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A B S T R A C T

Phase equilibrium diagrams of fluid phases in ternary systems can have a high complexity. In this work, a strat-
egy and calculation methods for the computation of complete sections of ternary fluid phase equilibrium sur-
faces is proposed. To illustrate the methodology, we present computed results for the fluid phase equilibrium of
an isothermal section for the ternary highly non-ideal system CO2 + H2O + 2-propanol(IPA), as described by
a given model and given set of values of the model parameters. The calculation method is based on the prior
identification of (univariant) key points (KPs) of the ternary isotherm. From such KPs, it is possible to build the
different equilibrium lines that constitute the ternary isothermal diagram, with the help of a numerical continu-
ation method. The results show a high level of complexity including a number of three-phase loci, critical loci,
and ternary critical endpoints, together with a ternary four-phase equilibrium point.

1. Introduction

The rigorous calculation of phase equilibria presents general interest
in the simulation and optimization of separation processes, and it is also
a matter of scientific interest. In such sense, procedures and calculation
tools with the capability of computing phase equilibrium diagrams, es-
pecially if non-ideal and highly complex behaviors occur, are required.
Moreover, the ability of computing complex equilibrium diagrams im-
proves the understanding of the equilibrium phenomenology for sys-
tems with a highly non-ideal behavior. Such behaviors could present, in
narrow ranges of pressure and/or temperature, a rich variety of phase
equilibria. Such complexity could lead the untrained eye to misinterpret
the experimental data. On the other hand, commercial software may fail
when generating binary, ternary or multicomponent phase equilibrium
diagrams, if the system behavior is highly complex.

Phase diagrams of particular interest are those computed for binary
or ternary mixtures. Binary data are typically used to fit interaction pa-
rameters of phase equilibrium models, and ternary data, when avail-
able, to test model predictions. In both cases, the availability of reli-
able algorithms for the generation of phase diagrams useful to make the
comparison between model and experimental data is of significant im-
portance. This work focuses on the efficient and reliable generation of
ternary phase equilibrium diagrams involving fluid phases only (solids
are not considered in this work).

A type of section of special interest is the phase equilibrium diagram
at constant temperature (isothermal diagram), since temperature is an
easy to control variable in equilibrium experiments. An isothermal dia-
gram is one that includes all equilibrium lines and special equilibrium
points (e.g., pure compound liquid-vapor points) that become defined
once the temperature value is set.

Most of the points (or hyper-points) belonging to a ternary isother-
mal diagram (TI) are phase equilibrium objects having two degrees of
freedom (DOFs) (divariant (DV) objects), i.e., (indeed) the temperature,
and some other intensive variable (e.g.: Pressure). Special points of a
TI have a number of DOFs less than two (univariant (UV) or invariant
(=zero variance, (ZV) points). The prefix “hyper” means “existing in
a multidimensional space”. This space is in this work made of several
dimensions such as pressure, phase densities, phase compositions and
temperature, just to mention the variables that can be measured in a
laboratory. Notice that the variable (or variables) involved in a given
specification that spends a DOF should be of the intensive type.

To fix ideas, as an example, a two-phase ternary equilibrium point
is considered in this work not to contribute to a TI because it requires,
according to the phase rule, to specify the values for three variables
(trivariant (TV) points). Thus, the thermodynamic objects that are com-
monly part of a TI are mainly ternary critical lines (T-CLs) and ternary
three-phase lines (T-3PLs).

The following terms refer to ternary fluid phase equilibrium objects.
They have been used in previous publications (e.g., Refs. [1,2]). Details
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on their meanings are provided in Appendix B. The list of terms follows:
[a] ternary three-phase point (T-3PP)
[b] ternary three-phase line (T-3PL)
[c] ternary critical point (T-CP)
[d] ternary critical line (T-CL)
[e] ternary critical endpoint (T-CEP)
[f] ternary critical end line (T-CEL)
[g] ternary four-phase (equilibrium) point (T-4PP)
[h] ternary four-phase (equilibrium) line (T-4PL)
[i] ternary critical endpoint of a four-phase (equilibrium) line

(T-CEP-4PL)
[j] ternary tricritical endpoint (T-TCEP) [also named ternary tricriti-

cal point (T-TCP)]
Some of the ternary phase equilibrium objects in the list above, e.g.,

the T-CELs, are elements of the characteristic map (T-CM, see Appendix
D) [1] of the fluid phase behavior of the ternary system. Ref. [1] deals
with the computation of T-CMs and Ref. [2] with the calculation of
T-CELs.

A point of a T-CL has two DOFs. The same is true for a point of a
T-3PL. Eventually, the ternary isotherm may contain ternary critical end
points (T-CEP, one degree of freedom (DOF)), ternary four-phase equi-
librium points (T-4PP, one DOF), binary critical points (B-CP, one DOF),
ternary tricritical points (T-TCP, zero DOFs), ternary critical end point
of a four phase line (T-CEP-4PL, zero DOFs), etc. A one or zero DOFs
object is present in a TI if the set TI temperature equals the object’s tem-
perature. In this work, only T-CEPs, T-4PPs and B-CPs are considered, in
the calculation examples, among the ternary objects with a number of
DOFs less than two.

Schneider and Scheidgen [3] analyzed the experimental behavior of
fluid phases for CO2 + 1-decanol + n-tetradecane system. Such system,
is presented as an example with complex and rare phenomenological
behavior. This system shows types of behaviors that are uncommon for
systems with three components, and the authors named these phenom-
ena “Holes”, “Windows” and “Closed loops”. Three-dimensional (3D) di-
agrams of critical surfaces for the above ternary system are shown in
Ref. [3]. These critical surfaces are complex and may have “miscibil-
ity windows”. These miscibility windows can be observed in a diagram
at constant pressure, where a homogeneous closed region is completely
surrounded by a two-phase region. (see Ref. [3] Fig. 4a and b).

Scheidgen and Schneider [4] studied ternary systems of the type
CO2 + 1-alkanol + n-alkane. These systems exhibit behaviors as the
ones mentioned in Ref. [3]. In Ref. [4] a ternary diagram at constant
temperature (375 K, isothermal diagram), similar in nature to the com-
puted diagrams presented in Appendix A of this work, is shown. This
is Fig. 15 in Ref. [4]: [a] the system is CO2 + decanoic acid + 1-dode-
canol, [b] the figure includes a T-CL associated to the equilibrium phe-
nomenon named “island system”, and [c] the behavior shown in the fig-
ure is, in relative terms, simple. The phenomenon named “island sys-
tem” is observed when a ternary fluid phase equilibrium diagram at con-
stant pressure and temperature presents a closed two-phase region com-
pletely surrounded by an homogeneous region (see in Ref. [4] Fig. 14
[a,b and c] and Fig. 15).

Adrian et al. [5] reported experimental data on three phase equi-
librium, four phase equilibrium and critical points for the
CO2 + H2O + 1-propanol system. The authors used 3D qualitative
phase diagrams at constant temperature with the aim of describing the
equilibrium behavior observed for the system. Qualitative isotherms,
made of sub-diagrams at constant T and P, were shown to appreciate
the evolution of the ternary three-phase equilibrium. This is the case
of Fig. 3 in Ref. [5], which shows that changes in pressure at constant
temperature may result in going from sub phase diagrams having a
single three-phase region to sub phase diagrams with presence of two
different three-phase regions. This is also discussed, in a very detailed
way, in Ref. [2]. Such complex ternary phase behavior might lead to

confusion when experimental works are carried out, if the level of
awareness, about the wide-ranging possibilities for the ternary phase
equilibrium phenomenology, is not high enough. One way to under-
stand it is to analyze the (experimental or computed) ternary
three-phase equilibrium in a wide range of pressure. For example, if, at
constant temperature, a T-4PP is present within the covered pressure
range, it should be known that four different three-phase regions orig-
inate at such point, i.e., two three-phase regions above the T-4PP pres-
sure, and two three-phase regions below the T-4PP pressure.

Refs. [3–5] do not describe a calculation method to compute ternary
isothermal diagrams. On the other hand, several diagrams are qualita-
tive in such works, being used as an aid in interpreting the experimen-
tal data obtained. Adrian et al. [6] did declare and solve the mathe-
matical conditions for some types of phase equilibrium objects involved
in ternary isothermal diagrams. However, Ref. [6] lacks the description
of procedures for starting off the calculation of the different equilib-
rium lines, and for computing their endpoints. It is important to mention
that in Ref. [6] the relationship between the ternary isothermal phase
diagrams and the ternary fluid phase equilibrium characteristic maps
(T-CMs) was discussed. A definition for T-CMs is given in Appendix D.

The computation of a complex ternary section, in particular of an
isothermal phase diagram, requires a detailed procedure, involving es-
pecially a strategy for obtaining the initial guesses for all variables that
characterize a given equilibrium point. Ref. [7] describes an approach
for calculating binary phase equilibrium diagrams at constant pressure
or temperature using, as a starting point, information from higher level
phase equilibrium diagrams previously computed. These diagrams are
maps of the, in a way “global”, binary fluid phase equilibrium be-
havior (B-CMs = binary characteristic maps). They are computed af-
ter setting the values of all pure-compound and interaction parameters.
B-CMs were defined and classified by Scott and van Konynenburg [8]
(without using the name B-CM) and involve UV and ZV binary fluid
phase equilibrium objects, i.e., B-CMs are made of pure compound crit-
ical points, binary critical endpoints, binary critical lines (B-CLs), bi-
nary three phase lines (B-3PLs), pure compound vapor-liquid equilib-
rium lines (P-VPLs), etc. From these lines, UV key points are obtained in
Ref. [7] which are relevant for a specified isothermal or isobaric section.
Such key points are endpoints of the equilibrium lines which constitute
the isothermal phase diagram (or the isobaric one). The advantage of
applying the approach of Ref. [7] is that the use of thermodynamic sta-
bility tests is minimized or avoided. In addition, the knowledge of key
points for the binary isotherm or isobar makes possible to deduce be-
forehand the qualitative topology of the isothermal or isobaric diagram
to be calculated, which facilitates the development of more efficient al-
gorithms and calculation methods. The algorithms in Ref. [7] are lim-
ited to the most frequent binary phase behavior types. The name used in
Ref. [7] for the B-CMs is “global phase equilibrium diagrams”. We feel
that such name could lead some readers to confusion. We thus prefer
to use the name B-CM. The word “map” seems appropriate since what
a B-CM provides is the essential features and not the details of the bi-
nary phase behavior. A relatively recent discussion on the classification
of the binary phase behavior is available in Ref. [9].

