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Abstract. We investigate the correlations between different bipartitions of an exactly solvable one-
dimensional many-body Moshinsky model consisting of Nn “nuclei” and Ne “electrons.” We study the
dependence of entanglement on the inter-particle interaction strength, on the number of particles, and
on the particle masses. Consistent with kinematic intuition, the entanglement between two subsystems
vanishes when the subsystems have very different masses, while it attains its maximal value for subsys-
tems of comparable mass. We show how this entanglement feature can be inferred by means of the Born-
Oppenheimer Ansatz, whose validity and breakdown can be understood from a quantum information point
of view.

1 Introduction

The very definition of entanglement relies on the parti-
tioning of a system into subsystems, such that one physical
system can exhibit very different entanglement properties,
depending on the assumed convention [1]. Efficiently solv-
able systems permit one to find a particular partition for
which the wavefunction is separable, even in the presence
of otherwise entangling interaction. For example, the hy-
drogen atom is naturally treated in the center-of-mass and
relative coordinates, in which the wavefunction factorizes,
instead of in the electron and proton coordinates, in which
the wavefunction appears to be highly entangled [2]. Such
a beneficial change of coordinates is, however, impossible
for non-integrable systems, and entanglement in quantum
many-body systems typically occurs with unconquerable
complexity, representing a serious challenge to any numer-
ical or analytical approach. By definition, in a quantum
chaotic system, there is no basis to the Hilbert-space that
permits an efficient description. Quantities developed in
quantum information reflect the failure of any strategy
that relies on the truncation of the Hilbert space, e.g. by
the statistics of Schmidt coefficients of the wavefunction
described under any bipartition [3]. Conversely, funda-
mental restrictions on entanglement, e.g. by area laws [4],
can render efficient simulations of quantum-many-body
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systems possible [5]. An understanding of entanglement
can, thus, be of great importance for practical numerical
solutions.

A system that is particularly prone to complexity is the
many-electron atom, in which the long-range Coulomb in-
teraction renders any exact solution impossible, as with
helium [6]. For such a system, entanglement is represen-
tative of the enormous complexity present in the system.

Indeed, the main features that were found in the an-
alytical treatment of simplified models of helium-like sys-
tems [7,8] also persist in results based on numerical stud-
ies with high-quality wavefunctions [9,10]: entanglement
between electrons tends to increase with the eigenen-
ergy. This increase is also observed in the case of the
singlet-states of helium, but not for triplet-states [9], for
which no satisfactory explanation is yet available. En-
tanglement also increases, in general, with the interac-
tion strength between constituents [8], which is consis-
tent with the decrease in correlations experienced when a
strong external field shields inter-particle interactions due
to confinement [11]. Another property exhibited by the
atomic systems studied so far is that the entanglement
of excited states does not necessarily vanish in the limit
of weak interactions [7]. This feature, as well as the ten-
dency of entanglement to increase with the eigenenergy,
has been shown to be closely related to the degeneracy
of the energy levels of the associated independent particle
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model obtained in the limit of vanishing interaction [12].
Both properties will be revealed throughout the paper.

An analytically solvable model that can be applied
to virtually any number of particles is the Moshinsky
atom [13,14] (sometimes referred to as “harmonium” [15]),
for which all appearing potentials are set to be harmonic.
The application of harmonium as a tractable model for
elucidating some aspects of the behaviour of more real-
istic systems has a long history which goes back almost
to the very beginning of quantum mechanics [16]. This
model allows an analytical solution, and therefore con-
stitutes a valuable testing bench for the study of diverse
aspects of atomic and molecular physics. Indeed, it has
been used for assessing the quality of the Hartree-Fock
approximation [13] and several density functionals [17],
but also for investigating low-order density matrix de-
scriptions of the ground state of atomic systems [18], and
for exploring entanglement-related features [7,11,15,19,20]
and other manifestations of quantum correlations [21] in
atomic systems and in many distinguishable particles [22].
This model has also been found useful in the study of
other subjects beyond atomic physics, such as the ther-
modynamics of black holes [23].

In this paper we deal with a many-particle harmonic
model with different masses to simulate a “molecule”
with an arbitrary number of nuclei and electrons in an
external harmonic potential. The clear hierarchy within
the masses of the molecular constituents suggests that
most of the entanglement properties can already be un-
derstood from purely kinematical considerations. A well-
established computational technique in physical chemistry
is the Born-Oppenheimer approximation, which allows an
efficient treatment of systems with many nuclei and many
electrons thanks to the particle-mass scale. The validity
and scope of the Born-Oppenheimer approximation has
been studied and tested for different systems, e.g. for har-
monic models [24], for atoms [25] and molecules in mag-
netic fields [26], or in chemical reactions [27] and in nona-
diabatic theories [28].

Here, we show that the entanglement present in many-
particle systems can be understood to range widely not
only from purely kinematic considerations, but also from
the Born-Oppenheimer Ansatz, which permits us to as-
sess the validity of the approximation itself in zeroth adi-
abatic electron theories. We also investigate the entangle-
ment properties of the eigenstates of this many-particle
Moshinsky-like model for different bipartitions of the sys-
tem through the parameters that characterize it; namely
the strength of the interactions between particles, the
number of particles, and their corresponding masses.

We first describe the exactly solvable many-particle
Moshinsky model in Section 2. In Section 3, we briefly re-
view the entanglement measures to be used and then show
their properties for the particular case of three-particle in
Section 4. We extend the study of entanglement to sys-
tems with an arbitrary number of particles in Section 5,
and Section 6 we deal with the Born-Oppenheimer approx-
imation for this many-particle Moshinsky model. Finally,
some conclusions are drawn in Section 7.

2 The many particle system

We consider a system of N = Nn + Ne distinguishable
particles, consisting if Nn “nuclei” with mass mn and Ne

“electrons” with mass me. All particles interact harmon-
ically with each other and with the external confining
potential.

The interparticle-interaction strengths between a nu-
cleus and an electron, between two electrons and between
two nuclei are denoted by τne, τee and τnn, respectively;
they are measured in units of the confining potential
strength k. All masses are measured in units of the elec-
tron mass me, i.e. the nucleus mass is adjusted via the
mass ratio M = mn/me, and all actions are measured in
units of �.

It is worth mentioning that throughout this work we
consider that electrons are distinguishable and do not
carry spin. Taking into account the indistinguishability of
particles could add new qualitative features as compared
to the model of distinguishable particles [7,11,12].

