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Abstract

The Dual Boundary Element Method (DBEM) is used in this work to model the micro mechanics of fatigue crack propagation in
austempered ductile iron (ADI). Emphasis is put in devising accurate procedures for the evaluation of the interaction effects between
very close crack—microcrack arrays. Fracture parameters are computed via the so-called one-point displacement formula using special
crack-tip elements. Crack propagation is modelled using an incremental crack extension analysis; with crack extensions calculated using a
propagation law that accounts for the near-threshold regime. Obtained results are in agreement with experimental observations, providing

evidence to fracture mechanics models proposed in the literature. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Cast irons are two-phase metallic composites in which
cementite or graphite particles are arranged in an iron-
based matrix. Both, matrix microstructure and particle
shape and type depend on chemical composition and
thermal treatment. Austempered ductile iron (ADI) is the
result of special heat treatments of a conventional nodular
cast iron with selectively added alloying elements. ADI
combines good elongation and toughness with high tensile
strength; combination that increases the resistance to wear
and fatigue when compared to other ductile irons. The
material has a wide range of industrial applications, as is
the case of chain wheels, lines of cement mills, railroad
wheels, gears and automotive crankshafts. The application
of ADI will continue to grow as the design engineer
familiarizes with their properties [1].

Greno et al. [2] carried out a quantitative study of
the morphology of fatigue crack propagation in ADI, show-
ing that the crack path preferentially intersects graphite
nodules. They also observed that a microcracking pro-
cess takes place in the region of high stress concentration
around the tip of macroscopic cracks. These microcracks
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emanate from irregularities and sharp corners located on
the nodule-matrix interfaces, as shown in Fig. 1. The occur-
rence of subcritical multiple microcrack initiation at
graphite nodules has been reported by other authors even
at stress levels close to the fatigue endurance limit [3].
Greno et al. [2] propose that as microcracks simultaneously
propagate besides the main crack, the available elastic
energy for the propagation of the main crack is diminished
mainly because of the creation of a larger crack surface. In
addition there is growing evidence of the shielding effect
that microcracking has on the tip of a dominant macro-
crack, redistributing and reducing the average near-tip
stresses [4]. Sources of stress redistribution are the reduction
of elastic moduli resulting from microcracking and inelastic
strains arising from the release of residual or transformation
stresses when microcracks are formed. All the above-
mentioned mechanisms provide evidence to explain the
relatively low propagation rates and high effective propa-
gation threshold values of ADI when compared with those
of steels. For these mechanisms to operate it is essential
that microcracks arrest and be highly stable in the arrest
configuration [4].

A two-dimensional numerical study of the micro-
mechanics of fatigue crack propagation in ADI is presented
in this paper in order to provide further evidence to validate
the fracture mechanics models mentioned above. The
numerical tool for the analysis is based on the Dual
Boundary Element Method (DBEM), customized for the
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Fig. 1. Enlarged X 500 micrograph showing the fatigue crack propagation
mechanism in ADI [2]. Note sharp edges in ‘spheroidal’ nodules (White:
matrix, black: graphite nodules).

accurate evaluation of the interaction effects between
cracks, microcracks and graphite nodules.

2. Method of analysis
2.1. BEM formulation

Numerical modelling of fatigue crack propagation
requires the capability of predicting the direction and
amount of crack growth for each given load increment, as
well as the robustness to update the numerical model to
account for the changing crack geometry. The DBEM is a
well-established numerical technique in this area of fracture
mechanics as it eliminates the remeshing problems, which
are typical of domain methods and other boundary element
formulations [5]. General mixed-mode crack problems can
be solved with the DBEM in a single region formulation,
where the displacement boundary integral equation is
applied on one of the crack surfaces and the traction bound-
ary integral equation on the other. Crack growth process is
efficiently simulated with an incremental analysis, where
crack extensions are modelled by adding new discontinuous
elements ahead the crack tips. This simple strategy is robust
and allows the DBEM to effectively model general edge or
embedded crack problems; crack tips, crack-edge corners
and crack kinks do not require special treatment, since
they are not located at nodal points where collocation is
carried out. For further details on the DBEM formulation
and implementation the reader is referred to the works by
Portela et al. [6,7].