The main goal in this work is to extend the approach of Ref. [7],
which deals with binary isothermal or isobaric phase equilibrium sec-
tions, to the computation of equilibrium sections for ternary systems.
The case study here is a particularly complex ternary phase equilibrium
isotherm, which will be built in a wide range of pressure, using informa-
tion from the previously computed T-CM (see Appendix D). The selected
ternary system is highly non-ideal.

A brief description of the methodology of computation of ternary
phase equilibrium sections is anticipated in Appendix C.

The computations performed in this work are limited to a model
system for which only the fluid state is available, i.e., the appearance
of solid phases is not covered by the thermodynamic model used here.
Thus, under part of the ranges of conditions of the fluid phase equilib

2



UN
CO

RR
EC

TE
D

PR
OOF

G.O. Pisoni et al. The Journal of Supercritical Fluids xxx (2017) xxx-xxx

ria here computed, the real system could present one or more solid
phases.

2. Ternary characteristic map (T-CM)

Appendix D provides details on what at T-CM is.
For illustration purposes, Fig. 1 shows qualitatively a portion of a

T-CM of possible existence. Each pure vapor pressure line (P-VPL, only
one is shown in Fig. 1) ends at the pure critical point (P-CP). From the
P-CP in Fig. 1 a binary critical line (B-CL) begins, and ends at a bi-
nary critical end point (B-CEP). From the B-CEP, two equilibrium lines
originate, a binary three phase line (B-3PL) and a first ternary critical
end line [T-CEL(1)]. The T-CEL(1) extends up to a first ternary critical
end point of a four phase line [T-CEP-4PL(1)], from which, a second
T-CEL(2) begins, that ends at a ternary tricritical point (T-TCP). A third
T-CEL(3) exists between the T-TCP and a second T-CEP-4PL(2). Between
the two T-CEPs-4PL a T-4PL develops. Finally, from the T-CEP-4PL(2)
the T-CEL(4) begins, which extends towards low pressures and temper-
atures.

It is important to mention that the level of complexity of a computed
T-CM depends on the system studied and on the thermodynamic model
(and its parameter values) used to describe the phase equilibria. In Ref.
[1] several computed T-CMs were presented, showing from simple to
very complex topologies. Ref. [1] also provides a flowchart describing
the calculation algorithm for computing T-CMs.

3. Key points in ternary isotherms

The case considered in this work is the one of a complex ternary
phase equilibrium isotherm (isothermal section), but the methodology
is analogous for a section at constant pressure (isobar).

For the isothermal case, (generally UV) KPs are determined from a
T-CM once the temperature of the isotherm has been specified. Such
KPs are the intersection points between the plane at the set constant
temperature (isothermal plane, a vertical line in Fig. 1), and the uni-
variant lines of the T-CM. The KPs to be considered in this work
are: Binary three phase points (B-3PPs); binary critical points (B-CPs);
ternary critical end points (T-CEPs) and ternary four phase points (T-

4PPs). Note that a TI may contain one or more of the KPs mentioned
above. The number and nature of the KPs of the TI depends on the
complexity of the T-CM. Invariant (ZV) points with a temperature equal
to the TI temperature will also be KPs of the TI, e.g., points of the
types T-TCP, T-CEP-4PL, etc. Examples of computed TIs having invari-
ant points are not provided in this paper. Besides, since azeotropy is not
considered in this work, we do not deal here with azeotropic KPs.

A given, already known, ternary or binary KP is then used to pro-
duce a first converged point of a given ternary isothermal equilibrium
line. In this work, and for a TI, such lines are ternary three phase lines
(T-3PLs), and ternary critical lines (T-CLs). Note that the basic natures
of the ternary lines of a given section (T-3PLs and T-CLs) are the same
than those of the univariant binary lines (B-3PLs and B-CLs). The num-
ber and nature of the KPs determine the types of lines constituting the
TI. In this sense, one or more T-3PLs will be present in the TI if B-3PPs,
T-4PPs and/or T-CEPs are found among the KPs of the TI. Similarly, one
or more T-CLs will be present in the TI if B-CPs and/or T-CEPs are lo-
cated at the TI temperature. A given T-3PL or T-CL may be limited by
two KPs, or it may have only one KP as its endpoint and extend indefi-
nitely towards low or high pressures.

4. Ternary isotherms computation

This section describes in more detail the general procedures and
calculation methods applied in this work to compute complete ternary
phase equilibrium TIs. Once the KPs are determined, the thermody-
namic objects to be calculated are T-3PLs and/or T-CLs.

4.1. Ternary three phase equilibrium: T-3PPs and T-3PLs

In a ternary three-phase point (T-3PP) three (non-critical) phases co-
exist in equilibrium. To compute a T-3PP, the iso-fugacity condition for
each component in the three phases present at equilibrium must be sat-
isfied. Furthermore, all phases must have the same absolute pressure
and the same absolute temperature. The equations that must be solved
simultaneously to compute a T-3PP are described in Appendix A.1.
Such system of equations (App. A.1) has twelve equations and fourteen

Fig. 1. Ternary phase behavior characteristic map (or a part of it). Qualitative diagram. P-VPL: Pure Compound Vapor Pressure Line. P-CP: Pure Compound Critical Point [□]. B-CL:
Binary Critical line. B-CEP: Binary Critical End Point [B]. B-3PL: Binary three phase line. T-4PL: Ternary Four Phase Line. T-CEL: Ternary Critical End Line. T-CEP-4PL: Ternary Critical
End Point of a Four Phase Line [T-CEP-4PL (1) for [:] and T-CEP-4PL (2) for [O]]. T-TCP: Ternary Tricritical Point [C].
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variables (indeed before the DOFs are spent). The T-3PP variables are
the following:

(A.1.1)

… where T is the absolute temperature, P is the absolute pressure, Vj is
the molar volume of phase j. is the mole fraction of component i in
the phase j, where i = 1 to 3 and j = α, β or γ. Superscripts α, β and γ
distinguish among the three phases in equilibrium. Since the number of
equations (twelve equations) is less than the number of variables (four-
teen variables), two variables must be specified to solve the system (or,
more generally, two specifications have to be made). Note that, from the
Gibbs phase rule, a T-3PP has two DOFs.

In Eq. (A.1.2) (Appendix A.1) it is assumed that all phases are repre-
sented by an EOS (φ–φ approach). If the γ–φ approach were used, then,
only the vapor phase molar volume would be involved in the T-3PP sys-
tem of equations (no liquid mixture molar volumes would appear), and
the number of variables would be less than 14. However, the γ–φ ap-
proach cannot describe vapor-liquid critical points.

The information in each already known TI KP (KP of a type related
to T-3PLs) can be used to initialize, at least in part, the vector ΛT (Eq.
(A.1.1)). Once ΛT has been initialized, the T-3PP system of equations is
solved to obtain the first converged point of the T-3PL to be computed.

All KPs (related to T-3PLs) have to be present in the final (full) set
of calculated T-3PLs. This means that (in principle) all (known in ad-
vance) KPs must have been used in the process of computing the full set
of T-3PLs of the TI.

To minimize the computation time, it is recommended to establish
some order of priority for the KPs, in the context of their use in starting
the calculations of the T-3PLs. According to the experience gained in the
development of this work, the following order of priority seems to be
appropriate:

1st: T-4PPs. If a KP is of the T-4PP type, then, four T-3PLs (of equal
T for a TI) that originate at this point must be calculated (to understand
why a T-4PP gives rise to four T-3PLs, see Section 4.1.1). To start the
calculation of a T-3PL from a T-4PP has two important benefits. The
first one being simplicity, as discussed in Section 4.1.1. Second, when
the calculation of the four T-3PLs achieves completion, it is possible that
some of the KPs not used to start the computation of such lines (e.g., a
T-CEP) have been reached by the calculated T-3PLs, as their endpoints.
These endpoints are immediately removed from the list of KPs not yet
used to start the calculation of additional T-3PLs. Thus, duplication of
computational effort is avoided. Notice that to start the computation of
a T-3PL from a T-CEP is a task more complex (Section 4.1.3) than to
start it from a T-4PP.

2nd: B-3PPs. Once all T-44Ps have been removed (during the T-3PLs
calculation course) from the list of KPs not yet used to start the com-
putation of additional T-3PLs, then, the KPs that are B-3PPs become
the KPs of choice to begin the calculation of more T-3PLs. Starting the
computation of a T-3PL from a B-3PP (Section 4.1.2) is slightly more
complex than doing it from a T-4PP, but simpler than starting it from a
T-CEP (Section 4.1.3).

3rd: T-CEPs. Finally, the calculation of T-3PLs starting from remain-
ing isolated (not yet reached) T-CEPs (Section 4.1.3) has to be carried
out. This is relatively more complex than doing it from a T-4PP or from
a B-3PP.

In the following subsections, details are reported on how a con-
verged T-3PP is obtained from a T-4PP, or from a B-3PP, or from a
T-CEP.

4.1.1. Obtaining a converged T-3PP from a T-4PP key point
A converged T-44P is useful to obtain four T-3PPs each belonging

to a different T-3PL. The system of equations valid at a T-4PP is analo

gous to the one valid for a T-3PP shown in Appendix A.1. See paragraph
about T-4PPs at the end of Appendix A.1.