Since our model is separable between the three di-
mensions, then, and in order to simplify notation without
causing any loss of significant physical results, we consider
a one-dimensional many-body system. The dimensionless
Hamiltonian of the system is:

Hx =
Nn∑

i=1

Pxi

2

2M
+

Ne∑

j=1

pxj
2

2
+

1
2

Nn∑

i=1

Xi
2 +

1
2

Ne∑

j=1

xj
2

+
τne

2

Nn∑

i=1

Ne∑

j=1

(Xi − xj)2 +
τee

2

Ne∑

j=1

Ne∑

k=j+1

(xj − xk)2

+
τnn

2

Nn∑

i=1

Nn∑

k=i+1

(Xi −Xk)2, (1)

where Xj , Pxj and xj , pxj denote the positions and mo-
menta of the nuclei (in uppercase letters) and electrons
(in lowercase letters), respectively.

Details on the derivation of the exact eigenfunctions
and eigenenergies of the Hamiltonian (1) are located in
Appendix A.

The coordinates that allow us to rewrite the system
Hamiltonian Hx in a fully separable form are given by
Nn − 1 and Ne − 1 Jacobi relative variables for nu-
clei (A.4) and electrons (A.5), respectively, besides the
two coordinates

U1(RNn , rNe) =
Nn(a+ b)RNn +NerNe√

Ne +Nn(a+ b)2
, (2)

U2(RNn , rNe) =
Nn(a− b)RNn +NerNe√

Ne +Nn(a− b)2
, (3)

where RNn and rNe are the center-of-mass coordinates for
the nuclei and electrons, respectively. The parameters a
and b, given in equation (A.9), are functions of τne and M .

All correlations between nuclei and electrons are en-
coded in the correlations between their respective centers
of mass RNn and rNe , which are coupled only through
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the coordinates U1 and U2. In the limit of large electron-
nucleus interaction τne → ∞, these coordinates become
the center-of-mass and the relative coordinates of the set
of nuclei and electrons

lim
τne→∞U1 =

√
Ne +MNn

NerNe +MNnRNn

Ne +MNn
,

lim
τne→∞U2 =

√
MNeNn

Ne +MNn
(rNe −RNn). (4)

When electrons and nuclei have the same mass, i.e.
M = 1, the coordinates again allow the above natural
interpretation

UM=1
1 =

√
Ne +Nn

NerNe +NnRNn

Ne +Nn
,

UM=1
2 =

√
NeNn

Ne +Nn
(rNe −RNn), (5)

for any value of the interaction τne.
In the following, we denote pure states of the sys-

tem (1) by |u1, u2, n1, . . . , nNn−1, e1, . . . , eNe−1〉 where the
quantum numbers u1, u2, ni, ej correspond to the excita-
tion of each collective coordinate U1, U2 and of the i(j)th
nuclei (electrons) Jacobi coordinate respectively.

3 Entanglement measure
and the selected bipartitions

In this paper we focus on the bipartite entanglement
in eigenstates of the many-particle Moshinsky model de-
scribed above. For this purpose we consider different bi-
partitions: first, we divide the system into two groups, one
containing all Nn nuclei and the other containing all Ne

electrons. Second, we study the correlations of a single
particle (electron or nucleus) with the rest of the system.

The entanglement of a pure bipartite system is essen-
tially given by the mixedness of the marginal density ma-
trices associated with each subsystem. A practical quanti-
tative indicator for the entanglement in a pure bi-partite
system is the linear entropy [29]

ε(|ψ〉) = 1 − Tr[ρ2
A] = 1 − Tr

[
ρ2

B

]
, (6)

where ρA and ρB are the reduced density matrices of sub-
systems A and B, respectively. For separable pure states
|ψ〉 = |φA〉|φB〉, this quantity vanishes. In the present
applications, we deal with infinite-dimensional Hilbert
spaces, such that the measure (6) adopts values in the in-
terval [0, 1), since the maximal value of the entanglement
in a d-dimensional space is εmax(|ψ〉) = 1 − 1/d.

The linear entropy has several computational advan-
tages, both analytically and numerically, over other mea-
sures, such as the von Neumann entropy, ε(vN)(|ψ〉) =
S[ρA] = −Tr[ρA ln ρA]. In particular, and contrary to the
von Neumann entropy S[ρA], the computation of the lin-
ear entropy 1−Tr[ρ2

A] does not require the diagonalization
of the density matrix ρA. The linear entropy (6) coincides,

up to multiplicative and additive constants, with some
measures of entanglement monotone [30], which proved
to be a powerful tool for elucidating many aspects of
the entanglement properties of pure states (see, for in-
stance, [1,7,11,12,31–34]).

Since the constituents of atoms, molecules and, in gen-
eral, many interacting particles systems are usually highly
entangled with the rest of the system, any reliable Schmidt
representation of the system state has to have a large
number of non-negligible independent contributions, i.e. a
large number of non-negligible Schmidt coefficients. This
makes difficult [5,9], if not impossible [3], any proper sim-
ulation of the state and its quantum correlations. The
Moshinsky model however, admits an analytical compu-
tation of the infinite Schmidt series, as demonstrated for
the ground state in reference [35], which made possible the
entanglement study of the ground state of any bipartition
in the many-identical-particle Moshinsky model [22].

Here, we compute the entanglement in a continuous
variable framework, thus avoiding the intricate diago-
nalization procedure of the reduced density matrix. The
method described below allows us to extend the entan-
glement studies done in reference [22] not only to systems
with different particle masses, but to excited states as well.

Given a bipartition (A,B) of a system of N particles
into (NA, NB) particles, we compute the trace that ap-
pears in (6) as:

Tr[ρ2
A] =

∫

R

|〈xA|ρA|x′
A〉|2dxAdx′

A, (7)

with the matrix elements of ρA given by:

〈xA|ρA|x′
A〉 =

∫

R

〈xAxB|ρ|x′
AxB〉dxB

=
∫

R

Ψ(xA,xB)Ψ∗(x′
A,xB)dxB , (8)

where xA (xB) are NA-dimensional (NB-dimensional) po-
sition coordinates denoting the global set of coordinates
{x1 . . . xNA} ({xNA+1 . . . xN}) of the particles that belong
to subsystem A (B).

For our choices of subsystem partitions, we denote
the (Nn-nuclei)-(Ne-electrons) entanglement (or nuclei-
electrons entanglement) by ε, the (1-nucleus)-((N − 1)-
particles) entanglement (or nucleus entanglement) by εn,
and the (1-electron)-((N − 1)-particles) entanglement (or
electron entanglement) by εe. The electron (nucleus) en-
tanglement captures the uncertainty that a single elec-
tron (nucleus) is subject to due to correlations with other
particles. These qualitative correlations can be of a very
distinct nature because electrons can be correlated with
each other, or with the nuclei. This is also reflected in the
nuclei-electrons entanglement.

These three different types of entanglement (ε, εn

and εe) depend on the parameters and quantum numbers
shown in Table 1.