2.2. Evaluation of crack-tip stress intensity factors

Accurate evaluation of crack tip stress intensity factors K
is of main importance for the effective analysis of crack
propagation problems. In particular for the kind of problem
tackled in this work, where propagation of close crack—
microcrack arrays is analysed, precise assessment of

interaction effects constitutes a key factor. In this sense,
three different techniques were considered for the evalua-
tion of K: the J-integral [8], the Energy Domain Integral
(EDI) [9] and the so-called one point displacement formula
[8]. DBEM implementation of the J-integral is due to
Portela et al. [7], while implementation of the EDI follows
the one proposed by Cisilino et al. [10]. Stress intensity
factors through the one-point displacement formula are
simply obtained by replacing crack face displacements in
the expressions of the near crack-tip displacement fields. On
the other hand, its efficiency strongly depends on the accur-
acy of the displacements calculated on the crack surfaces.
In order to have a better representation of the crack-tip
region, special crack-tip elements which exhibit the correct
\/r variation for the displacement field were implemented.
The approach devised by Yamada et al. [11] for finite
elements was employed to derive the special shape func-
tions for the displacement fields in discontinuous elements.
The performance of special elements for crack—microcrack
problems was assessed by comparison with results due to
Rubinstein [12], who provided an analytical solution for K
at the crack tip of a semi-infinite crack interacting with a
collinear microcrack in an infinite sheet (see Fig. 2). BEM
models where constructed following the criteria of Dutta et
al. [13], who suggest that for a crack length a at least twenty
times larger than the length of the microcrack 2c, interaction
behaviour can be assimilated to that of a semi-infinite crack.
Differences between computed and reference K values for
crack tip A are shown in Fig. 2, for a wide range of relative
microcrack positions //c. Results are presented as functions
of normalized crack-tip element length L/a. It can be
observed that differences less than 2% are obtained with
crack-tip elements of length L/a < 0.01. For all cases best
results were obtained when displacements of the node
closest to the crack tip were considered for K computations.
Performance of the J-integral and the EDI for very small
integration paths was also tested. Computed results for the
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Fig. 2. Difference (Percentage) of computed K values with respect to
Rubinstein’s solution for crack tip A [12].
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Table 1
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Comparison of K results for a semi-infinite crack interacting with a collinear microcrack in an infinite sheet

hic K, /Fo\/ma KgloJmc
Displ. form J integral EDI Ref. [11] Displ. form J integral EDI

0.05 1.74 1.82 1.83 1.75 27.37 28.98 29.16
0.08 1.55 1.59 1.60 1.55 23.08 23.79 23.97
0.1 1.47 1.50 1.51 1.47 21.11 21.65 21.83
0.2 1.29 1.29 1.30 1.28 16.10 16.28 16.28
0.3 1.22 1.21 1.22 1.20 13.60 13.60 13.60
0.4 1.18 1.16 1.17 1.17 11.99 11.99 12.16

macrocrack tip A and the microcrack tip B (see Fig. 2) using
both techniques are presented in Table 1, together with the
results obtained with the displacement formula and refer-
ence values. Lengths of the special crack-tip element corre-
spond to L/a = 0.005 and L/c = 0.05 for the crack and
microcrack, respectively. Integration paths and domains
were chosen circular, with a radius equal to the distance
from the crack tip to the closest node on the crack surface.
Data in the table show that for distances A/c > 0.1, results
obtained using the three techniques are almost identical. On
the other hand, for A/c < 0.1, results obtained using the
J-integral and the EDI tend to be larger than those of the
displacement formula. In the case of tip A, for which
the analytical solution exists, the displacement formula is
the most accurate with results differing less than 1% from
those in the reference. Reference results for the microcrack
tip B are not available. The effect of the special element
length was found not to be as marked as for tip A. For
special elements with lengths L/c < 0.05 the variations in
the results was less than 1%. Although the three techniques
perform similarly the one-point displacement formula was
preferred for the rest of this work, as the definition of appro-
priate integration paths or domains for general crack—
microcrack arrays could be sometimes difficult.
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Fig. 3. Crack—microcrack interaction: (a) problem geometry, (b) computed
results, (c) variation of the SIF at the main crack tip as function of the
microcrack orientation (from Kachanov et al. [14]).

A more general test problem for which the microcrack
is not collinear with the main crack is shown in Fig. 3.
Kachanov et al. [14] showed that interaction effects for
this case could either increase or decrease K at the tip of
the main crack, depending on the microcrack orientation
angle 6. Only a qualitative comparison between results is
shown in for this case, as numerical values are not given in
the reference. Results show an excellent correlation.

2.3. Crack extension analysis

The incremental crack-extension analysis assumes a
piece-wise linear discretization of the unknown crack
path. For each increment of the crack extension, the
DBEM is applied to carry out a stress analysis and crack
tip stress intensity factor computation. Magnitude and direc-
tion of crack increments are then computed for each crack,
and the crack extended accordingly by adding new elements
ahead of the previous crack tips. The above steps are
repeated sequentially until a specified number of crack-
extensions is reached.

