the change of this
angle with strain is independent of uo. At the
inception of the flow at t 5 0, the fiber is very close
to the shearing plane and pointing upstream.
Thus during the flow the fiber will flip over and
approach the shearing plane pointing down-

Figure 2. The change in fiber orientation, repre-
sented by the two angles u and f, during the start-up of
steady shear flow for different initial fiber orientations,
uo and fo, as a function of shearing strain, eqs 4 and 5.
The initial orientation used was fo 5 175° with differ-
ent uo: uo 5 20, 45, 60, 85, and 90°. The solid line is for
f, and dashed lines are for u.
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stream. Both angles change very slowly with g
when the fiber is close to the shearing plane, f
. 170° or f , 10°, but for 20° , f , 160°, both f
and u change very rapidly with g. For all uo the
fiber gets the closest to the z axis when f 5 90°.
Figure 2 shows that the fiber is moving very
slowly when f is close to zero; actually f will go to
zero only when g 3 `. This is a result of the
assumption that the fiber has a large aspect ratio
and negligible thickness; as a consequence of this
the fiber will never flip over and start a new orbit.
Since the fiber will never be exactly in the shear-
ing plane, unless already there for t 5 0, we will
define a finite angular range that we will consider
to be the boundary of the shearing plane. If we
assume that this range is 10°, that is, the fiber is
in the shearing plane when f . 175° or f , 5°,
then the strain units required for a fiber flip over
is Dg ' 25, if the angle range is 20° then Dg ' 11.
It is interesting to note that to move the fiber from
f 5 145° to f 5 45°, Df 5 90°, only two strain
units are required.

The results presented in Figure 2 can help us
in understanding the experimental findings in
the flow reversibility study.5,7 It was found that
when the strain applied to the suspension is
smaller than a critical value, g ' 9, the flow is
reversible, whereas for a maximum strain larger
than this critical value the flow is irreversible.
From Figure 2 we can see that for g 5 10 all the
fibers with f0 from 0° to approximately 135° will
be aligned in the shearing plane. If the suspen-
sion had an initial random fiber orientation dis-
tribution, then at this strain, g 5 10, 75% of the
fibers would have an orientation angle f ' 0° and
would thus be moving very slowly. The other 25%
of the fibers with f0 between 135° and 180° have
an orientation angle f ' 90° and are moving very
rapidly towards the shearing plane. Thus there is
an important difference in the fiber structure for
strains less than or greater than 10, and this may
be associated with the fiber–fiber interaction in
the suspension. For g , 10 the fibers are all
rotating towards the shearing plane with similar
velocities, and there is no fiber accumulation in
any particular orientation. On the other hand for
g 5 10 the fibers are rotating with very different
velocities. The fibers that have accumulated in
the shearing plane are almost stationary and the
fibers with f ' 90° are at their maximum rota-
tional velocity. This would suggest that the fiber–
fiber interaction at g 5 10 is much stronger than
that observed for g , 10, it is not unlikely for such
strong interaction between the fibers, which may

involve even fiber–fiber contact, to be nonrevers-
ible, which would explain the existence of the
critical maximum strain, g ' 9, found experimen-
tally.

Figure 2 shows that the equation of motion
proposed by Dinh and Armstrong predicts that
after the start-up of steady shear flow, for g . 20,
the fibers are aligned in the shearing plane and
stay in it forever. The equation of motion derived
by Jeffery, eqs 6 to 11, which is valid for very
dilute suspensions in Newtonian fluids and can be
used for any fiber aspect ratio, describes how the
fibers go in and out of the shearing plane.