The choice of the coordinate changes (A.5)–(A.8) is
especially suited for our study on entanglement, since the
nuclei-electrons entanglement depends only on the quan-
tum number associated to rNe and RNn and the electron
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Table 1. Parameters on which the different types of entangle-
ment depend.

Parameters ε εn εe

Interactions τne τne, τnn τne, τee

Quantum numbers u1,u2 u1,u2,nNn−1 u1,u2,eNe−1

Mass and particles M, Nn, Ne M, Nn, Ne M, Nn, Ne

b)a)

xx

Fig. 1. Three harmonically interacting particles in a confining
external harmonic potential, namely Nn = 1 and Ne = 2,
which roughly describes (a) a He-like system for M � 1 and (b)
a H+

2 -like system for M � 1. The sizes of the circles symbolize
the masses of the particles.

(nucleus) entanglement is independent of the collective ex-
citation of the nuclei (electrons).

Since the interactions between electrons and between
nuclei are irrelevant for the nuclei-electrons entanglement
ε, one would be lead to infer from Table 1 that we can
treat the subsystems of nuclei and electrons as two entities
with masses MNn and Ne, respectively, which interact
mutually with some effective strength. But surprisingly,
this does not happen in general and, consequently, the
parameters M , Nn and Ne cannot be rescaled between
them.

In the limiting case τne → ∞ (4) (as well as for
M = 1 (5)) the change of variables U1 and U2 are precisely
the center of mass and the relative coordinates of RNn and
rNe (the center of mass of the nuclei and electrons, respec-
tively). These are the special cases for which the subsys-
tems can be treated as two single entities and parameters
M , Nn and Ne can be rescaled as γ = MNn/Ne. Oth-
erwise, the coordinates U1 and U2 depends on RNn and
rNe in a significant way, and the above intuitive reading
is wrong.

4 Entanglement of the three-particle system

In the particular case of a three-particle system with one
nucleus (Nn = 1) and two electrons (Ne = 2), the possi-
bility of choosing different particle mass ratios M allows
us to qualitatively model two different physical systems:
a helium-like atom for M � 1, and a diatomic molecule
(H+

2 type) with one “electron” for M � 1, as shown in
Figures 1a and 1b, respectively. We keep the notation for
the nuclei mn and electrons me, even though me � mn

(M � 1).
In the following subsections we determine analytically

the entanglement given by equation (6), for various low-
lying states |u1, u2, e1〉; namely, the ground state |000〉 and
the first excited states |100〉, |010〉 and |001〉.

4.1 Level degeneracy and limit of vanishing interaction

As shown in references [11,12], an infinitesimal inter-
particle interaction can give rise to excited states with
finite entanglement. The degenerate eigenstates |ψj〉 (all
with the same energy) of a non-interacting system H0 can
always be chosen to be a separable state (non-entangled).
If we solve the eigenvalue problem corresponding to the
(perturbed) Hamiltonian

H = H0 + τH ′ (9)

and take the limit τ → 0, the perturbation H ′ will lift
the degeneracy at least partially and “choose” one par-
ticular basis among the infinite possible bases, whose
states are generally entangled. Therefore, in the limit of
vanishing interaction, the entanglement exhibited by the
Hamiltonian (1) is finite for excited states that are degen-
erate in this limit.

In this subsection we will carry out a similar analysis as
performed in references [11,12] but, unlike the model used
there, the Hamiltonian Hx will have two different particle
species which contribute to reducing the degeneracy of the
energy levels. The energy of the state |u1, u2, e1〉, given
by (A.17), in the limit of vanishing interactions (τne → 0,
τee → 0) reads

E′
0 =

{
1 + 1√

M

(
1
2 + u1

)
+ u2 + e1 if M ≥ 1

1 + u1 + 1√
M

(
1
2 + u2

)
+ e1 if 0 < M < 1.

(10)

The nucleus-electron entanglement ε reflects the corre-
lations between the nucleus and the two electrons. It
depends on the quantum numbers u1 and u2 and the in-
teraction strength τne, but it depends neither on the ex-
citation of the electron relative coordinate e1, nor on the
interaction τee, (see Tab. 1), i.e. the nucleus does not feel
the inter-electronic structure. Therefore, the nucleus en-
tanglement of the state |00e1〉 is less entangled than any
excited state in u1 or u2 (see Fig. 2a).

The electron entanglement εe reflects the correlations
between one electron and the remaining particles of the
system, namely the other electron and the nucleus. It de-
pends on both interaction strengths τne and τee, and on
all quantum numbers, u1, u2 and e1.

As in the general trend shown in references [7,8,11,22],
the entanglement increases with the interaction for all
states, (see Fig. 2). However, in the limit of vanishing in-
teraction τne → 0, the nucleus decouples from the elec-
trons and ε always vanishes unless the energy levels are
degenerate. This is the case for the excited states |010〉
and |100〉 when M = 1, which exhibit a finite amount of
entanglement (see Fig. 2a). The energy levels are degen-
erated in this limit (10) when u1 = u2 and M = 1 (for
any e1 of which the entanglement is independent).

In the limit of both vanishing interactions, τne → 0 and
τee → 0, a finite amount of the electron entanglement εe

is observed for the states |100〉 (|010〉) if M < 1 (M > 1).
From equation (10) we note that the energy level of the
state |100〉 (|010〉) is degenerate when M < 1 (M > 1),
and it has the same energy as |001〉. The energy level of

http://www.epj.org


Eur. Phys. J. D (2014) 68: 346 Page 5 of 13

0.001 1 1000 106 1090.0

0.2

0.4

0.6

0.8

1.0

�

M
 =

 1

M
 =

 0
.0

1
M

 =
 1

00
00

0.1 1090.0

0.2

0.4

0.6

0.8

1.0

= 0
M = 1

-310 310 105 10710

Fig. 2. (a) Ground state (dashed lines) and first excited
states (solid and dashed lines) nucleus-electrons entanglement,
ε(τne, M), of the three-particle case as a function of the
nucleus-electron interaction strength τne and for different mass
ratio M . (b) Single-particle entanglement, εe(τne, τee, M), of a
system with three identical particles (M = 1) as a function
of τee, with τne = 0, for the ground state and first few exited
states.

the state |001〉 is degenerate for all M values, and a finite
amount of entanglement is always obtained in the limit
of vanishing interactions. For M = 1, all excited states
have a finite entanglement in these limits, as shown in
Figure 2b, due to the degeneracy of the energy when any
of the quantum numbers u1, u2 and e1 are equal.