The fatigue propagation formula due to Klesnil and Lukas
[15] was chosen to correlate the incremental size and the
number of load cycles, as it accounts for the near-threshold
regime
da

—— = C(AK" —

ey
where da/dN is the rate of change in crack length per load
cycle; C and m are material constants; AKy, accounts for the
threshold value below which cracks do not propagate and
AK is the cyclic value of equivalent stress intensity factor
that accounts for the combined effects of mode I and II.
Employing the expression proposed by Tanaka [16], the
resultant expression for AK is

AK? = AK? + 2AK3. )

The effect of closure on crack propagation rate is
acquainted though the ‘effective’ crack tip stress intensity
factor range

AI(eff = Kmax - K

op»

3)

where K, corresponds to the value of K at which the crack
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tip opens. Closure data is usually presented in terms of Elber
[17] closure ratio U = AK.«/AK.

Finally, the magnitudes of crack-extensions are computed
using Expressions (1) and (3) in an incremental form:

Aa = C[(UAK)" — AKI]AN. )

Among the several available criteria for computing the
local direction of crack growth, the minimum strain energy
criterion [18] is employed in this work. This is used in
conjunction with the predictor—corrector algorithm due to
Portela et al. [6] to ensure that a unique final crack path is
achieved regardless of the crack-extension length. It is also
worth to mention that as the model involves the propagation
of multiple cracks, the computation of the crack extensions
is based on a fixed value of load cycles for all cracks in order
to allow them to extend differently.

3. Application to ADI
3.1. Fatigue crack propagation

Simple models consisting in a macrocrack and a micro-
cracked nodule were considered first in order to study the
effect of crack closure on the crack—microcrack interaction
mechanism. Crack closure is a relevant factor when assess-
ing the mechanism of fatigue crack propagation in ADI as
it behaves differently for macrocracks and microcracks. In
this sense is worth to note that while closure levels can be
significant for macrocracks, microcracks are mostly closure
free [19]. The model geometry and discretization, together
with the resulting crack paths for three closure levels are
shown in Fig. 4. As for all models presented in this work,
graphite nodules were assimilated to circular voids. This
assumption implies to consider a material with 100%
nodularity, and to neglect the mechanical response of
graphite when compared with that of the metal matrix.
Metal matrix is assumed isotropic and linear elastic.
Material constants for the propagation law were chosen
according to experimental results as C = 4.43 X 107" m=
2.85, AK,, = 5 MPa./m. Closure levels were selected as
U=1 (no closure), U=0.6 and U =0, the last one

microcrack A

-

main crack

corresponding to a limiting case for which the main crack
does not propagate.

Fig. 5 illustrates the evolution of AK with load cycles N
for the three closure levels. Stress intensity factor ranges AK
are presented normalized with respect to AKy, in such a way
that ratios greater than one represent propagating cracks,
while values below one stand for non-propagating cracks.
Note that as the macrocrack approaches the microcrack
emanating from the nodule, interaction effects cause a
substantial increase in the AK at crack tip A, which propa-
gates in opposite sense to the macrocrack growth direction
until joining it. As soon as the macrocrack and the first
microcrack coalesce, microcrack B on the opposite side of
the nodule becomes dominant, taking the role as macrocrack
tip. The effect of closure is of delaying the process as the
macrocrack slows down its propagation rate, taking longer
for it to coalesce with first microcrack.

A more general situation is shown in Fig. 6, where a
macrocrack propagates now into an array of randomly
distributed nodules with microcracks labelled from A to
H. Obtained results allow extending the propagation
mechanism of the previous example, as the tips B, D, F
and H successively take the role of the macrocrack tip. At
the same time, microcracks A, C, E and G propagate
towards the macrocrack tip, to finally become dormant
due to load shielding effects. Microcracks I, J, K and L do
not take part in the main propagation path, however they
present the same general behaviour of the other micro-
cracks. In this case, more than one microcrack propagate
simultaneously towards the tip of the dominant crack, justi-
fying the presence of the crack ‘bifurcations’ observed
during experiments [2].