The fiber orientation in the start-up of steady
shear flow calculated using eqs 6 to 11 is pre-
sented in Figure 3. The initial fiber orientation
was f0 5 175° and u0 5 45°, and the fiber aspect
ratios were L/D 5 5, 10, 20, and 30 for Figure
3(a–d), respectively. In Figure 3(d) a calculation
using the Dinh and Armstrong equation is also
included. The fiber is initially close to the shear-
ing plane pointing upstream. With increasing
strain the fiber moves toward the shearing plane
pointing downstream, when f changes from
2180° to 180° the fiber has completed an orbit.
Despite the fact that the fiber motion is qualita-
tively the same for all four fiber aspect ratios, the
number of orbits performed by the fiber when g
5 100 and the time that the fiber spends getting
into and out of the shearing plane is strongly
dependent on the fiber aspect ratio. The fiber is
considered to be in the shearing plane when f
. 170° or f , 10°. For L/D 5 5, Figure 3(a) shows
that when g 5 100 the fiber has performed three
orbits, and that every time that the fiber is in the
shearing plane, it remains there for approxi-
mately 10 strain units. For L/D 5 10, Figure 3(b)
shows that when g 5 100 the fiber has performed
1.5 orbits, and approximately 25 strain units are
required for the fiber to move in and out of the
shearing plane. For L/D 5 20, Figure 3(c) shows
that when g 5 100 the fiber has performed one
orbit, and approximately 50 strain units are re-
quired for the fiber to move in and out of the
shearing plane. For L/D 5 30, Figure 3(d) shows
that when g 5 100 the fiber has performed 0.5
orbit, and approximately 85 strain units are re-
quired for the fiber to move in and out of the
shearing plane. Figure 3(d) shows that for L/D
5 30, the fiber motion described by the Dinh and
Armstrong equations is very close to that ob-
tained by using Jeffery’s equation. Figure 3 shows
clearly that for suspensions of long fibers, L/D
. 20 with increasing g, the particles align in the
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shearing plane; the flipping time is so small com-
pared with the time that the fiber remains in the
shearing plane that for large strain, g . 20, the
overall picture is one of a suspension with all the
fibers aligned in the shearing direction. On the
other hand, for suspensions of short fibers, L/D

, 20, both times are of the same order of magni-
tude and for large strain all fiber orientations are
present. We have noticed this different theoreti-
cal behavior when we compared the rheological
properties of suspensions with different fiber as-
pect ratios.

Figure 3. The change in fiber orientation, represented by the two angles u and f,
during the start-up of steady shear flow for different initial fiber orientations, uo and fo,
as a function of shearing strain, according to eqs 8 to 11 (Jeffery’s equation). The initial
orientation used was fo 5 175° and uo 5 45°, and the fiber aspect ratio was: (a) L/D 5 5,
(b) L/D 5 10, (c) L/D 5 20, (d) L/D 5 30. The solid line is for f, and the dashed lines are
for u. In (d) the dotted line are eqs 4 and 5 (Dinh and Armstrong).
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RHEOLOGICAL PROPERTIES OF A
SUSPENSION WITH UNIFORM FIBER
ORIENTATION

The constitutive equation for a semiconcentrated
fiber suspension in Newtonian fluids developed by
Dinh and Armstrong, is used to describe the rheo-
logical properties of suspensions with uniform
(delta function) fiber orientation distribution
function.

The (extra) stress tensor t is given by:

t 5 2hsġ 2 hs

2pnL3

12 ln~2h/D!
k :E ppppc dp. (12)

The first term on the right hand of eq 12 is the
contribution to the stress from the solvent, and
the second term gives the contribution from the
fibers. nL3 expresses the number of fibers present
in the domain swept out by a fiber rotating
around a minor axis, h is the average distance
from a given fiber to its nearest neighbor,3,17,22,23

the unit vector p gives the direction of a fiber at
time t, k is the transpose of the velocity gradient
tensor and c is the distribution function intro-
duced to account for the probability that the fiber
selected has a specific orientation p at time t.
When all the fibers are oriented in the same di-
rection, p0, the distribution function is given by a
delta function

c 5 d~p 2 p0! (13)

With this distribution function in eq 12 we obtain

t 5 2hsġ 2 hs

2pnL3

12 ln~2h/D!
k : p0p0p0p0. (14)

Equation 14 has been used to evaluate the
rheological properties of the suspension for shear
flow (vx 5 ġy, vy 5 vz 5 0). The kinematics for this
flow are described by:

k 5 ġF 0 1 0
0 0 0
0 0 0

G (15)

By taking the expression for k and inserting it
into eq 14, the following expressions for h1, C1

1,
C2

1, and C1
1 2 C2

1 are obtained for the fiber sus-
pensions:

Fh1

hs
2 1G 5

2pnL3

12 ln~2h/D!
sin4u cos2f sin2f (16)

C1
1 5

2pnL3

12 ln~2h/D!ġ
sin4u

sin 4f

4 (17)