4.2 Kinematic considerations

In the previous subsection we pointed out, as done in ref-
erences [11,12], that the physics of the system in the limit
of vanishing interaction can only be understood within a
quantum framework; it is extremely affected by the degen-
eracy of the energy levels. However, in the case of strongly
interacting particles one can appeal to classical kinematic
intuition. Thus, states of systems with very different sub-
system masses are less entangled than states with simi-
lar subsystems masses. This is reflected in Figure 2a, and
more evidently in Figure 3 where we plot ε as a function
of the mass ratio M for different values of the interaction
τne.

When τne � 1, the maximal entanglement is achieved
for M 	 2, which corresponds to subsystems with the

10�7 10� 4 0.1 100 105 108
0.0

0.2

0.4

0.6

0.8

1.0

M

�

=1

= 
0.

01

1

2

=1
00

0

Fig. 3. Nucleus-electrons entanglement, ε(τne, M), in the
three-particle case as a function of the mass ratio M . We
plot the ground state (dashed lines) and first few excited
states (solid and dashed lines) for different values of the
interaction τne.

same mass. As the masses become more different the en-
tanglement gradually fades. The more equal the masses
two coupled systems have, the more they will influence
each other reciprocally. In terms of the physical limits, for
a weak interaction, particles are independent, even if they
have the same mass (if there is no degeneracy in this limit,
see in Figure 3 the jump in entanglement for τne = 0.01).
For very large or very small mass ratio, the heavy particles
are not influenced much by the light ones and, addition-
ally, the light particles are still in a rather pure state.

At this point, the obvious question that arises is
whether this kinematic property persists when the number
of particles in the system is higher.

5 Many-particle entanglement

The great advantage of the many-particle model at issue
here is that one can determine analytically the entangle-
ment for an arbitrary number of particles of the biparti-
tions. Using the exact eigenstates of the Hamiltonian (1),
given in Appendix A, one can compute the integrals in-
volved in equation (7). In this section we evaluate analyt-
ically the ground state entanglement for the three biparti-
tions ε, εn and εe, by means of the linear entropy defined
in equation (6). We discuss and argue the main features of
the entanglement as a function of the different parameters
of this many-particle system, particularly the number of
particles. For the different bipartitions the parameters are
given in Table 1 where we consider M > 1 in what follows.

5.1 Nuclei-electrons entanglement

For non-negligible interaction, τne, the nuclei-electrons en-
tanglement, ε, displays a remarkable general trend: it is
maximal when the mass ratio M fulfils M 	 Ne/Nn. This
behavior can be understood from the coordinate changes
U1 and U2 in the limit of large interaction (Eq. (4)). The
more similar the contributions of RNn and rNe are, the
larger is the correlation between nuclei and electrons and,
hence, the entanglement.

http://www.epj.org
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Fig. 4. Mass ratio Mmax(τne) which maximizes the nuclei-
electrons entanglement as a function of the interaction τne, i.e.
Mmax|ε(τne, M) < ε(τne, Mmax), ∀M > 0. We plot Mmax(τne)
for systems with two nuclei (Nn = 2) and different numbers of
electrons (Ne = 2, 4, 6, 8, 10).

Maximal entanglement is reached exactly at M =
Ne/Nn for any finite interaction, τne, only when Nn = Ne

(M = 1). In such a case, nuclei-electrons entanglement
describes the correlations between two particles with un-
equal masses m1 = MNn and m2 = Ne, and with some
interaction strength τ . However, this does not happen if
the considered subsystems have a different number of par-
ticles Nn 
= Ne because the symmetry in the number of
interactions per particle in each subsystems is lost. The
parameters M , Nn and Ne cannot be rescaled and one
cannot consider each subsystem as a single entity. In sys-
tems with Nn 
= Ne, the maximal entanglement depends
on the relative nucleus-electron interaction strength τne

and the mass ratio M .
In Figure 4, we show the value of the mass ratio M

which maximizes the entanglement ε for a given interac-
tion τne. For small values of τne, the maximum is always lo-
cated in the interval 1 < M < Ne/Nn. Increasing τne, the
maximum entanglement moves up to the extreme value
M = Ne/Nn (i.e. the two subsystems have equal masses)
which is reached in the limit τne → ∞. Moreover, for
Nn = Ne = 2 (solid blue line in Fig. 4), maximal entan-
glement is achieved when M = 1 for any interaction τne.

We now explore the entanglement features consid-
ering the number of particles of the system. The po-
tential function appearing in the Hamiltonian (1) is a
quadratic function of the complete set of vector posi-
tions X1, . . .XNn , x1, . . . xNe . Note that the independent
particle frequencies corresponding to Xi

2 and x2
j , which

are Λn/2 = (1/2) + (τne/2)Ne + (τnn/2)(Nn − 1) and
Λe/2 = (1/2)+ (τne/2)Nn + (τee/2)(Ne − 1), respectively,
grow linearly with Nn and Ne, while the pre-factors corre-
sponding to the cross interaction terms like XiXj , Xixj ,
and xixj , do not (see Eq. (A.3)). For large numbers of
particles the leading part of the Hamiltonian (1) is of the
form (Λn/2)

∑Nn

i=1Xi
2+(Λe/2)

∑Ne

j=1 xj
2. This form of the

potential function describes a set of Nn +Ne independent
harmonic oscillators.

The number of correlation cross terms, Xixj , which
contribute effectively to the reduced density matrix of
the nuclei (or electrons), increases with NnNe. When
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Fig. 5. Nuclei-electrons entanglement, ε(τne, M, Nn, Ne) with
τne = 100, as a function of the number of nuclei Nn and elec-
trons Ne, for different interaction mass ratios. (a) M = 1,
and (b) M = 10 000. Solid red lines correspond to subsystems
(nuclei and electrons) with equal masses, i.e. MNn = Ne. Dot-
ted blue lines correspond to systems with equal total mass
MT = MNn + Ne.

NnNe 	 Nn + Ne, the contributions of the cross terms
are negligible. Therefore, the reduced density matrix can
be approximated by the ground state associated with the
independent many-particle potential, giving rise to non-
entangled states. However, when NnNe � Nn +Ne, many
cross terms induce correlations, in which case highly en-
tangled states are obtained (see Fig. 5).

In the regime of large nucleus-electron interactions we
can summarize that the region of higher entangled states
is always located in the neighborhood of NnM = Ne (see
red line in Fig. 5). Indeed, for systems with the same to-
tal mass MT = MNn +Ne (dotted blue lines), the maxi-
mal entanglement is obtained when the subsystems have
equal mass MT /2 = NnM = Ne. If we gradually increase
Nn (Ne), while keeping Ne (Nn) fixed, the entanglement
fades away, but, increasing both Nn and Ne to infinity, the
entanglement reaches its maximally possible value ε = 1.
This is illustrated in Figure 5 which is fully consistent with
the above explanation. The particular case of N particle
with the same mass (M = 1) was studied in reference [22]
which shows that the maximal entanglement is obtained
when the two subsystems have the same number of parti-
cles N/2 as depicted in the blue lines of Figure 5a.