3.2. Effect of nodule size and distribution

A major feature in the above analyses is that only a
limited number of nodules were included in the models,
while they are actually distributed over the entire domain.
The effect of nodule size and distribution on the propagation
mechanism is considered in this section through the analysis
of the stress fields in the uncracked ADI microstructure. The
ratio r/d, where r is the average nodule radius and d the

Closure level on main crack

0 U=1 (main crack free of closure)
A u=06
U=0 (main crack does not propagate)

microcrack B

Fig. 4. Effect of closure level on crack—microcrack interaction mechanism.
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Fig. 5. Evolution of AK values with load cycles.

average minimum distance between nodule centres was
chosen as the characteristic parameter (see Fig. 7(a)).
Results of a statistical analysis of measurements performed
on standard ADI micrographs using an image-processing
software [20] showed that for a wide range of nodular
counts, ranging from 60 to 600 nodules/mm?, the average
values of r/d as well as its standard deviation are almost
constant. The referred value corresponds to r/d = 0.25
with a standard deviation of around 35%. In view of this
results BEM models were carried out on a series of
randomly generated ADI microstructures with r/d values
ranging from 0.1 to 0.3. A typical model discretization is
shown in Fig. 7(b), where schematics with the location of

—

macrocrack tip

the internal-point arrays used for stress computations are
also shown. Locations of the internal points were selected
to evaluate the characteristics of the stress fields in the vicin-
ity of nodules and along lines oriented perpendicularly to
the applied load (A and B in Fig. 7(b)).

Statistical analysis of the model results used in con-
junction with a weight-function analysis showed that [21]:

e Stress fields in the vicinity of nodules averages those
corresponding to an isolated hole, with standard devia-
tions increasing with r/d. Maximum principal stresses
on nodule surfaces take place in the vicinity of the

Fig. 6. Evolution of propagation paths for a general module array.
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Fig. 7. BEM model of ADI microstructure: (a) characteristic dimensions of the problem; (b) locations of internal-point arrays.

nodule ‘equators’, converting these regions in preferential
locations for the initiation of microcracks. A standard
deviation of around 10% is expected for K values at the
tip of microcracks emanating from nodules, provided the
microcrack length is less than the average nodule radius
(c < r). The deviation grows up to 20% for microcrack
lengths ¢ = 2r.

There exists a clear periodicity in the maximum principal
stresses along paths defined perpendicularly to the direc-
tion of the remote applied load. Analysis of the data using
fast Fourier transformations allowed concluding that
this period corresponds to half the minimum nodule
distance d/2. This makes K levels for a single macrocrack
in ADI lower than that of a macrocrack in a homo-
geneous material, but the difference strongly depends
on the macrocrack length 2a. In order to ensure a
difference less than 10%, crack lengths 2a > 40d are
necessary. Deviation can be reduced to 7% if crack
lengths 2a > 100d are considered.

4. Discussion

Fracture mechanics models for the micromechanisms of
fatigue crack propagation in ADI are based on the existence
of microcracking at the tip of the dominant macrocrack.

Propagation of these microcracks diminishes the available
elastic energy for the propagation of the macrocrack
because of the creation of a larger crack surface. In addition,
microcracks have a shielding effect on the tip of a dominant
macrocrack, redistributing and reducing the average near-
tip stresses. For these mechanisms to operate it is essential
that the microcracks arrest and be highly stable in the arrest
configuration [4].

DBEM results from the previous section provide
evidence to corroborate above models. It is shown that a
macrocrack advances through a mechanism of interaction
and coalescence of the microcracks that develop from
nodules. The same time it is observed those microcracks
that propagate beside the macrocrack but finally do not
take part in the main propagation path become dormant
and stable due to shielding effects. The estimates of the
deviation ranges for AK due to the presence of nodules
show the dependence of the propagation mechanism with
the load level. For applied loads that induce AK levels close
to AKy, on the macrocrack tip, deviation ranges can easily
situate AK levels under propagation threshold inducing the
mechanism to stop. On the other hand, as the difference
between the applied AK levels and AKy, increases, the effect
of deviation bounds in AK is less important. Although they
could affect the general propagation rate, the probability of
the mechanism to stop diminishes. This is verified in fracto-
graphic observations, which showed a decrement in the
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frequency of appearance of crack bifurcations at low levels
of applied AK [2].

Crack closure showed to be another important factor to be
considered as it reduces the general rate of advance and may
in some cases cause locally the premature arrest of crack
growth. Many mechanisms have been identified for fatigue
crack closure in ADI, such us plasticity, residual stresses,
crack face and stress-induced metallurgical transformations.
In this area, more observational data is needed in order to
obtain accurate quantitative estimates of the closure effect.

At the same time, it is important not to forget the three-
dimensional nature of the problem. Long and short cracks
have different behaviour due to the relative size of their
crack fronts. The presence of irregularities causes an effect
more attenuated for a wide front than for a reduced one.
Therefore, it can be said that the increment in the value of
AK factor calculated for the main crack tip presents only a
local effect that would be almost imperceptible if only the
presence of a single nodule next to the crack front is con-
sidered. Propagation rate of the main crack corresponds to
an average of all the phenomena that simultaneously take
place along the whole extension of the crack front. In this
sense, it is not expected for the obtained results to yield
actual numbers for real cases, but to be in accordance
with experimental observations allowing validating fracture
mechanics models.