At a T-4PP four non-critical phases coexit in equilibrium. The vari-
ables that characterize a T-4PP are the following: T, P, Vα, Vβ, Vγ, Vδ,
, , , , , , , , , , and . Where T is the absolute tem-
perature, P is the absolute pressure, Vj is the molar volume of phase j,
and is the mole fraction of component i in the phase j, with i = 1 to
3 and j = α, β, γ, or δ. Superscripts α, β, γ, and δ distinguish among the
four phases in equilibrium. Four different combinations of three phases
at equilibrium are obtained from the set of four phases of a T-4PP: α-β-γ,
β-γ-δ, α-β-δ and α-γ-δ. Each of these combinations is a mathematically
converged T-3PP under the conditions of the already known T-4PP. As-
sume that the “α-β-γ” combination is chosen, then, the values of the vari-
ables of these three phases equal the values of the variables of a con-
verged T-3PP (Eq. (A.1.1)), and from this converged T-3PP it is possible
to start building the “α-β-γ” T-3PL. This procedure is repeated for each
combination of three phases to complete the computation of the four
T-3PLs that depart from an already calculated T-4PP.

4.1.2. Obtaining a converged T-3PP from a B-3PP key point
As previously stated, the variables that characterize a T-3PP are T,

P, Vα, Vβ, Vγ, , , , , , , , and . In a B-3PP the mole
fraction variables , and (which imply the presence of the third
component in each of the three phases) do not exist. A known converged
B-3PP is useful to obtain a T-3PP where the third component is prac-
tically at infinity dilution while the other components have concentra-
tions practically equal to those of the B-3PP.

More specifically, the procedure to initialize the variables of this
T-3PP is to set T, P, Vα, Vβ, Vγ, , , , , , equal to those of
the known B-3PP, while , and are initialized to a value such
that component 3 is highly diluted, for example at a mole fraction value
equal to 1 × 10−6. If convergence is not achieved, then, only one of the
three mole fractions of the third component is set equal to a value in
the order of 1 × 10−6, e.g., . The subscript “∞” indicates
“close to infinite dilution”. Subsequently, the mole fractions of the com-
ponent “3” in phase “β” and in phase “γ” are estimated using the follow-
ing equations:

(1)

(2)

…where and are the mole fractions of component “3” in the
“β” and “γ” phases respectively, while , and are the fugacity
coefficients of component 3 in the phases α, β and γ respectively. The
fugacity coefficients are evaluated under the condition that the mole
fraction of component 3 tends to zero in each of the phases. This is
expressed as , and ; in this work is set.
Note the difference between and . In this way an initial value
has been assigned to all the variables of the first T-3PP. After conver-
gence is achieved for the T-3PP, the calculation of the T-3PL is initiated
with the help of a NCM. The initialization scheme based on Eqs. (1) and
(2), is consistent with the values of the equilibrium ratios (or distribu-
tion coefficients) of component 3 when infinitely diluted in the binary
three-phase system.
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If a T-3PL tends to a B-3PP (this could be the case of a T-3PL whose
calculation has been initiated at, e.g., a T-4PP), then, the mole fraction
in each of the phases for the component that is not present in the B-3PP
tends to zero. When this situation is detected (e.g.: when max[ , ,

] <10−6, being j the component not present at the B-3PP), then, the
calculation of the T-3PL is terminated.

4.1.3. Obtaining a converged T-3PP from a T-CEP key point
A known T-CEP is useful to obtain a T-3PP where two of the phases

are quasi-critical (QC). This T-3PP can be named QC T-3PP.
In a T-CEP two phases coexist in equilibrium, a critical phase with a

non-critical phase. The variables that characterize a T-CEP are: T, P, Vc,
Vα, , , , , , , , , and λ. Where T is the absolute tem-
perature, P is the absolute pressure, Vj is the molar volume of phase j,
and is the mole fraction of component i in the phase j, with i = 1
to 3 and j = c or j = α. The superscript “c” refers to the critical phase,
and the superscript “α” refers to the non-critical phase. , and are
the three components of certain eigenvector related to the critical con-
ditions to be satisfied by the ternary critical phase present in the T-CEP,
and λ is the eigenvalue associated to such eigenvector. The conditions
that must be satisfied to compute a ternary critical point and a T-CEP
will not be treated in this work, for more details see Refs. [2,10].

Initializing variables to calculate a QC T-3PP using the information
from a T-CEP is relatively more complex than the procedures presented
in the sub-sections above. The values of temperature (T) and pressure
(P) of the QC T-3PP are set equal to those of the known T-CEP. And the
values of molar volume (Vα) and of mole fractions , and of the
(far from critical) phase “α” of the QC T-3PP are set equal to the corre-
sponding values of the variables of the phase α (noncritical phase) pre-
sent in the known T-CEP.

To produce a QC T-3PP, the critical phase of the T-CEP is taken to a
condition where it splits into two quasi-critical phases (phases β and γ),
having compositions close to that of the critical phase. To achieve this
separation, it is necessary to know the direction (in the mole fractions
space) along which it occurs. This would be somewhat complicated for
the case of ternary mixtures, since the tie-line connecting the composi-
tions of phases β and γ, could have, at first sight, any direction. How-
ever, a direction chosen at random will in most cases lead to a lack of
convergence. To estimate the compositions of the quasi-critical phases,
the following equations are used:

(3)

(4)

… where and are the unknown mole fractions of component i in
phase β and phase γ of the QC T-3PP, respectively, and is the known
mole fraction of component i in the critical phase “c” of the T-CEP. ui
is a known component of the eigenvector mentioned above and “s” is a
distance parameter that is set equal to a value of about 1 × 10−5. Eigen-
vector is the direction along which the split of the critical phase is to
be carried out. Eqs. (3) and (4) are based on Eq. (5) of Appendix A of
Ref. [2].

Once the values for the mole fractions of each component in the
phase “β” and phase “γ” are obtained from Eqs. (3) and (4), Vβ and Vγ

are calculated at the temperature and pressure of the T-CEP using the
chosen EOS (SRK-EOS [11] in this work). At this point all variables of
the QC T-3PP have an initial value assigned. Next, the QC T-3PP point
is converged. To do so, the specified variable is, in this work, the ra-
tio of molar volumes Vα/Vβ of the quasi-critical phases. This ratio is
set equal to a value close to unity, e.g., 0.9995 (we remind that, at
set temperature (or set pressure), a T-3PP has as single DOF left). This
value makes possible to avoid the trivial solution during the process of

converging the QC T-3PP, since it forces the QC phases to be different,
while keeping their properties very similar. With this QC T-3PP already
converged and with the help of a NCM, the complete T-3PL is calcu-
lated.

A T-3PL could tend to a T-CEP. This may happen for T-3PLs having
departure points of any kind (i.e, a T-4PP or a B-3PP or another T-CEP:
in this last case the T-3PL has a T-CEP in each of its ends.). If a T-3PL
tends to a T-CEP, two of the three phases in equilibrium become identi-
cal in composition and molar density (or molar volume), in other words,
two of the three phases in equilibrium in the T-3PL become critical. The
detection of this situation is used by the algorithm to terminate the cal-
culation of the T-3PL. More specifically, when ,
, and are all simultaneously less than 1 × 10−6,
then, it is assumed that phases “α” and “β” have become critical for the
“ith” calculated point of the T-3PL: computations are then stopped. The
use of the NCM makes possible to distinguish between the trivial solu-
tion and criticality when approaching a T-CEP, during the computation
of a T-3PL.

4.2. Ternary critical equilibrium: t-CP and T-CL

A critical point (e.g., a T-CP or a B-CP) is a state where a stable fluid
phase is at its limit of intrinsic stability. By “stable” we generally mean
that the fluid is neither unstable nor metastable. A critical point belongs
simultaneously to the phase coexistence surface and to the spinodal sur-
face.

The vector of variables that are used in this work to describe a T-CP
is the following:

(5)

T is the absolute temperature, P is the absolute pressure, V is the
molar volume, and is the mole fraction of component i in the criti-
cal phase “c”, where i = 1 to 3 . , and are the three components
of certain eigenvector related to the critical conditions to be satisfied
by the ternary critical fluid, and λ is the eigenvalue associated to such
eigenvector.

The KPs from which the calculation of a T-CL can be initiated are:
binary critical points (B-CPs) and ternary critical end points (T-CEPs).
Starting a T-CL from a T-CEP is a relatively simple procedure, since the
critical phase present in the T-CEP is already a converged critical point.
The values of the variables of the critical phase in the known T-CEP
equal the values of the variables of the first point of the T-CL. The ap-
plication of a NCM is thus straightforward: there is no need to converge
the first T-CP.

If during the computation progress of a T-CL such line tends to a
T-CEP as its endpoint, then, the “critical phase” present in the T-CL
will become “globally unstable” by the appearance of the “non-critical
phase” present in the T-CEP.

A known B-CP is useful to obtain a converged T-CP where the third
component is in practical terms infinitely diluted in the original critical
binary system.

The variables by which a B-CP is described are in this work: T, P,
V, , , , and λ. The difference between a B-CP and a T-CP is
that for a B-CP the variable does not exist; and so is the case for

. Note that the eigenvector components in this case (B-CP) are two
since it is a binary point. To obtain a converged T-CP, all variables of
the T-CP which also exist in the B-CP are, for the T-CP, set equal to
those of the known B-CP, except for λ and for the components of the
eigenvector. Next, the value 1 × 10−6 is assigned to . This value cor-
responds, practically, to the infinite dilution limit. The eigenvalue λ and
the eigenvector of components , and are associated to a 3 × 3 ma-
trix whose elements are second derivatives with respect to composition
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of the natural logarithms of the fugacities. These elements depend on
temperature, critical volume and mole fractions, including . After set-
ting = 1 × 10−6, the values of the elements of the matrix become de-
fined. The eigenvalue and eigenvector calculation, which is straightfor-
ward, is then carried out. At this point all variables of the first T-CP of
the T-CL have initial values assigned. The T-CP is then calculated, at the
TI temperature, setting = 1 × 10−6, thus spending the second DOF of
the T-CP.

Priority is ascribed to T-CEPs over B-CPs (if both types of KPs are
present in the set of KPs) for starting the computation of the T-CLs of
the phase equilibrium section to be calculated.

For details on procedures and systems of equations to calculate mul-
ticomponent/ternary critical points or related objects see Refs. [2,10].