Finally, let us point out that the nuclei-electrons en-
tanglement, ε, vanishes in the limit M → ∞. This fea-
ture can be understood straightforwardly from the Born-
Oppenheimer wavefunctions as we will show in Section 6.

5.2 Single-particle entanglement: nucleus
and electron entanglement

Contrary to the nuclei-electrons entanglement increasing
both Nn and Ne the single-particle entanglement van-
ishes, as shown in Figure 6. In this case, the number of
cross terms of the Hamiltonian containing the correlations
which effectively contribute to the reduced density matrix
of a single particle is Nn + Ne − 1. Increasing Nn or Ne,
the contribution of the cross terms becomes negligible and
the single-particle reduced density matrix corresponding
to a nucleus (electron) approaches the projector on the
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ground state associated with the single-particle potential
(Λn/2)X2 ((Λe/2)x2). The reduced single-particle density
matrices of a nucleus or an electron approaches to a pure
states disentangled from the rest of the system.

When all particles interact with the same strength,
τne = τnn = τee = τ ≥ 1, so that we do not privilege any
interaction, a nucleus is always more correlated with the
rest of the system than an electron, i.e. for all Nn, Ne > 1,
a single particle entanglement fulfils

εn > εe if M > 1 (11)
εn = εe = ε1 if M = 1 (12)

where

ε1 = 1 −
(
1 +

√
A
)
A1/4

√(√
A+A− τ

)(
1 +

√
A+ τ

) (13)

and A = 1 + Neτ +Nnτ . The hierarchy on the entangle-
ment reveals the composite nature of the particles [33].
Here, heavier elementary particles of a composite parti-
cle (or molecule) are more entangled, “in a hard core”,
than the light ones, which are more likely to exhibit the
composite nature of the “molecule”.

The electron entanglement is always a decreasing func-
tion of M , εe(M) ≤ εe(1), which highlights the confining
effect of nuclei on the electrons (entanglement decreases
with the confinement [11]). On the other hand, if the sys-
tem has more nuclei than electrons, Nn � Ne, and if
τne ≤ τnn, then the nucleus entanglement εn is indepen-
dent of Ne, τne and M , i.e. nuclei do not feel electrons and
εn is that given by a system of Nn particles with the same
mass.

When all interactions between particles are equal,
τne = τee = τnn = 100, we can observe in Figures 6a
and 6b that εn > εe. Similar trends are found for com-
parable interactions in Figures 6b, 6c, 6e and 6f. In gen-
eral, we observe that the entanglement decreases with the
number of particles Nn andNe but, in Figure 6e, we found
remarkably different behavior from the entanglement: for
a fixed Nn, the entanglement displays a maximum when
Ne increases. In general, a nucleus is more entangled with
the other nuclei, but due to the large interaction with
the electrons the entanglement increases with Ne (because
there are more electrons highly correlated with the nu-
cleus) until the cross terms are negligible as compared to
the particle-independent terms.

6 Born-Oppenheimer approximation
and nuclei-electrons entanglement

The study of entanglement as a function of the masses of
the constituent particles of composite systems naturally
leads to considerations of the connection between entan-
glement and the celebrated Born-Oppenheimer (BO) ap-
proximation. The validity of the BO approximation [36] is
closely related to the masses of the particles and probably
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Fig. 6. Nucleus entanglement, (left panels) εn (τnn,
τne, M, Nn, Ne), and electron entanglement (right panels)
εe(τee, τne, M, Nn, Ne), as a function of the number of nuclei
Nn and electrons Ne, electrons of the system for some relative
interaction τne, τee, τnn and for the mass ratio M = 1000.
Solid red lines represents the cases of equal subsystem masses
fulfilling the relationship M = (Nn − 1)M + Ne. For the elec-
tron case there is no such relationship because we are implicitly
assuming that M > 1.

constitutes the most fundamental approximation in quan-
tum chemistry [37] and in molecular physics [38]. From a
practical point of view, the BO approximation allows us
to compute the electronic structure of a molecule for a
given configuration of its nuclear part.

The physical motivation behind the BO approxima-
tion is that the nuclei are much heavier than the electrons.
Therefore, one can consider the nuclei position coordinates
X as parameters that define the effective Hamiltonian for
the electrons. For any fixed configuration of the nuclei,
one has to solve a Schrödinger equation that involves only
the electronic degrees of freedom. The eigenvalues and
eigenfunctions depend on the particular nuclear config-
uration. Once one has solved the electronic Schrödinger
equation, the effective Hamiltonian for the nuclei can be
obtained by adding the electronic eigenenergy to the nu-
clear Schrödinger equation.

6.1 BO Many-particle wavefunctions

BO approximation, assumes that the heavy particles (nu-
clei) move more slowly than the light ones (electrons), and
it is therefore common to use the electronic stationary
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Born-Huang expansion [28,39]

Ψ(X,x, t) =
∑

n

Fn(X, t)φn(X,x), (14)

for either adiabatic and diabatic theories. Here, we fo-
cus on the zeroth adiabatic approximation with a time-
independent potential function, and hence the wavefunc-
tion reduces to the BO Ansatz [36]

ΨBO
s,q (X,x) = Fs(X)φq(X,x), (15)

where s and q denotes the quantum states of the nu-
clei and electrons, respectively. In this approximation, the
electrons move adiabaticaly in the field of fixed nuclei at
the positions {Xi}.

In order to obtain more detailed insight, let us ap-
ply the approximation to a, “molecule,” composed of Nn

nuclei and Ne electrons, considered here. The time-
independent Schrödinger equation for the system (1) is

[Tn + Te + V ]ψ(X;x) = Eψ(X;x), (16)

where Tn and Te denote the kinetic energy operator for
the nuclei and electrons, respectively, and V the total po-
tential energy of the system.