C2
1 5

2pnL3

12 ln~2h/D!ġ
sin4u

sin 2f

2

3 @sin2f 2 cot2u# (18)

C1
1 2 C2

1 5
2pnL3

12 ln~2h/D!ġ
sin4u

3 Fsin 4f

4 2
sin 2f

2 ~sin2f 2 cot2u!G . (19)

Equations 16 to 19 describe the rheological
properties of the suspension as a function of the
fiber orientation. For example, eq 16 predicts the
transient viscosity for a suspension with uniform
fiber orientation given by the angles f and u in
the inception of the shear flow. Since there is no
time or strain in the equation it is only valid for
that instant when all fibers have orientation u, f.
These equations are useful to see how the orien-
tation of the fiber affects the fiber contribution to
the rheological properties of the suspension. If we
are interested in the change of the suspension
viscosity during the start-up of steady shear flow,
we have to use both the equation of motion, eqs 4
and 5 and eq 16. First the initial fiber orientation
is selected, fo and uo; then by using the equation
of motion we obtain f and u for each strain, and
these angles are then put into eq 16 to obtain the
suspension viscosity. Below we present the sus-
pension rheological properties as functions of the
orientation angles, f and u (Figs. 4 and 5) and as
functions of the shearing strain in the start-up
of steady shear flow for suspensions with uni-
form initial fiber orientation distributions (Figs.
6 to 11).

In Figure 4 the fiber contribution to the sus-
pension viscosity is shown as a function of both
orientation angles, f and u. There is no contribu-
tion to the suspension viscosity when the fibers
are in the shearing plane, f 5 0° or 180° for all u,
and u 5 0° or 180° for all f. The contribution is
also zero when the fibers are perpendicular to the
velocity field, f 5 90° for all u. The maximum
contribution is obtained when the fibers are ori-
ented at u 5 90° and f 5 45° or f 5 135°. Notice
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that fibers oriented at f or f 1 p/2 show the same
contribution to the suspension viscosity.

In Figure 5 the first normal stress coefficient is
shown as a function of both orientation angles, f
and u. There are several fiber orientations for
which C1

1 is zero: (a) fibers in the shearing plane,
f 5 0° or 180° for all u, and u 5 0° or 180° for all
f, (b) fibers perpendicular to the velocity field, f
5 90° for all u, and (c) fibers oriented at f 5 45° or
f 5 135° for all u. Fibers oriented at f or f 1 p/2
show the same C1

1. It is interesting to notice that
C1

1 can be positive or negative depending on the
fiber orientation. The maximum C1

1 is obtained
for fibers at u 5 90° and f 5 p/8 or f 5 5p/8 and
the minimums are for fibers at u 5 90° and f
5 3p/8 or f 5 7p/8.

We have already shown how the orientation of
the fiber affects the fiber contribution to the sus-
pension rheological properties. Next we study the
effect of the initial fiber orientation distribution
on the suspension rheological properties in the
start-up of steady shear flow. We calculate h1,
C1

1, C2
1, and C1

1 2 C2
1 using the following flow

history: The suspension is first sheared in the
positive direction, vx 5 ġy, up to a maximum
strain gm5 20; the flow is then reversed, vx 5
2ġy, and the suspension is sheared up to gm
5 220; finally the shear direction is changed
again, vx 5 ġy, and the suspension is sheared
until g 5 0.

Figure 6 shows the rheological properties as a
function of shear strain for a suspension with
initial random fiber orientation distribution. Fig-

ures 7 and 8 show the rheological properties for
suspensions with an initial uniform fiber orienta-
tion distribution. At t 5 0 all the fibers have an
orientation given by fo 5 90° and uo 5 90° in
Figure 7 and fo 5 90° and uo 5 45° in Figure 8.
The contribution of the fibers to the suspension
viscosity shows, in general, the same behavior for
suspensions with both initial orientation distribu-
tions. For the initially random system the maxi-
mums are at g ' 61.3, whereas for the initially
uniform system the maximums are at g 5 61. At
g 5 0 the suspension viscosity is zero for the
suspension with uniform orientation. This follows
from the fact that we have chosen fo 5 90° for the
initial orientation; any other fo will give a non-
zero value, but if fo is larger than 90° h1 will go
to zero for a strain at which f is 90°. The value of
u selected for the initial orientation only affects
the magnitude of h1. The main difference be-
tween random and uniform initial distribution is
perhaps the magnitude of h1: the maximum di-
mensionless contribution to the suspension vis-
cosity is 0.085 for the random system and 0.25 for
the system with uniform distribution (fo 5 90°
and uo 5 90°). The normal stress coefficient dif-
ference C1