5. Results and discussion

To illustrate the results that can be obtained by using the compu-
tation strategy here proposed, for calculating phase equilibrium sec-
tions for ternary systems, a complete, quite complex, phase equilib-
rium ternary isotherm (TI) was computed for the
CO2 + H2O + 2-propanol(IPA) system. The model used is the SRK-EOS
[11] coupled to van der Waals mixing rules, which are quadratic with
respect to mole fraction.

The choice of system CO2 + H2O + 2-propanol is motivated in its
highly non-ideal behavior, which includes the existence of four-phase
equilibria. The computations over wide ranges of conditions carried out
for this system are stringent tests for the proposed computation strategy.

Table 1 shows the parameter values [12] used for the three pure
components of this ternary system. These parameters are required to
carry out the calculations using the SRK equation of state (EOS) [11].
Table 2 reports the values of binary interaction parameters [13] used
here. Table 3 reports the predicted types of phase behavior (according to
the classification of Scott and van Konynenburg [8]) of the three binary
sub-systems of the ternary system, i.e., it reports the types of B-CMs.
Such B-CMs (and the ternary behavior) are the result of the parameter
values in Tables 1 and 2. The calculation algorithms used to obtain the
B-CMs are described in Ref. [14].

To compute a TI, using the methodology proposed in this paper, the
computed T-CM for the studied ternary system is required. Figs. 2 and
3 show part of the T-CM computed for the CO2 + H2O + 2-propanol
system following the procedures of Ref. [1]. As it can be seen, the
T-CM for this system is highly complex and it is composed of a vari-
ety of thermodynamic objects, including: T-CELs, T-4PLs, T-CEP-4PLs,
T-TCPs, etc. T-CELs are identified with the labels “a”, “b”, “c”, etc. Fig. 3

Table 1
Pure compound critical constants and acentric factor used in this work [12].

Compound
Critical
Temperature (K)

Critical Pressure
(bar)

Acentric
Factor

2-propanol 508.3 47.64 0.6669
CO2 304.21 73.83 0.2236
H2O 647.13 220.55 0.3449

is a zoom of Fig. 2. This region has a large number of thermodynamic
objects.

The temperature at which the phase equilibrium isotherm was cal-
culated is T = 330 K (vertical line in Figs. 2 and 3). The choice of this
temperature value implies a maximum number of intersection points
between the constant temperature (330 K) hyper-plane and the sys-
tem’s univariant lines. A greater number of intersection points implies
a greater complexity for the ternary phase equilibrium isotherm to be
calculated. Figs. 2 and 3 show the plane at T = 330 K as well as its in-
tersection points with the univariant lines of the T-CM. These points are
the UV KPs to be used to calculate the ternary isotherm.

The KPs at 330 K are a total of six, and are identified as: T-CEP (e)
(Fig. 2), and (Fig. 3) T-CEP (d), T-CEP (a), T-4PP, T-CEP (c) and B-CP.
Note that the labels “a”, “c”, “d” and “e” that identify these KPs, are the
same than those of the T-CELs to which they belong. Tables A.3.1–A.3.3
in Appendix A.3 report the calculated values of all variables that char-
acterize each of these KPs.

5.1. Results shown in prism diagrams

Fig. 4 shows a three dimensional diagram (3D) with the complete
TI calculated. This diagram is a 3D phase equilibrium prism. Its base is
the well-known Gibbs triangle, regularly used to represent ternary phase
compositions. A given side of the Gibbs triangle corresponds to one of
the three binary sub-systems of the ternary system. Notice that the phase
equilibria of the binary subsystems at 330 K is not shown in Fig. 4. If
shown, they would be seen on the vertical prism faces. The only excep-
tion is the B-CEP indicated in Fig. 4, which is located in the CO2 + IPA
prism face. In this work, the concentration scale in the prisms is the
mole fraction.

Four points in a prism, interconnected by straight lines (tie-lines), all
having the same pressure and temperature (i.e., being all located within
the same horizontal plane), represent the compositions of four ternary
phases which are at equilibrium (T-4PP), at the set temperature and
pressure (see the four empty squares in, e.g., Fig. 5). If the number of
points is three instead of four, then, the three interconnected points cor-
respond to a T-3PP. Clearly, a T-3PP corresponds to an horizontal trian-
gle located inside the prism.

Since in a T-CP only a single phase is involved, a T-CP is represented
by a single point (single composition) located inside the Gibbs trian-
gle (e.g., full circles in Figs. A.2.2 and A.2.3). Figs. A.2.2 and A.2.3 in
Appendix A.2, are examples of representations of ternary phase equilib-
ria at set temperature and pressure in the Gibbs triangle. Clearly, if at
constant temperature the pressure is variable, then, the equilibria are to
be represented in a 3D prism like the ones in, e.g., Fig. 4 or Fig. A.2.1.
In the prism, a continuous set of T-3PPs (T-3PL) will be seen as three
continuous lines each showing the evolution of a given vertex of the
three-phase equilibrium triangle, i.e., each showing the evolution of the
composition of one of the three phases at three-phase equilibrium (e.g.,
solid lines in Fig. 8, i.e., T-3PL(4)). On the other hand, a continuous set
of T-CPs is represented in the prism by a single line (e.g., T-CL(2) in Fig.
5).

Finally, in a prism at constant temperature, the ternary four-phase
equilibrium is not seen as a set of four continuous lines, but as a sin-
gle horizontal quadrilateral, i.e., the T-4PP exists only at a specific pres

Table 2
Interaction parameters (SRK-EOS) [11].

Ternary System Interaction Parameters [13]

Attractive Repulsive

k12 k13 k23 l12 l13 l23

CO2(1) + H2O(2)+ 2-propanol(3) −0.053 0.017 −0.207 0 0 0
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Table 3
Predicted type of phase behavior for the binary sub-systems (SRK-EOS. Parameters from
Tables 1 and 2).

Ternary System Type of phase behavior [8]

1–2 1–3 2–3

CO2(1) + H2O(2)+ 2-Propanol(3) III II II

sure once the temperature is fixed. This is because a T-4PP has only one
DOF (e.g., squares in Fig. 6).

Figs. 4 and 5 show all the key points previously identified in Figs. 2
and 3. This figure also shows the computed T-3PLs and T-CLs, which be-
gin or end at such KPs. In particular, there are four T-3PLs. All of them
originate at the T-4PP.

Fig. 5 shows the isotherm in a pressure range from 101 to 108 bar. In
order to distinguish between T-3PLs these are identified with the labels
“1”, “2”, “3” and “4”. T-3PL(1) and T-3PL(2) are located at pressures
above the T-4PP pressure, while the T-3PL(3) (Fig. 5) and T-3PL(4) (Fig.
4) develop at pressures below the T-4PP pressure.

T-3PL(1) ends at the KP named T-CEP(d) (Fig. 5). Two of the three
phases in equilibrium become critical (i.e., identical) at this point.
T-3PL(2) starts at the T-4PP and ends at the KP named T-CEP(a) (Fig.
5). The pressure of the T-CEP(a) is less than the pressure of the T-CEP(d)
(Fig. 5).

On the other hand, T-CL(1) stems from the critical phase of the
T-CEP(a) (Fig. 5). The situation is the same for the T-CL(2) and the
T-CEP(d) (Fig. 5). The T-CL(1) ends at the B-CP previously identified as
a KP for the T = 330 K phase equilibrium isotherm (Fig. 5). The calcu-
lation of a converged T-CP using the information of this B-CP was not
necessary because the T-CL (T-CL(1)) calculated using the information
of the T-CEP(a) naturally tended to the B-CP in Fig. 5.

If the calculation departing from the B-CP were anyway done, then,
the same T-CL(1) would be obtained, but it would grow, during the com-
putation progress, in the opposite sense that in the default calculation
procedure (such default procedure starts in this case at the location of
the T-CEP(a)).

T-CL(2) stems from the critical phase of T-CEP(d) (as previously
stated) and ends at T-CEP(c) (Fig. 5), i.e., both endpoints have the

same nature (both are T-CEPs). Notice that the pressure range of exis-
tence of the T-CL(2) includes the T-4PP pressure (this is more easily seen
in Fig. 10).

Fig. 6 shows the 330 K isotherm in a narrower pressure range
(102.6–104.4 bar). The T-3PL(1) and T-3PL(2) are shown to be lo-
cated above the T-4PP. In addition, three-phase tie-lines are shown
at three selected pressure values for both T-3PLs (six T-3PPs in to-
tal). This figure shows the existence for a given (properly set) con-
stant pressure and given constant temperature (330 K) of two different
three-phase regions. This happens within a pressure range located above
the T-4PP pressure in Fig. 6. In other words, the continuous set of pairs
of three-phase regions originate at the T-44P.

However, when the three-phase equilibrium of the T-3PL(2) reaches
the T-CEP(a) (Fig. 6), the three-phase region associated to the T-3PL(2)
comes to an end (Fig. 6). Then, at a given pressure greater than the
T-CEP(a) pressure, there is only a single three-phase region (the one of
the T-3PL(1), Fig. 5), which also comes to an end when the pressure
of the T-CEP(d) (Fig. 5) is reached. Note in Fig. 6, that as the pres-
sure increases, the length of one side of the three-phase triangle for the
T-3PL(2) decreases, and this side of the triangle eventually collapses, re-
sulting in a critical phase when the T-CEP(a) is reached (Fig. 6).

Fig. 7 shows the 330 K isotherm within the pressure range
(101.4–103 bar) in which the two T-3PLs located below the pressure
of the T-4PP are observed. The T-3PL(3) originates at the T-4PP and
ends at the T-CEP(c). At this point the T-3PL(3) continuous set of
three-phase regions (each region described by a pressure value and by
three tie-lines) ends. As in the previous case of Fig. 6, but in a narrower
pressure range (102.1–102.7 bar, Fig. 7), two different three-phase re-
gions coexist at a given constant pressure and temperature (Fig. 7).