5. Conclusions

The DBEM was successfully employed in this work to
study the micromechanism of fatigue crack propagation in
ADI. The modelling tool was customized to tackle the
fatigue propagation of very close crack-microcrack arrays.
The one-point displacement formula was employed together
with special crack-tip elements and a suitable discretization
strategy for the evaluation of stress intensity factors. The
procedure allowed for the accurate evaluation of the inter-
action effects between cracks and microcracks.

The devised methodology proved to be a potent tool to help
understanding the propagation mechanisms. Obtained results
are in agreement with experimental observations, and provide
further evidence to validate theoretical fracture mechanics
models to explain the relatively low propagation rates and
high effective threshold values measured in this material.

Acknowledgements

This work was financed by grant PICT 12-04586 of

Agencia Nacional de Promocion Cientifica de la Republica
Argentina. Authors wish to thank CONICET and Organiza-
tion of American States (OAS) for additional funding.
Authors are also grateful to Professor M.H. Aliabadi for
providing DBEM software.

References

[1] Ductile iron data for design engineers, QIT-Fer & Titane, 1990.

[2] Greno GL, Otegui JL, Boeri RE. Mechanisms of fatigue crack growth

in austempered ductile iron. Int J Fract 1999;21:35-43.

[3] Marrow TJ. Short fatigue cracks in austempered ductile iron (ADI).

Fatigue Fract Engng Mater Struct 2000;23:425-34.

Hutchinson JW. Crack tip shielding by micro-cracking in brittle

solids. Acta Metall 1987;35(7):1605-19.

Aliabadi MH. Boundary element formulations in fracture mechanics.

Appl Mech Rev 1997;50(2):83-96.

[6] Portela A, Aliabadi MH, Rooke DP. The dual boundary element

method: effective implementation for crack problems. Int J Num

Meth Engng 1992;33:1267-87.

Portela A, Aliabadi MH, Rooke DP. Dual boundary element incre-

mental analysis of crack propagation. Comput Struct 1993:46(2):

237-47.

Aliabadi MH, Rooke DP. Numerical fracture mechanics. London:

Kluwer Academic Publishers, 1994.

Shih CF, Moran B, Nakamura T. Energy release rate along a three-

dimensional crack front in a thermally stressed body. Int J Fract

1986;30:79-102.

[10] Cisilino AP, Aliabadi MH, Otegui JL. Energy domain integral applied
to solve centre and double-edge crack problems in three dimensions.
Theor Appl Fract Mech 1998;29:237-56.

[11] Yamada Y, Ezawa Y, Nishiguchi I. Reconsiderations on singularity or
crack tip elements. Int J Num Meth Engng 1979;14:1525-44.

[12] Rubinstein AA. Macrocrack interaction with semi-infinite microcrack
array. Int J Fract 1985;27:113-9.

[13] Dutta B, Maiti S, Kakodkar A. Analysis of crack—microcrack inter-
actions and doubly kinked cracks using multiples singular point
elements. Engng Fract Mech 1991;38/23:215-23.

[14] Kachanov M, Montagut E. Interaction of a crack with certain micro-
crack arrays. Engng Fract Mech 1986;25(5/6):625-36.

[15] Klesnil M, Lukas P. Influence of strength and stress history on growth
and stabilisation of fatigue cracks. Engng Fract Mech 1972;4:77-92.

[16] Tanaka K. Fatigue crack propagation from a crack inclined to the
cyclic tensile axis. Engng Fract Mech 1974;6:493-507.

[17] Elber W. The significance of fatigue crack closure damage tolerance
in aircraft structures. ASTM STP 1971;486:230—-47.

[18] Sih GC. Mechanics of fracture initiation and propagation. Dordrecht:
Kluwer Academic Publishers, 1991.

[19] Leis BN, Hoper AT, Ahmad J. Critical review of the fatigue growth of
short cracks. Engng Fract Mech 1986;23(25):883-98.

[20] Image-Pro Plus, Media Cybernetics Inc., USA.

[21] Ortiz JE, Desarrollo de una herramienta computacional para el mode-
lado de propagacion de fisuras multiples por fatiga, Msc Thesis,
Facultad de Ingenieria, Universidad Nacional de Mar del Plata,
Argentina, 2000.

[4

[5

=

[7

—

[8

[t}

[9

—