Using the Ansatz (15), the electronic wave equation is
given by:

(Te + V )φq(X;x) = Eelec
q (X)φq(X;x), (17)

where Eelec
q and the wavefunction φq for each electronic

state q depends parametrically on the nuclear coordinate
X. The nuclear wavefunction Fs(X) satisfies

[
Tn + Eelec

q (X) − E
]
Fs(X) = 0. (18)

Again the solution is found in terms of Jacobi coordi-
nates (A.4), (A.5), and (A.8). The nuclear eigenfunctions
are given by:

Fs(X) = Φ
β

(n)
Nn

sNn

(√
NnRNn

)Nn−1∏

j=1

Φβ(n)

sj
(Rj) (19)

and the electronic eigenfunctions by:

φq(X;x) = Φ
β

(e)
Ne

qNe

(√
NerNe − δ

√
NnRNn

)

×
Ne−1∏

i=1

Φβ(e)

qi
(ri) , (20)

where the function Φ
β(j)
ν (y) is given by equation (A.15),

the frequencies β(n) and β(e) are given by equations (A.12)
and (A.13), respectively, and with δ = τne

√
NnNe√

M(1+Nnτne)
. The

frequencies corresponding to the center of mass coordi-
nates are given by:

β
(n)
Nn

=
1 + (Nn +Ne)τne

M(1 +Nnτne)
, β

(e)
Ne

= 1 +Nnτne. (21)

To test the validity of the BO approximation, we use the
overlap between the exact (A.18) and approximate (15)
wavefunctions given by Θu1,u2,n,e|s;q = 〈u1, u2,n, e|s;q〉,
where we have denoted the state associated to the wave-
function (15) by |s;q〉 = |s1, ..., sNn ; q1, ..., qNe〉 such that

ΨBO
s,q (X,x) = 〈X,x|s;q〉. (22)

For the ground state, Θgs = Θ0,0,0,0|0;0, one has to evalu-
ate the integral

Θgs =
∫ ∞

−∞
dRNndrNe

2∏

l=1

Φβl

0 (Ul(RNn , rNe))

× Φ
βn

Nn
0 (

√
NnRNn)Φ

βe
Ne

0

(√
NerNe − δ

√
NnRNn

)
.

(23)

6.2 Wavefunctions and entanglement

The eigenfunctions corresponding to the relative coordi-
nates, equations (A.4) and (A.5), in the BO wavefunc-
tion (15) are exactly the same as in the exact solu-
tion (A.14). Indeed, all correlations between nuclei and
electrons are again induced by their respective centers of
mass, but in a different way; now they are all embedded
in the electronic wavefunction (20).

The harmonic frequencies associated with the nuclei,√
β(n) and

√
β

(n)
Nn

, decrease with
√
M , which fits the con-

tribution of the counterpart (nuclei and electron) to the
wavefunction, but not to the electronic one,

√
β(e) and√

β
(e)
Ne

. At first reading, we can infer that the approxima-
tion becomes increasingly accurate asM increases. But, as
shown later, the number of particles also strongly affects
validity of the approximation.

We have seen in the previous Sections 4 and 5.1 that
the nuclei-electrons entanglement ε vanishes in the limit
M → ∞, but also taht the accuracy of the BO approxima-
tion is maximized. Increasing M , the contribution of the
nuclei to the total wavefunction becomes more relevant
than the electronic one. In the limit M → ∞, the nuclear
wavefunction Fs(X) is a delta-like function at the nuclear
positions. Therefore, electrons “feel” nuclei as an external
confining potential, and nuclei are virtually unaffected by
electrons, thus denying any possibility of entanglement be-
tween nuclei and electrons.

By their very definition, the wavefunctions of states
without entanglement between nuclei and electrons
(ε = 0) factorize as a product of nuclear and electronic
wavefunctions, Ψ(X,x) = F (X)φ(x). This wavefunction
is sometimes referred to as a completely adiabatic state.
In such case, the assumption (15) is perfectly fulfilled,
and the BO approximation provides the exact wavefunc-
tion which coincides with the completely adiabatic state.
Therefore, the entanglement can be used to assess the va-
lidity of the BO approximation as far as non-entangled
states imply maximal accuracy of the approximation.

Besides the inherent entanglement in electronic adia-
batic states (15), in nonadiabatic approximations there is
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Fig. 7. Nucleus-electrons ground state entanglement,
ε(τne, M, Nn, Ne) with Nn = 1 and Ne = 2 (H+

2 ), exactly com-
puted (solid lines) and with the Born-Oppenheimer approxi-
mation (dashed lines) as a function of the mass ratio M . In
the inset figure we plot the ground state overlap of the ground
state, Θgs (H+

2 , τne, M) equation (23), as a function of M .

another source of entanglement due to the bifurcation of
the wavefunction [28]. The nonadiabatic time evolution is
governed mathematicaly by the state bifurcantion

F1(X, tb)φ1(X,x) → F1(X, ta)φ1(X,x)
+ F2(X, ta)φ2(X,x) + . . . (24)

Contrary to the zeroth adiabatic states for which the en-
tanglement is time-independent even for time-dependent
potential functions, the entanglement of nonadiabatic
electronic states is, in general, time-dependent. This last
entanglement could be cumbersome to compute analyti-
cally and it is beyond the scope of the current work.

6.3 The H+
2 -like “molecule”

The simplest molecular case is the ground state of the H+
2 -

like molecule (Nn = 2 and Ne = 1). For such a system, we
compute and analyze the overlap measure (23), as well as
the nuclei-electrons entanglement ε, with both exact and
approximate methods.

For a large interaction τne � 1, the BO approximation
can accurately describe high entanglement states over a
wide range of masses, M � 1. The approximated entan-
glement becomes more accurate for increasing values of M
until it vanishes in the limit M → ∞, (see Fig. 7).

Then we give the interaction and mass orders roughly,
to get closer to a more realistic H+

2 -like molecule view-
point. The molecular size is of the order of the Bohr ra-
dius a0, and the usual atomic trap size of b ∼ 106a0,
So that the relative interaction strength is of the order
of τne = λne/k = (b/a0)4 ∼ 1024. Taking into account
this, and the fact that the proton-electron mass ratio
is of the order Mpe ≈ 2000, one finds that the ground
state of a H+

2 -like molecule in a commonly harmonic
trap is highly (nuclei-electrons) entangled. The trace of
the square marginal density matrix is of the order of

Fig. 8. Dependence of the nucleus-electrons entanglement, ε
(H+

2 , τne, M), on the mass ratio M for several values of τne. We
compare the entanglement computed exactly (solid lines) with
that computed by means of the Born-Oppenheimer approxi-
mation, using the assumption that |R − R′| is of the order of
the atom size (dashed lines).

Tr[ρ2
n] ≈ 8.8 × 10−6. In such a case, the BO turns out

to be a good approximation, for which we obtain similar
results of entanglement with a relative error of 0.014%.

More realistic wavefunctions of molecules require very
intricate numerical calculations which add to the com-
putational expenses of the linear entropy. In addition to
the BO approximation, one may employ another com-
monly used approach (see Ref. [40]) to compute the lin-
ear entropy. Considering the integrals in (7) and the BO
Ansatz (15), one can assume that the nuclear wavefunc-
tion F (X′) can be approximated by F (X) when |X−X′| is
of the order of the atom size, whenever the relative nuclei-
electrons interaction strength τne is large enough and M
is not very large (1 �M � τne).