Fig. 8 shows, in the rotated prism, the T-3PL(4) which starts at the
T-4PP and extends over a wide range of pressure, approximately from
102.7 bar down to 70 bar. The T-3PL(4) ends when the T-CEP(e) is
reached. In this figure it can be clearly observed, e.g., how one side of
the three-phase equilibrium triangle decreases in size as pressure de-
creases, collapsing into a point when the T-CEP(e) is reached. From the
critical phase of T-CEP(e), the calculated T-CL (3) departs, extending in-
definitely towards high pressures (Figs. 4 and 9) (in this case the cal-
culation of T-CL(3) was stopped when the pressure reached 1000 bar).
This implies that the model predicts that immiscibility will be observed
up to indefinitely high pressures (the presence of a critical point at a

Fig. 2. Pressure-Temperature projection of part of the calculated ternary characteristic map (T-CM) for the CO2 + H2O + 2-Propanol system. Model: SRK-EOS [11]. Parameters in Tables
1 and 2. P-VPL: Pure Vapour Pressure Line. P-CP: Pure Critical Point [□]. B-3PL: Binary Three Phase Line. B-CL: Binary Critical Line. B-CEP: Binary Critical End Point [B]. T-CEP-4PL:
Ternary Critical End Point of a Four Phase Line (T-CEP-4PL (1) [O] and T-CEP-4PL (2) [:]). T-CEL: Ternary Critical End Line [T-CEL (d and e)]. T-CEP: Ternary Critical End Point [T-CEP
(e)]. T-TCP: Ternary Tricritical Point [C].
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Fig. 4. Computed ternary phase equilibrium isotherm. Temperature: 330 K. System:
CO2 + H2O + 2-Propanol(IPA). SRK-EoS [11]. Parameters in Tables 1 and 2. The light
dashed auxiliary arrows are included to facilitate the identification of the phase equilib-
rium objects. T-CEP: Ternary Critical End Point (a, c, d and e). T-4PP: Ternary Four Phase
Point. B-CP: Binary Critical Point. T-CL: Ternary Critical Line (3). T-3PL: Ternary Three
Phase Line (4). Pairs of circles [ ] connected by a dashed tie-line indicate the T-CEP phase
compositions and pressure. Empty squares [ ] indicate the T-4PP phase compositions and
pressure. Concentration scale in the Gibbs triangle: mole fraction. Note: arrows are not to
be confused with tie lines.

Fig. 5. Zoom of Fig. 4. Pressure range from B-CP pressure to T-CEP (d) pressure. Com-
puted ternary phase equilibrium isotherm. Temperature: 330 K. System:
CO2 + H2O + 2-Propanol(IPA). SRK-EoS [11]. Parameters in Tables 1 and 2. T-CEP:
Ternary Critical End Point (a, c, d). T-4PP: Ternary Four Phase Point. B-CP: Binary Crit-
ical Point. T-CL: Ternary Critical Line (1, 2 and 3). T-3PL: Ternary Three Phase Line (1,
2, 3 and 4). Pairs of circles [ ] connected by a dashed tie-line indicate the T-CEP phase
compositions and pressure. Empty squares [ ] indicate the T-4PP phase compositions and
pressure. Concentration scale in the Gibbs triangle: mole fraction. Note: arrows are not to
be confused with tie lines.

given temperature and given pressure implies the presence of an immis-
cibility region under such conditions of temperature and pressure).

The previous figures illustrate how complex the phase behavior of
a ternary system could be. Thus, relatively elementary algorithms for
computing the ternary phase behavior should be expected to fail in cases
as the one here considered.

5.2. Results shown in 2D diagrams

Fig. 9 shows the pressure (P) vs. projection of the computed
T-CLs and T-3PLs, for the 330 K phase equilibrium isotherm of system

Fig. 6. Zoom of Fig. 4. Pressure range from the T-4PP pressure to the T-CEP (a) pressure.
Computed ternary phase equilibrium isotherm with indication of six T-3PPs. Temperature:
330 K. System: CO2 + H2O + 2-Propanol(IPA). SRK-EoS [11]. Parameters in Tables 1 and
2. T-CEP: Ternary Critical End Point (a). T-4PP: Ternary Four Phase Point. T-CL: Ternary
Critical Line (1, 2 and 3). T-3PL: Ternary Three Phase Line (1 and 2). T-3PP: Ternary
three-phase point. Pairs of circles [ ] connected by a dashed tie-line indicate the T-CEP
phase compositions and pressure. Empty squares [ ] indicate the T-4PP phase composi-
tions and pressure. Triangle with dashed sides: T-3PP at set temperature and pressure. The
dashed sides are the T-3PP tie-lines. The dashed sides connect full triangles [ and ] which
indicate the phase compositions and the pressure of the T-3PP. Concentration scale in the
Gibbs triangle: mole fraction. Note: arrows are not to be confused with tie lines.

Fig. 7. Zoom of Fig. 4. Pressure range from slightly below the T-CEP (c) pressure to the
T-4PP pressure. Computed ternary phase equilibrium isotherm with indication of several
T-3PPs. Temperature: 330 K. System: CO2 + H2O + 2-Propanol(IPA). SRK-EoS [11]. Pa-
rameters in Tables 1 and 2. T-CEP: Ternary Critical End Point (c). T-4PP: Ternary Four
Phase Point. T-CL: Ternary Critical Line (1, 2 and 3). T-3PL: Ternary Three Phase Line
(3 and 4). T-3PP: Ternary three-phase point. Pairs of circles [ ] connected by a dashed
tie-line indicate the T-CEP phase compositions and pressure. Empty squares [□] indicate
the T-4PP phase compositions and pressure. Triangle with dashed sides: T-3PP at set tem-
perature and pressure. The dashed sides are the T-3PP tie-lines. The dashed sides connect
full triangles [ and ] which indicate the phase compositions and the pressure of the T-3PP.
Concentration scale in the Gibbs triangle: mole fraction. Note: arrows are not to be con-
fused with tie lines.
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Fig. 8. Zoom of Fig. 4. Pressure range from the T-CEP (e) pressure to almost the T-4PP
pressure. Computed ternary phase equilibrium isotherm with indication of several T-3PPs.
Temperature: 330 K. System: CO2 + H2O + 2-Propanol(IPA). SRK-EoS [11]. Parameters
in Tables 1 and 2. T-CEP: Ternary Critical End Point (e). T-4PP: Ternary Four Phase
Point. T-CL: Ternary Critical Line (3). T-3PL: Ternary Three Phase Line (4). T-3PP: Ternary
three-phase point. Pairs of circles [ ] connected by a dashed tie-line indicate the T-CEP
phase compositions and pressure. Empty squares [ ] indicate the T-4PP phase composi-
tions and pressure. Triangle with dashed sides: T-3PP at set temperature and pressure. The
dashed sides are the T-3PP tie-lines. The dashed sides connect full triangles [ ] which in-
dicate the phase compositions and the pressure of the T-3PP. Concentration scale in the
Gibbs triangle: mole fraction. Note: arrows are not to be confused with tie lines.

CO2(1) + H2O(2)+ 2-propanol(3). is the fugacity of component 1 in
the system.

Note that is the same in all phases when these phases are at equi-
librium (i.e., is a “field” variable). The “field variable” nature of
makes interesting the study of equilibrium diagrams with as one of
its axes, when only one of the two measurable field variables T and P
has been allowed to vary. In this case the “P vs. ” projection was
selected, although the “P vs. ” or “P vs. ” projections would
lead to graphics providing the same essential information. Fig. 9 shows

mainly how the T-3PL(4) reaches the T-CEP(e) at which the T-CL(3) be-
gins.

The region in Fig. 9 with the highest concentration of equilibrium
lines and KPs (region enclosed by a circle in Fig. 9) is best seen in Fig.
10, which is a zoom Fig. 9. In this figure it is observed that the four
T-3PLs stem from the T-4PP. At pressures above the T-4PP pressure, the
T-3PL(1) which ends at the T-CEP(d), and the T-3PL(2) which ends at
the T-CEP(a), are visualized. Analogously, at pressures below the T-4PP
pressure, the T-3PL(3) which ends at the T-CEP(c) and the T-3PL(4)
which ends at the T-CEP(e) (Fig. 9) are seen.

Finally, the T-CLs departing from the critical phases of the corre-
sponding T-CEPs are observed. T-CL(1) originates (Fig. 10) at the critical
phase of the T-CEP(a) and ends at the B-CP (CO2 + 2-propanol), while
T-CL(2) begins (Fig. 10) in the critical phase of T-CEP(d) and ends at the
critical phase of T-CEP(c).

Fig. 11 is a zoom of Fig. 10. It shows that T-3PL(3) and T-3PL(4) do
not overlap (as it could have been concluded from looking at Fig. 10). In
Fig. 11, it can be seen that the end point of the T-CL(2) does not match
exactly (as it should) the T-CEP(c). This is ascribed to round-off errors
of floating point operations.

Note the significant difference in complexity between this type of di-
agrams (P vs. ) and the 3D prisms of Figs. 4–8. In the diagrams “P
vs. ” all the elements of the 330 K TI become reduced either to a
single point, or to a single line in the 2D space. For example, in the 3D
prisms the T-4PP was represented by four square markers (i.e., 4 points
in the 3D space, e.g., Fig. 7) and their connecting tie-lines. In contrast,
the same T-4PP in the “P vs. ” diagram becomes a single point in a
2D space (Fig. 10), since is the same in all phases. The same applies
to the T-3PLs: in the 3D prism three lines are required to represent the
three-phase locus (e.g., T-3PL(4) in Fig. 4), whereas in a diagram “P vs.