1 2 C2
1 shows a similar transient be-

havior for all three initial fiber orientation distri-
butions but the magnitude of the peak depends
strongly on the initial fiber distribution. The
small peak that is observed in the random system
at g ' 0.5 is one order of magnitude bigger than
when the fibers are initially all aligned at fo

Figure 5. The dimensionless first normal stress coef-
ficient for the suspension as a function of u and f (eq
17).

Figure 4. The dimensionless fiber contribution to the
suspension viscosity as a function of u and f (eq 16).
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5 90° and uo 5 90°. For uo 5 45° and the peak is
smaller but still larger than in the suspension
with initial random orientation. The second peak
in C1

1 2 C2
1 at g ' 3.5 is also affected by the

initial distribution. It follows the same trend as
the peak at g ' 0.5 but the changes in magnitude
are smaller. For C1

1 the initial fiber orientation
distribution has a much stronger effect. The

Figure 6. The dimensionless rheological properties as a function of shear strain for a
suspension with initial random fiber orientation distribution in the start-up of steady
shear flow. The shearing direction was changed two times. vx 5 ġy for g 5 0 to g 5 20,
vx 5 2 ġy for g 5 20 to g 5 220, and vx 5 ġy for g 5 220 to g 5 0. (a) Fiber contribution
to transient viscosity of the suspension (h1/hs21); (b) normal stress coefficient differ-
ence (C1

1 2 C2
1); (c) first normal stress coefficient C1

1 ; and (d) second normal stress
coefficient C2

1.
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shape of the transient curve changes when the
initial orientation is changed from random to uni-
formly aligned. The suspension with an initially
random orientation distribution shows only one

peak in C1
1, and for small strains, g 5 0 to g 5 0.5,

C1
1 is very close to zero. When the fibers are

initially uniformly aligned at fo 5 90° and uo
5 90°, C1

1 shows two peaks; the one that is

Figure 7. The dimensionless rheological properties as a function of shear strain for a
suspension with uniform fiber orientation distribution, fo 5 90° and uo 5 95°, in the
start-up of steady shear flow. The shearing direction was changed two times. vx 5 ġy for
g 5 0 to g 5 20, vx 5 2ġy for g 5 20 to g 5 220, and vx 5 ġy for g 5 220 to g 5 0. (a)
Fiber contribution to transient viscosity of the suspension (h1/hs21); (b) Normal stress
coefficient difference (C1

1 2 C2
1); (c) first normal stress coefficient C1

1; and (d) second
normal stress coefficient C2

1.
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present in the random system, which now is
larger, and another very sharp one at g '0.5. The
effect of the initial fiber orientation distribution
on C1

1 is similar to that on C1
1 2 C2

1. The peak

that is present in the random system increases its
magnitude for suspensions with fibers uniformly
aligned at fo 5 90° and uo 5 90°. For suspensions
with fibers aligned at fo 5 90° and uo 5 45°, C2

1 is

Figure 8. The dimensionless rheological properties as a function of shear strain for a
suspension with uniform fiber orientation distribution, fo 5 90° and uo 5 45°, in the
start-up of steady shear flow. The shearing direction was changed two times. vx 5 ġy for
g 5 0 to g 5 20, vx 5 2ġy for g 5 20 to g 5 220, and vx 5 ġy for g 5 220 to g 5 0. (a)
Fiber contribution to transient viscosity of the suspension (h1/hs21); (b) normal stress
coefficient difference (C1

1 2 C2
1); (c) first normal stress coefficient C1

1 ; and (d) second
normal stress coefficient C2

1.
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zero for all strains because for this specific orien-
tation tzz 5 tyy for all strains. All the rheological
properties become independent of the initial fiber
orientation distribution for g . 10 and g , 2 10.
The sign change observed in the normal stress
coefficients when the flow is reversed is not af-
fected by the initial orientation distribution.