This last approximation reduces the dimensions of the
integrals involved in the linear entropy. The use of both
approximation could significantly simplify both numerical
and analytical computations of the entanglement amount
in more complex and realistic systems, e.g., for the H+

2
molecule model used here we obtain

ε(H+
2 ) ≈ 1 −

√
2 + 4τne(M + 3Mτne)1/4

2τne
. (25)

Moreover, we cannot lose sight of the short mass range
which is valid for both approximations; for very large M
this last approximation in reference [40] gets worse, and
forM ∼ 1 the BO approximation fails (see Fig. 8). Thanks
to the electron-proton mass ratio and the physical range
of the electron-proton relative interaction in a common
harmonic trap, these two approximations can be used to-
gether to compute the nuclei-electrons entanglement of
atoms and molecules. Indeed, in this mass and interaction
ranges of the H+

2 ground state the relative error of the lin-
ear entropy is almost the same (0.014%), which is mainly
due to the BO approximation itself.
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Fig. 9. Comparison of the exact (solid lines) and BO
approximation (dashed lines) ground state entanglement,
ε(τne, M, Nn, Ne) (lower panels), and their wavefunctions over-
lap (dotted dashed lines in the upper panels) as a function
of γ = MNn

Ne
; (a) fixed Nn = 100 and M = 100, (b) fixed

Ne = 10 000 and M = 100 (blue lines), and Ne = 10 000 and
Nn = 100 (orange lines).

6.4 Many-particle systems

As noted in previous Sections 6 and 6.3 the validity of
the BO approach is closely related to the mass ratio of
the particles (see Fig. 7), however, we found also a strong
dependence on the number of particles composing the sys-
tem. The accuracy of the approximation increases with the
total mass ratio between the full subsystems of nuclei and
electrons, i.e., when γ = MNn

Ne
increases.

Fixing any two parameters (of Nn, Ne and M), the
ground state overlap is maximal, Θgs ≈ 1, when γ � 1
(see upper panel in Fig. 9b). This can be inferred from
the exact (A.16) and BO (15) wavefunctions. On the other
hand, when γ < 1, one can deal with the complementary
BO approximation and solve the nuclei differential equa-
tion by considering electron position coordinates as fixed
parameters. In such a case, the accuracy of the BO ap-
proximation increases when γ decreases and the overlap
approach to unity, Θgs ≈ 1 for γ � 1 (see upper panel
in Fig. 9a). We can therefore conclude that the decisive
parameter for the accuracy of the BO approximation is
the total mass ratio γ, and not just the mass of the con-
stituent particles. Indeed, all curves of the overlap as a
function of γ collapse to the same in the limit τne → ∞.

The nuclei-electron entanglement vanishes in the limits
γ → 0,∞ and is maximal when γ 	 1. This fact is fully
consistent with the kinematic intuition mentioned above;
when the interaction between the compounds of the two
subsystems is not negligible, the entanglement is greater
for subsystems with similar masses and decreases as the
masses become more different (see lower panels in Figs. 9a
and 9b). The subsystems are more prone to influence each
other when their total masses are similar.

Both, the validity of the BO approximation and nuclei-
electrons entanglement are therefore governed by the mass
ratio of the full subsystems γ. The BO approximation
is able to accurately describe highly entangled states in
a wide range of γ � 1, e.g. for atoms and molecules:
however, the completely adiabatic approximation does not
provide a correct description of the states and hence of its
associated entanglement. In the limiting cases of γ → 0,∞
one always has non-entangled states and maximal accu-
racy. In this limit, the completely adiabatic state coincides
with the BO and the exactly computing state. Therefore,
beyond the wavefunction overlap, entanglement can be
used to assess the validity of the BO approximation and
to discern whether or not adiabatic theory is completely
applicable. In other words, non-entangled states legitimize
the use of BO as well as the completely adiabatic approxi-
mations to compute the wavefunction of the system. This
validity test based on the entanglement becomes stronger
than the overlap as the interaction increases and it is in-
efficient for small interactions τne � 1.

7 Conclusions

In this paper we investigated the entanglement properties
of an one-dimensional N -particle system consisting of Nn

“nuclei” and Ne “electrons” which interact harmonically
with each other. Moreover, they are confined by an har-
monic external potential.

As a general trend, we found that entanglement in-
creases with the interaction between particles, approach-
ing its maximal possible value in the limit of an infinitely
large interaction. Excited states have been studied in the
three-particle case, which exhibits a finite amount of en-
tanglement in the limit of vanishing interactions due to
the degeneracy of the energy levels of the Hamiltonian
describing non-interacting particles.

In the many-particle case we have only investigated
the ground state. For sufficiently large Nn or Ne values,
the entanglements ε, εn and εe vanish, but, by increasing
simultaneously the number of both “nuclei” and “elec-
trons,” ε tends to its maximal value while εn and εe van-
ish. We have shown that this is due to the number of
correlated cross terms of the Hamiltonian contributing to
the reduced density matrix. When the “nuclei-electrons”
interaction is large (τne � 100), the “nuclei-electrons” en-
tanglement can be understood kinematically, i.e. ε dis-
plays a maximum when the masses of the two considered
subsystems are similar and vanishes when the subsystems
have very different masses.

In summary, when it comes to mass and entanglement,
interacting parts of the model studied here exhibit a “like-
for-like” behavior: when the system is partitioned into two
interacting subsystems, these parts tend to be highly en-
tangled with each other when they have similar masses. It
would be interesting to investigate to what extent this is
a universal trend verified by composite quantum systems.

We explored the connections mass-entanglement by
means of the Born-Oppenheimer approximation. This ap-
proximation makes evident that by increasing the particle
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mass ratio M , the nuclear density approaches a Dirac
delta function located at the “nuclei” positions and thus
loses any possibility of entanglement. To estimate the
quality of this approximation, we studied the overlap be-
tween the exact wavefunctions and the BO ones. Regard-
ing the size of the system, both the overlap and the
“nuclei-electrons” entanglement are governed by the to-
tal mass ratio of the subsystems γ; in the limits γ → 0,∞
the entanglement vanishes and the overlap is maximum.
This allow us therefore, to assess the validity of the BO
approximation via entanglement.