” a T-3PL is represented by a single line, as shown in Figs. 9–11.
Diagrams such as those of Figs. 9–11 could be named “ternary

isothermal phase equilibrium maps”. They are, in a way, analogous to
the T-CMs such as the one of Fig. 2. An important difference is that the
axes in Fig. 2 correspond to measurable variables (T and P), while the
abscissa in Figs. 9–11 is not a measurable quantity. In spite of
this, Figs. 9–11 are useful to see, at a glance, the key features of the be-
havior of the model for a given phase equilibrium section (an isother

Fig. 9. Pressure vs. natural logarithm of the fugacity of component ‘1’ along computed isothermal critical and three-phase lines. System CO2(1) + H2O(2)+ 2-propanol(3). T = 330 K.
SRK-EoS [11]. Parameters in Tables 1 and 2. T-CEP: Ternary Critical End Point [T-CEP (e)]. T-CL: Ternary Critical Line [T-CL (3)]. T-3PL: Ternary Three Phase Line [T-3PL (4)]. Full blue
circles [ ] indicate the T-CEPs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. Zoom of Fig. 9. Pressure vs. natural logarithm of the fugacity of component “1” along computed isothermal critical and three-phase lines. System CO2(1) + H2O(2)+
2-propanol(3). T = 330 K. SRK-EoS [11]. Parameters in Tables 1 and 2. B-CP: Binary Critical point [C]. T-CEP: Ternary Critical End Point (a, c and d) [ ]. T-CL: Ternary Critical Line (1
and 2). T-3PL: Ternary Three Phase Line (1, 2, 3 and 4). T-4PP: Ternary Four Phase Point [ ].

Fig. 11. Zoom of Fig. 10. Pressure vs. natural logarithm of the fugacity of component “1” along computed isothermal critical and three-phase lines. System CO2(1) + H2O(2)+
2-propanol(3). T = 330 K. SRK-EoS [11]. Parameters in Tables 1 and 2. B-CP: Binary Critical point [C]. T-CEP: Ternary Critical End Point (c) [ ]. T-CL: Ternary Critical Line (1 and 2).
T-3PL: Ternary Three Phase Line (1, 2, 3 and 4). T-4PP: Ternary Four Phase Point [ ].

mal section in this case). Figs. 9–11 convey less information than 3D di-
agrams such as Fig. 4, but provide, for the section of the equilibrium
surfaces under study, a faster understanding on the connection among
the involved T-3PLs, T-CLs and KPs.

6. Remarks and conclusions

In this work, a strategy for the computation of fluid phase equilib-
rium sections, for ternary systems, over wide ranges of conditions, using
as starting point a previously computed ternary phase equilibrium char-
acteristic map, was proposed. The computations were performed using
a model of the equation of state type.

It has been shown, in view of the highly complex case study here
considered, that the methodology of Ref. [7], proposed for binary mix-
tures, can be extended to the calculation of ternary phase equilibrium

sections of the phase equilibrium surfaces (isotherms or isobars). To il-
lustrate the application of the proposed strategy, a complete complex
ternary isothermal phase diagram (TI) was computed, by following the
procedures described in Section 4. The chosen system was the ternary
CO2 + H2O + 2-propanol. This system presents four-phase equilibria,
which is a highly non-ideal phase behavior.

Ternary three-phase lines (T-3PLs) and ternary critical lines (T-CLs)
were calculated, in the context of the generation of a TI. For any given
line to be computed, a key problem is to obtain its first converged point.
Once this is done, a numerical continuation method (NCM) is applied to
build the full line.

In this work, techniques to facilitate the variables initialization to
converge a first point of a given line were proposed and tested satisfac-
torily. The NCM here used presented no problems, once the first point
of the phase equilibrium line of interest was converged.

10
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The computed ternary phase equilibrium isotherm made possible to
carry out a detailed analysis of the (complex) phase equilibrium behav-
ior given by the model, and an analysis of the different types of phase
transitions that can occur in a ternary complex system over a wide range
of pressure. For the isothermal section considered, a ternary four-phase
point (T-4PP) was found. The presence of a T-4PP in a ternary isotherm
(or isobar) results in four T-3PLs: two T-3PLs above the T-4PP pressure
and two T-3PLs below this pressure. This type of phenomenon can lead
to interpretation errors when experimental data are analyzed in the lab-
oratory, since at fixed pressure and temperature there will be two dif-
ferent three-phase regions, if the conditions are close enough to that of
the T-4PP (see, e.g., Figs. A.2.2 and A.2.3). In this sense, the tools here
developed may be of use to the experimentalist.

Furthermore, a complete computed TI (or isobar) conveys key in-
formation about the equilibrium behaviors that can occur when, for
the ternary system, another constraint is added, e.g., for a TI, constant
pressure (on top of the constraint of constant temperature). Appendix
A.2 shows diagrams at set T and P calculated using information ob-
tained from a TI previously computed in this work. The figures shown in
Appendix A.2 aim to show that the procedures used in this work are also
helpful in the computation of equilibrium diagrams at constant pressure
and temperature.

Although the model parameters were taken from the literature, no
attempt was made in this work to compare the model predictions with
the experimental data, i.e.,the focus of this work is the calculation strat-
egy; not the evaluation of the quantitative performance of the model. In-
deed the computation strategy here proposed is applicable to any model
of the equation of state type, in the context of the ‘φ–φ’ approach.

Due to the complexity of the phase behavior of system
CO2 + H2O + 2-Propanol, we reported in this work computation re-
sults only for a highly complex phase equilibrium isothermal section.
However, the use of the present methodology for computing ternary
phase equilibrium isobaric sections is fully analogous to that of the
phase equilibrium isotherms.
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Appendix A.1. Computation of a T-3PP

The system of equations and the vector of variables used in this work
to compute a T-3PP are:

(A.1.1)

(A.1.2)

The vector Λ has 14 variables, where T is the absolute tempera-
ture, P is the absolute pressure, Vj is the molar volume of phase j.

is the mole fraction of component i in the phase j, where i = 1
to 3 and j = α, β or γ. Superscripts α, β and γ distinguish the three
phases at equilibrium. The vector F has 14 functions, where
F1 = 0, F2 = 0, F3 = 0, F4 = 0, F5 = 0 and F6 = 0 impose the iso-fu-
gacity condition for the three phases at equilibrium, with represent-
ing the fugacity of component i in the mixture. F7 = 0, F8 = 0 and
F9 = 0 impose the equal pressure condition to the three-phases at equi-
librium. Function ψ is the function that connects explicitly the temper-
ature (T), the molar volume (Vj) and the mole fractions with the
pressure of phase j. The mathematical forms of ψ and are imposed
by the selected EOS (the SRK-EOS in this work). F10 = 0, F11 = 0 and
F12 = 0 impose that the sum of the mole fractions of the three compo-
nents must be equal to unity, for each of the three phases. The F13 = 0
and F14 = 0 equations are related to the two DOFs that must be spec-
ified to compute a ternary three-phase equilibrium point. The func-
tion hcut(Λ) in F13 = 0, equals in this work the variable (temperature or
pressure) chosen to remain constant in the section of the three phase
equilibrium surface (=T-3PL) to be computed. Clearly, hcut(Λ) defines
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the nature of the plane at which the calculation of the complete T-3PL
will be performed. The parameter Scut is the value of the set constant
temperature or constant pressure, depending on whether the section is
isothermal or isobaric. For the case considered in this work, i.e., the cal-
culation of an isotherm, we have hcut(Λ) = T and Scut = 330 K. Thus,
in such case, F13 = 0 becomes (T − 330 K = 0). This equation remains
unchanged throughout the calculation of the T-3PL (which is a contin-
uous set of T-3PPs). The gspec(Λ) function in equation F14 = 0 is related
to the second DOF that must be specified, and this function is linked to
the NCM implemented in this work [2].

The function gspec(Λ) can be different for each T-3PP to be calcu-
lated, according to the criteria used by the implemented NCM. For
example, for a given T-3PP the function gspec(Λ) could be defined as
gspec(Λ) = Vα, and parameter Sspec could be imposed to be equal to
0.1 L/mol, i.e., Sspec = 0.1 L/mol. Then, F14 = 0 would take the form
Vα − 0.1 L/mol = 0. Clearly, in this case the NCM would have identi-
fied Vα as the most appropriate variable to be specified.

For the next T-3PP, the function gspec(Λ) could remain unchanged, or
the NCM could identify a different variable as the most appropriate to
be specified. For example, the NCM could decide to make the following
definitions: gspec(Λ) = P and Sspec = 101.1 bar. In such a case, the new
form for F14 = 0 would be P − 101.1 bar = 0. In other words, equa-
tion F14 = 0 would have been modified by the NCM after finishing the
computation of a T-3PP, in order to perform the computation of the next
one. The main reason for using a NCM is that specifications leading to
a lack of solution of the system of Eqs. (A.1.2) are avoided during the
computation of the T-3PL. Besides, the NCM always provides excellent
initial guesses for the next T-3PP to be calculated. It does it based on
information about the previous already converged T-3PP.

For more details on the NCM implemented in this work see Ref.
[2]. Actually, in this work, for performing the computations, all posi-
tive variables, such as the mole fractions, were logarithmically scaled.
This makes possible to easily deal with, e.g., very low values for mole
fractions of highly diluted components. Some information on this scal-
ing approach is also provided in Ref. [2].

A comment on T-4PPs

The system of equations valid at a T-4PP is as the one of Eq. (A.1.2)
with the incorporation of three additional isofugacity conditions, one
additional condition involving function ψ, one additional condition set-
ting a summation of mole fractions equal to unity; and with the equa-
tion involving parameter Scut removed. The equation involving parame-
ter Sspec remains. Such equation is used to set the only degree of freedom
of a T-4PP. The new variables (four in total) added to those in vector
Λ are the molar volume and composition (three mole fractions) of the
fourth phase.

Appendix A.2. Generation of ternary phase equilibrium diagrams
at set pressure and temperature using information of a computed
isotherm

In the same way that the T-CM is used to determine the (generally
UV) KPs defined by a plane at constant temperature (plane that cuts the
equilibrium surfaces), and then to build a complete TI using the infor-
mation contained in such KPs, a calculated TI can be used to generate
diagrams at constant temperature and pressure (Gibbs triangle).