Figures 6, 7, and 8 have shown that there is an
important difference in the rheological behavior
between suspension with random orientations of
fiber and suspension with uniform fiber orienta-
tion. This would indicate that by measuring the
suspensions rheological properties using the flow
history described above, we can predict whether
the suspension has a random fiber distribution or
not. If this test is negative, that is, if we find
evidence that the suspension has a uniform fiber
orientation the next step is to determine the ori-
entation angles fo and uo. To study this possibil-
ity we calculated the rheological properties of a
suspension with uniform fiber orientation in the
start-up of steady shear flow for different initial
fiber orientations.

Figures 9 and 10 show h1 and C1
1 2 C2

1 re-
spectively, as functions of the shearing strain for
two initial fiber orientations, fo 5 175°, uo 5 90°
and fo 5 170°, uo 5 90°. The strains at which the
rheological properties have peaks are sensitive to

fo. The transient behavior for both values of fo is
identical but the curves are shifted along the
strain axis. A five degree change in f0 around f0
5 170° produces a shift of approximately six
strain units in all the rheological properties.

In Figure 11 we show C1
1 2 C2

1 as a function of
the shearing strain for two initial fiber orienta-
tions, fo 5 175°, uo 5 90°, and fo 5 175°, uo 5 85°.
The magnitude of C1

1 2 C2
1 is sensitive to uo, in as

much as a five degree change in uo produces a
variation of approximately one order of magni-
tude in the second and third peak of C1

1 2 C2
1.

CONCLUSIONS

The introduction of fibers into a Newtonian fluid
modifies its rheological properties because the fi-
bers are rigid. In a homogeneous shear flow the
fiber center of mass moves affinely with the fluid.
The fiber cannot stretch; therefore, the velocity at
any point along its axis, other than the center of
mass, is different to the velocity of the undis-
turbed fluid. The velocity gradient in a fluid layer
close to the fibers generates stresses that induce a
force on the fibers, which is the origin of all the
rheological properties of the suspension.

Figure 9. The dimensionless fiber contribution to the
suspension viscosity as a function of shear strain for a
suspension with uniform fiber orientation distribution.
Two initial fiber orientations were used: fo 5 175° uo

5 90° (solid line) and fo 5 170° uo 5 90° (dashed line).

Figure 10. The dimensionless normal stress coeffi-
cient difference as a function of shear strain for a sus-
pension with uniform fiber orientation distribution.
Two initial fiber orientations were used: fo 5 175° uo

5 90° (solid line) and fo 5 170° uo 5 90° (dashed line).
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The fiber motion was analyzed by two equa-
tions: The equation of motion proposed by Dinh
and Armstrong predicts that after the start-up of
steady shear flow, for g . 20, the fibers are
aligned in the shearing plane and stay in this
plane forever, while the equation of motion de-
rived by Jeffery, which is valid for very dilute
suspensions in Newtonian fluids and can be used
for any fiber aspect ratio, describes how the fibers
go in and out of the shearing plane.

For large aspect ratio the fiber motion de-
scribed by the Dinh and Armstrong equations is
very close to that obtained using Jeffery’s equa-
tion. We show clearly that for suspensions of long
fibers, L/D . 20, the flipping time is so small
compared with the time that the fiber remains in
the shearing plane that for large strain, g . 20,
the overall picture is one of a suspension with all
the fibers aligned in the shearing direction. On
the other hand, for suspensions of short fibers,
L/D , 20, both times are of the same order of
magnitude and for large strain all fiber orienta-
tions are present.

This study has shown that, at least theoreti-
cally, the rheological properties of the suspension
can be used to determine the fiber orientation in
the sample. The first normal stress coefficient is
the property to measure in order to determine

whether or not the suspension has a random fiber
orientation. Eventually any of the three proper-
ties can be used to determine fo and uo but the
first normal stress coefficient is the most sensitive
to changes in these angles. The strain at one of
the peaks can be used to calculate fo; and from
the value of the magnitude of the property, uo can
be obtained. It was found that the normal stress
coefficients can show negative or positive values
depending on orientation of the fibers.

The authors gratefully acknowledge the financial sup-
port of the National Council of Argentina (CONICET).
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Figure 11. The dimensionless normal stress coeffi-
cient difference as a function of shear strain for a sus-
pension with uniform fiber orientation distribution.
Two initial fiber orientations were used: fo 5 175° uo

5 90° (solid line) and fo 5 175° uo 5 85° (dashed line).
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