This result is fully consistent with what happens in
quantum chemistry and molecular physics, where the
mass of “nuclei” is indeed much larger than the “elec-
tron” mass. In this regime, the Born-Oppenheimer ap-
proximation applies. It is worth stressing, however, that
the Born-Oppenheimer Ansatz does not constitute a zero-
entanglement approximation. In fact, we have shown in
the present work that the Born-Oppenheimer approxi-
mation provides a good description of the system even
in cases where it exhibits an appreciable amount of en-
tanglement. Then, we can conclude that entanglement is
not allways related to complexity. The Born-Oppenheimer
approximation is computationally very efficient and we
showed that, in spite of its simplicity, it describes certain
entanglement features
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Appendix A: Derivation of the exact
eigensolutions

In this appendix we derive in detail the exact eigenfunc-
tions and eigenenergies of the Hamiltonian (1). To solve
analytically the Schrödinger equation Hx|Ψ〉 = Ex|Ψ〉 we
introduce the dilatation coordinate change for nuclei

Xj → X ′
j√
M
, (A.1)

which allows us to express the one-dimensional
Hamiltonian, H ′

x = Hx, in terms of an N × N in-
teraction matrix A

H ′
x =

Nn∑

j=1

P ′
j
2

2
+

Ne∑

i=1

pi
2

2
+

1
2

Nn∑

j=1

Aj,jX
′
j
2

+
1
2

Ne∑

i=1

ANn+i,Nn+ixi
2 −

Nn∑

j=1

Ne∑

i=1

Aj,Nn+iX
′
jxi

−
Ne∑

i=1

Ne∑

j=i+1

ANn+i,Nn+jxixj −
Nn∑

i=1

Nn∑

j=i+1

Ai,jX
′
iX

′
j.

(A.2)

The elements of A are given by:

Aj,j =
(1 +Neτne + (Nn − 1)τnn)

M
,

Ai+Nn,i+Nn = (1 +Nnτne + (Ne − 1)τee),

Aj,i+Nn = − τne√
M
,

Aj,l = −τnn

M
for j 
= l,

Ai+Nn,m+Nn = −τee for i 
= m, (A.3)

where the indices j and l (i and m) run between 1 and Nn

(1 and Ne) and refer to nuclear (electronic) coordinates.
The coordinates that allow us to rewrite the system

Hamiltonian (A.2) in a fully separable form are given by
the eigenvectors of the interaction matrix A. It has N − 2
degenerate values. For the corresponding eigenvector we
choose the Jacobi variables for electrons {r1, . . . , rNe−1}
and nuclei {R1, . . . , RNn−1}

Rj(X ′
1, . . . , X

′
j+1) =

j∑

k=1

X ′
k −X ′

j+1√
j + j2

, (A.4)

ri(x1, . . . , xi+1) =
i∑

k=1

xk − xi+1√
i+ i2

, (A.5)

respectively. This particular choice of coordinates trans-
forms the Hamiltonian into a set of 2N − 2 independent
harmonic oscillators, without additional prefactors. The
remaining two eigenvalues of A are not degenerated, such
that their corresponding eigenvectors are predefined, and
imply the coordinate

U1(RNn , rNe) =
Nn(a+ b)RNn +NerNe√

Ne +Nn(a+ b)2
, (A.6)

U2(RNn , rNe) =
Nn(a− b)RNn +NerNe√

Ne +Nn(a− b)2
, (A.7)

where

rNe(x1, . . . , xNe) =
1
Ne

Ne∑

i=1

xi,

RNn(X ′
1, . . . , X

′
Nn

) =
1
Nn

Nn∑

j=1

X ′
i, (A.8)

are the centers-of-mass of the electrons and the nuclei,
respectively, and

a =
M − 1 − 2τne +Mτne

2
√
Mτne

,

b =

√
−4M (1 + 3τne) + (1 +M + 2τne +Mτne)

2

2
√
Mτne

.

(A.9)
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In the transformed coordinates {r1, . . . , rNe−1}, {R1, . . .,
RNn−1} and {U1, U2}, the Hamiltonian (A.2) separates as:

H ′
x =

∑

l=1,2

(
−1

2
∂2

∂U2
l

+
1
2
βlU

2
l

)

+
Nn−1∑

j=1

(
−1

2
∂2

∂R2
j

+
1
2
β(n)R2

j

)

+
Ne−1∑

i=1

(
−1

2
∂2

∂r2i
+

1
2
β(e)r2i

)
, (A.10)

where

β1/2 =
1 +M +Neτne +NnMτne

2M
∓ Nnbτne√

M
(A.11)

β(n) =
1 +Neτne +Nnτnn

M
(A.12)

β(e) = 1 +Nnτne +Neτee. (A.13)

In other words, the system has been decomposed into a
set of independent harmonic oscillators in the variables U1,
U2, Rj and ri, with frequencies

√
β1,

√
β2,

√
β(n),

√
β(e),

respectively. The eigenfunctions of the Hamiltonian

Ψ ′
u1,u2,n,e(X

′
1, . . . , X

′
Nn
, x1, . . . , xNe) =

Nn−1∏

j=1

Φβ(n)

nj
(Ri)

×
Ne−1∏

i=1

Φβ(e)

ei
(ri)

2∏

l=1

Φβl
ul

(Ul(RNn , rNe))

(A.14)

are expressed in terms of the one-dimensional harmonic
oscillator solution

Φβ
ν (y) =

(
β1/4

2νν!π1/2

) 1
2

e−
1
2

√
βy2Hν

(
β1/4y

)
(A.15)

where Hν(y) denotes the Hermite polynomial. The quan-
tum numbers u1, u2,n, e correspond to the excitation of
each collective coordinate (A.6), (A.7), (A.4) and (A.5),
respectively; that is, the quantum numbers ui are as-
sociated to the excitation of coordinates Ui, and n (e)
denotes the set of quantum numbers {n1, ..., nNn−1}
({e1, ..., eNe−1}) associated to the excitation of the
nuclei (electrons) relative coordinates {R1, ..., RNn−1}
({r1, ..., rNe−1}).

The eigenfunctions of the initial Hamiltonian Hx

are obtained by undoing the dilatation coordinates
change (A.1) in the eigenfunction given in equation (A.14),
i.e.

Ψu1,u2,n,e(X,x) = M−Nn
4 Ψ ′

u1,u2,n,e

(√
MX,x

)
, (A.16)

where x (X) is the set of the electron (nuclei) positions
{xi} ({Xi}). While the above eigenfunctions depend on
the rescaled interactions between particles and the mass

ratio, the eigenenergies depend explicitly on all parame-
ters that govern the physical scale of the system, that is,
the energy of the system, Ex =

√
k

me
E′

x, is given by:

Ex =
√

k

me

(
2∑

l=1

√
βl

(
ul +

1
2

)

+
Nn−1∑

j=1

√
β

(n)
j

(
nj+

1
2

)
+

Ne−1∑

i=1

√
β

(e)
i

(
ei+

1
2

)⎞

⎠,

(A.17)

where k is the strength of the confining potential and
me (mn) is the electron (nucleus) mass such that M =
mn/me.

We denote pure states of the system (1) by
|u1, u2,n, e〉, resulting in the wavefunction (A.16)

Ψu1,u2,n,e(X,x) = 〈X,x|u1, u2,n, e〉. (A.18)
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