Fig. A.2.1 is similar to Fig. 5. Fig. A.2.1 shows three dashed lines,
located at P = 103,076 bar, connecting the three vertices of the Gibbs
triangle. They define an horizontal constant pressure plane at
P = 103,076 bar. This plane intercepts three T-CLs and two T-3PLs ex-
isting within the ranges of conditions of Fig. A.2.1. From this intersec-
tion points the following DV KPs are determined for the phase diagram
at 330 K and 103,076 bar: T-CP(1), T-CP(2), T-CP(3), T-3PP(1) and
T-3PP(2). The presence of these KPs would be more easily seen by draw

Fig. A.2.1. Computed ternary phase equilibrium isotherm with indication of six T-3PPs.
Temperature: 330 K. System: CO2 + H2O + 2-Propanol(IPA). SRK-EoS [11]. Parameters
in Tables 1 and 2. Pressure range: from the T-4PP pressure to the T-CEP(a) pressure at
330 K. The plane at a constant pressure P = 103.076 bar is indicated in the figure. T-CEP:
Ternary Critical End Point (a). T-4PP: Ternary Four Phase Point. T-CL: Ternary Critical
Line (1, 2 and 3). T-3PL: Ternary Three Phase Line (1 and 2). T-3PP: Ternary three-phase
point. Pairs of circles [ ] connected by a dashed tie-line indicate the T-CEP phase compo-
sitions and pressure. Empty squares [ ] indicate the T-4PP phase compositions and pres-
sure. Triangle with dashed sides: T-3PP at set temperature and pressure. The dashed sides
are the T-3PP tie-lines. The dashed sides connect full triangles [ and ] which indicate the
phase compositions and the pressure of the T-3PP. Concentration scale in the Gibbs trian-
gle: mole fraction. Note: arrows are not to be confused with tie lines.

ing an horizontal straight line located at 103,076 bar in Figs. 10 and
9. These equilibrium KPs are defined when two DOFs are specified
(T = 330 K and P = 103,076 bar, DV KPs). Using the information in
these points, and performing two-phase equilibrium calculations not de-
scribed in this work, the phase diagram at constant T and P was built.
The results are shown in Fig. A.2.2. In this figure the two three-phase
regions are observed, these regions being characterized by the KPs
T-3PP(1) and T-3PP(2) and their respective tie-lines.

A two-phase region originates at each side of each three-phase trian-
gle. Each two-phase equilibrium line (T-2PL), in part delimiting a cor-
responding two-phase region, was calculated using, to start the com-
putations, information contained in the T-3PP(1) and in the T-3PP(2).
The symbols “α” and “β” are used to distinguish between the two
phases in equilibrium in a given T-2PL. The T-2PL(1α) (Fig. A.2.2)

Fig. A.2.2. Calculated ternary fluid phase equilibrium at constant pressure (103.076 bar)
and temperature (330 K) for the CO2 + H2O + 2-Propanol system. Phase diagram built
from divariant key points obtained from Fig. A.2.1. T-CP: Ternary Critical Point (2 and 3)
[C]. T-2PL: Ternary Two Phase Line. T-3PP: Ternary Three Phase Point (1 and 2) [ and
]. Concentration scale in the Gibbs triangle: mole fraction. Note: arrows are not to be con-
fused with tie lines. Greek letters α and β identify two fluid phases at equilibrium.
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and T-2PL(1β) (Fig. A.2.3 ) begin on one side of the T-3PP(2) triangle
and end when the concentration of 2-propanol tends to zero, i.e., the
lines end when the CO2 + H2O binary system is reached. These lines
make the T-2PL(1) up and define a two-phase equilibrium region.

The T-2PL(2α) (Fig. A.2.2 insert) and T-2PL(2β) (Fig. A.2.2) delimit
the two-phase region located in between the two three-phase regions
T-3PP(1) and T-3PP(2). Note that the phase “α” in the T-2PL(2α) can be
seen only by expanding the region where both three-phase regions are
very close to each other (upper left corner of Fig. A.2.2).

Moreover in Fig. A.2.2, the two-phase region bounded by T-2PL(3α)
and T-2PL(3β) is observed, starting at one side of the T-3PP(1)
three-phase region, and ending when the T-CP(3) is reached.

In Fig. A.2.3, the two-phase regions that complete the diagram are
shown. The T-2PL(4α) and T-2PL(4β) start at the T-3PP(1) and end at
the T-CP(2) (shown in Figs. A.2.2 and A.2.3). The T-2PL(5) region, de-
fined by the lines T-2PL(5α) and T-2PL(5β) (Fig. A.2.3), begins on one
side of the of T-3PP(2) and ends at the T-CP(1). The calculation proce-
dures applied to compute a T-2PL are analogous to those described for
calculating a ternary isotherm.

It is noteworthy that, as in the case of TI, the labels identifying each
DV KP of Figs. A.2.2 and A.2.3 are related to the equilibrium lines from
which they come. For example, the KP labeled “T-3PP (1)” in Fig. A.2.2
comes from the T-3PL labeled “T-3PL (1)” in the TI of Fig. A.2.1. Sim-
ilarly, the KP labeled T-CP(1) in Fig. A.2.3 comes from the T-CL(1) in
the TI of Fig. A.2.1, etc. In addition, the colors of the equilibrium lines
in the TI (Fig. A.2.1) and the colors of the corresponding key points in
Figs. A.2.2 and A.2.3 are the same. For example, brown is the color of
T-3PP(1) in Figs. A.2.2 and A.2.3, and brown is also the color of the line
from which it comes [T-3PL(1)] in the TI of Fig. A.2.1. All T-CPs are
shown in black in Figs. A.2.2 and A.2.3, as are the corresponding T-CLs
in the isotherm of Fig. A.2.1.

Appendix A.3. Computed values of the coordinates that describe
the key points of the 330 K phase equilibrium isotherm of system
CO2(1) + H2O(2)+ 2-propanol(3)*

Tables A.3.1–A.3.3

Appendix B. Meaning of terms that refer to ternary phase
equilibrium objects:

[a] In a ternary three-phase point (T-3PP) three ternary non-critical
phases are at equilibrium.

Fig. A.2.3. Zoom of Fig. A.2.2. Calculated ternary fluid phase equilibrium at constant
pressure (103.076 bar) and temperature (330 K) for the CO2 + H2O + 2-Propanol system.
Phase diagram built from divariant key points obtained from Fig. A.2.1. T-CP: Ternary
Critical Point (1 and 2) [C]. T-2PL: Ternary Two Phase Line. T-3PP: Ternary Three Phase
Point [ and ]. Concentration scale in the Gibbs triangle: mole fraction. Note: arrows are
not to be confused with tie lines. Greek letters α and β identify two fluid phases at equilib-
rium.

[b] A ternary three-phase line (T-3PL) is a locus of T-3PPs.
[c] A ternary critical point (T-CP) is a stable ternary phase at its limit

of intrinsic stability. Slight changes in conditions, performed in a proper
direction, lead to the formation of a pair of quasi-critical phases.

[d] A ternary critical line (T-CL) is a locus of T-CPs.
[e] In a ternary critical endpoint (T-CEP), a ternary critical phase is

at equilibrium with a ternary non-critical phase.
[f] A ternary critical end line (T-CEL) is a locus of T-CEPs. A T-CEL is

an intersection line between a ternary three-phase equilibrium surface
and a ternary critical surface.

[g] At a ternary four-phase (equilibrium) point (T-4PP), four ternary
non-critical phases are at equilibrium.

[h] A ternary four-phase (equilibrium) line (T-4PL) is a locus of
T-4PPs.

[i] A T-4PL may end at a ternary critical endpoint of a four-phase
(equilibrium) line (T-CEP-4PL) where a ternary critical phase is at equi-
librium with two ternary non-critical phases.

[j] If, along a T-3PL, three phases become critical simultaneously,
then, a ternary tricritical endpoint (T-TCEP) [also named ternary tricrit-
ical point (T-TCP)] has been reached.

See Refs. [1,2] for more details. Some of the ternary phase equilib-
rium objects in the list above are elements of the characteristic map
(T-CM, see Appendix D) [1] of the fluid phase behavior of the ternary
system. Table B1 lists the acronyms used in this work and their expan-
sions.

Appendix C. Brief description of the methodology of computation
of ternary phase equilibrium sections

The problem begins by computing, as an initial step, thermodynamic
objects of relatively abstract nature. These thermodynamic objects are
those that constitute the phase equilibrium “characteristic map of a
ternary system” (T-CM) [1]. Ref. [1] presents a methodology to compute
T-CMs. The T-CM provides key information for subsequent calculations.
Details on the different types of thermodynamic objects that constitute a
T-CM are discussed in Appendix D. Simple equation of state (EOS) mod-
els can lead to very complex T-CMs [1].

Next, a set of (generally UV) key points (KPs) for the specified tem-
perature (or pressure) are obtained from the already computed T-CM.
Then, the appropriate isothermal (or isobaric) ternary equilibrium lines
are calculated, using the information provided by such key points to find
the first converged point of a given line.

The calculation of the ternary equilibrium lines is carried out by
solving, for each of its points, a nonlinear system of equations using
the full Newton-Raphson method. This is done in a range of conditions.
Such system of equations imposes the conditions that must be satisfied
at each equilibrium point. The system of equations depends on the type
of ternary equilibrium of interest, either a ternary three-phase equilib-
rium or a ternary critical point. In addition, the algorithm for solving the
system of equations of interest is coupled to a numerical continuation
method (NCM) [2,15] that makes possible the computation of full equi-
librium lines with minimal user intervention. The NCM begins to build a
given line after a first equilibrium converged point is obtained. The nec-
essary information that allows converging the first point is provided by
the (generally UV) KPs. Initialization strategies are discussed in Section
4 of the main text. The basic features of the NCM implemented in this
work is described in Refs. [2,15].

Appendix D. Ternary Characteristic Maps

A T-CM is a fluid phase equilibrium diagram composed of ternary,
binary and pure compound “univariant equilibrium lines” and “invari-
ant points”. The pure components are the three components of which
the ternary system is made of; and the binary systems are all three bi
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Table A.3.1
T-4PP Key Point at 330 K*. System CO2(1) + H2O(2)+ 2-propanol(3). See Tables 1–3 of main text.

T(K) P(bar) Vα(L/mol)

329.96 102.62 0.0285 0.0605 0.1061 0.0521 0.025 0.917 0.057 0.805 0.073 0.121 0.966 0.012 0.021 0.499 0.262 0.237

Table A.3.2
T-CEP Key Points at 330 K*. System CO2(1) + H2O(2)+ 2-propanol(3). See Tables 1–3 of main text.

Label T(K) P(bar) Vc(L/mol) Vα(L/mol) λ Figure

T-CEP(d) 329.96 107.31 0.0547 0.0284 0.636 0.166 0.196 0.025 0.918 0.056 −0.427 0.783 0.451 3.05E-10 3
T-CEP(a) 329.96 104.32 0.0818 0.0280 0.937 0.021 0.040 0.023 0.926 0.050 0.640 0.435 0.632 9.91E-11 3
T-CEP(c) 329.96 102.11 0.0558 0.1098 0.676 0.139 0.183 0.968 0.011 0.019 −0.377 0.774 0.508 -2.23E-09 3
T-CEP(e) 329.96 71.80 0.0347 0.2611 0.058 0.800 0.141 0.988 0.005 0.005 −0.429 0.815 −0.388 -5.40E-13 2
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Table A.3.3
B-CP Key Point at 330 K*. System: CO2(1)+ 2-propanol(3) (IPA). See Tables 1–3, and Fig. 3, of main text.

329.96a 101.93 0.0927 0.953 0.0466 0.731 0.681 3.10E-12
T(K) P(bar) Vc(L/mol) λ

a Note that the exact temperature value used for the calculations was actually 329.96 K.

Table B1
Acronyms used in this work [1,2].

Acronym Meaning
# of
phases

# of
crit.
phases

P-VPL Pure (compound) vapour-pressure
line

2

B-2PP Binary two-phase point 2
B-2PL Binary two-phase line 2
T-2PP Ternary two-phase point 2
T-2PL Ternary two-phase line 2
B-3PP Binary three-phase point 3
B-3PL Binary three-phase line 3
T-3PP Ternary three-phase point 3
T-3PL Ternary three-phase line 3
T-4PP Ternary four-phase point 4
T-4PL Ternary four-phase line 4
P-CP Pure critical point 1 1
B-CP Binary-critical point 1 1
B-CL Binary-critical line 1 1
T-CP Ternary-critical point 1 1
T-CL Ternary-critical line 1 1
B-CEP Binary-critical end point 2 1
T-CEP Ternary-critical end point 2 1
T-CEL Ternary-critical end line 2 1
T-
CEP-4PL

Ternary-critical end point of a four
phase line

3 1

T-TCP Ternary-tricritical point 1
TI Ternary Isothermal Diagram
KP Key Point
DOFs Degrees of freedom
T-CM Ternary characteristic map

(characteristic map of the fluid phase
behavior of a ternary system)

B-CMs Binary characteristic map
(characteristic map of the fluid phase
behavior of a binary system)

nary sub-systems of the ternary system. A univariant equilibrium line is
a line where each point on such equilibrium line is determined when a
DOF is specified. This means that it is necessary to specify the value of
only a single variable of the system to establish equilibrium. In math-
ematical terms, a univariant object is the one for which a single speci-
fication makes the system of equations become a system for which the
number of unknowns equals to the number of equations. A univariant
equilibrium line of a pure component, in the fluid region, is the vapor
pressure line (P-VPL, vapor-liquid equilibrium).

Univariant equilibrium lines examples in a binary system are:
[a] “Binary three phase lines” (B-3PLs). At a point of a B-3PL three

binary non-critical phases coexist at equilibrium.
[b] “Binary critical lines” (B-CLs). A point of a B-CL is a binary criti-

cal point.
[c] “Binary Azeotropic Lines” (B-ALs). At a point of a B-AL two bi-

nary non-critical phases of equal composition and different density co-
exist at equilibrium.

Univariant lines in a ternary system are: T-CELs (loci of T-CEPs),
T-4PLs (loci of T-4PPs), and, finally, “Ternary Azeotropic Lines” (T-ALs).
At a point of a T-AL two ternary non-critical phases having identical
composition and different density coexist at equilibrium.

The only invariant point of a pure compound in the fluid region is
its critical point (“Pure Critical Point” (P-CP)). The invariant points of
a binary system in the fluid region are: the “Binary Critical End Points”
(B-CEPs), where a binary critical phase coexists at equilibrium with
a binary non-critical phase; and a variety of “Binary Azeotropic end
Points” (B −AEPs), which are endpoints of the B-ALs. In a B-AEP the
two azeotropic phases present in the B-AL may become critical, or can
become unstable by the appearance of a third (liquid) phase in equilib-
rium with the azeotropic phases [16]. There are even more possibilities
for B-AEPs [16].

Note that the basic nature of the equilibrium in a B-CEP is the same
than the one in a T-CEP. Furthermore, a B-CEP could be an endpoint of
a T-CEL (Fig. 1).

Finally, the invariant points in a ternary system are of the types:
“Ternary Critical end Point of a Four Phase Line” (T-CEP-4PL); “Ternary
Tricritical Point” (T-TCP), and “Ternary Azeotropic end Points ”
(T-AEP).

A T-CEP-4PL is an endpoint of a T-4PL, where two of the four phases
are critical (i.e., identical). Therefore, in a T-CEP-4PL a critical phase
coexists in equilibrium with two non-critical phases. A T-AEP is an
endpoint of a T-AL. We have not yet studied this kind of endpoints.
Azeotropy is not covered in this work. We plan to address the incorpo-
ration of ternary azeotropy into T-CMs in the near future.

Scott and van Konynenburg [8] used pure compound and binary uni-
variant lines and invariant points, to build binary phase behavior char-
acteristic maps, to describe and characterize the equilibrium behavior
of fluid phases for binary systems. Pisoni et al. [1] added ternary uni-
variant and invariant objects (ternary univariant lines and ternary in-
variant points) to characterize the fluid phase behavior of ternary sys-
tems (T-CMs), i.e., the T-CMs of Ref. [1] are made of unary, binary and
ternary invariant points and univariant lines.
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Fig. 3. Zoom of Fig. 2. Pressure-Temperature projection of part of the calculated ternary characteristic map (T-CM) for the CO2 + H2O + 2-Propanol system. Model: SRK-EOS [11].
Parameters in Tables 1 and 2. B-CL: Binary Critical line. B-CP: Binary Critical Point. T-4PL: Ternary Four Phase Line. T-4PP: Ternary Four Phase point. T-CEL: Ternary Critical End Line (a,
c and d). T-CEP: Ternary Critical End Point (a, c and d). T-CEP-4PL: Ternary Critical End Point of a Four Phase Line [T-CEP-4PL (1) [O] and T-CEP-4PL (2) [:]]. T-TCP: Ternary Tricritical
Point [C].

References

[1] G. Pisoni, M. Cismondi, L. Cardozo-Filho, M.S. Zabaloy, Generation of characteris-
tic maps of the fluid phase behavior of ternary systems, Fluid Phase Equilib.
362 (2014) 213–226.

[2] G. Pisoni, M. Cismondi, L. Cardozo-Filho, M.S. Zabaloy, Critical end line topologies
for ternary systems, J. Supercrit. Fluids 89 (2014) 33–47.

[3] G.M. Schneider, A.L. Scheidgen, D. Klante, Complex phase equilibrium phenomena
in fluid mixtures up to 2 GPa-cosolvency, holes, windows, closed loops, high-pres-
sure immiscibility, barotropy, and related effects, Ind. Eng. Chem. Res. 39 (2000)
4476–4480.

[4] A.L. Scheidgen, G.M. Schneider, Complex phase equilibrium phenomena in fluid
ternary mixtures up to 100 MPa: cosolvency, holes, windows, and islands—review
and new results, Fluid Phase Equilib. 194–197 (2002) 1009–1028.

[5] T. Adrian, S. Oprescu, G. Maurer, Experimental investigation of the multiphase
high-pressure equilibria of carbon dioxide + water + (1-propanol), Fluid Phase
Equilib. 132 (1997) 187–203.

[6] T. Adrian, M. Wendland, H. Hasse, G. Maurer, High-pressure multiphase behaviour
of ternary systems carbon dioxide-water-polar solvent: review and modeling with
the Peng-Robinson equation of state, J. Supercrit. Fluids 12 (1998) 185–221.

[7] M. Cismondi, M. Michelsen, Automated calculation of complete Pxy and Txy dia-
grams for binary systems, Fluid Phase Equilib. 259 (2007) 228–234.

[8] R.L. Scott, P.H. Van Konynenburg, Static properties of solutions: Van der Waals
and related models for hydrocarbon mixtures, Discuss. Faraday Soc. 49 (1970)
87–97.

[9] R. Privat, J.-N. Jaubert, Classification of global fluid-phase equilibrium behaviors
in binary systems, Chem. Eng. Res. Des. 91 (2016) 1807–1839.

[10]
M.L. Michelsen, J.M. Mollerup, in: E.H. Stenby (Ed.), Thermodynamic Models:
Fundamentals and Computatinal Aspects, Tie-Line Publications, 2007.

[11]
G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state,
Chem. Eng. Sci. 27 (1972) 1197–1203.

[12]
R.L. Rowley, W.V. Wilding, J.L. Oscarson, N.A. Zundel, T.L. Marshall, T.E. Daubert,
R.P. Danner, DIPPR Data Compilation of Pure Compound Properties, Design Insti-
tute for Physical Properties, AIChE, New York, 2002.

[13]
J.R. Di Andreth, Multiphase Behavior In Ternary Fluid Mixture. Ph. D. Thesis, De-
parment of Chemical Engineering, University of Delaware, Delaware, USA,
1985p.164.

[14]
M. Cismondi, M.L. Michelsen, Global phase equilibrium calculations: critical lines,
critical end points and liquid-liquid-vapour equilibrium in binary mixtures, J. Su-
percrit. Fluids 39 (2007) 287–295.

[15]
E.L. Allgower, K. Georg, Introduction to Numerical Continuation Methods, SIAM,
Classics in Applied Mathematics, Philadelphia, 2003.

[16]
M. Cismondi, M.L. Michelsen, M.S. Zabaloy, Automated generation of phase dia-
grams for binary systems with azeotropic behavior, Ind. Eng. Chem. Res. 47 (2008)
9728–9743.

16


	
	
	


