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Abstract In this work we propose a new distributed evolu-
tionary algorithm that uses a proactive strategy to adapt its
migration policy and the mutation rate. The proactive deci-
sion is carried out locally in each subpopulation based on
the entropy of that subpopulation. In that way, each subpop-
ulation can change their own incoming flow of individuals
by asking their neighbors for more frequent or less frequent
migrations in order to maintain the genetic diversity at a de-
sired level. Moreover, this proactive strategy is reinforced
by adapting the mutation rate while the algorithm is search-
ing for the problem solution. All these strategies avoid the
subpopulations to get trapped into local minima. We con-
duct computational experiments on large instances of the
NK landscape problem which have shown that our proactive
approach outperforms traditional dEAs, particularly for not
highly rugged landscapes, in which it does not only reaches
the most accurate solutions, but it does the fastest.
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1 Introduction

In distributed evolutionary algorithms (dEAs), the popula-
tion of tentative solutions for a given optimization problem
is structured into a usually small number of independent
subpopulations (or islands) that evolve in semi-isolation [3,
20]. Subpopulations interact among them after these isola-
tion periods by using a migration operator. In addition to
the traditional parameters (population size, mutation proba-
bility, and so on), dEAs requires new parameters to control
the migration operator. They are usually grouped in the so-
called migration policy, that fully defines the communica-
tion among the different subpopulations usually with:

– Migration period: the period of isolated evolution of the
subpopulations.

– Migration rate: the number of individuals that are trans-
ferred.

– Selection/replacement of migrants: the strategies for se-
lecting the individuals that are sent in a migration oper-
ation and for replacing the local individuals with the in-
coming ones.

– Topology: this parameter defines the neighbor of each
subpopulation.

It is well known that the performance of evolutionary al-
gorithms, and in particular dEAs, in general is strongly in-
fluenced by the parameter choice and that the optimal pa-
rameterization varies during the evolution process [10, 11].
Consequently, our goal here is to adaptively control the mi-
gration policy of a dEA using the novel idea of the algorithm
being proactive based on entropy information. These mea-
sure provides dynamic information about the stage of the
evolutionary search process and the degree of diversity of
each subpopulation. Let us further detail the contributions.

From the point of view of adaptation, the parameter con-
trol approach [11, 18] is adopted, which works by starting
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the algorithm with a given initial configuration that changes
during the execution of the algorithm (i.e., online adapta-
tion). These changes in the migration policy are performed
based on the entropy [25] of each subpopulation. In order
to better analyze the results, only one single migration pa-
rameter is under study: the migration period at which the
individuals are exchanged among subpopulations. The mo-
tivation of centering our proposal on the adaptation of only
one parameter of the migration policy is based in that the
migration period is the most critical and influential for the
migration policy [26], because not only determines the cou-
pling between the subpopulations, but also the parallel per-
formance of the dEA.

The adaptation of the migration period is triggered when
entropy of each subpopulation satisfies a given condition
and is aimed at keeping a good diversity. Thereby, whenever
the entropy falls below a given threshold, these subpopu-
lations proactively look for new genetic material by reduc-
ing the migration period of the subpopulation that provides
this island with more migrants, implying more frequent ex-
changes of solutions among them. That is, if the topology of
the migration strategy is a ring, the island i modifies the mi-
gration period of the precedent island i − 1 asking for more
frequent migrations. Analogously, the proposed approach
also acts when too much diversity is detected by increas-
ing the migration period belonging to the island i − 1, thus
enlarging the isolation period of the island. The resulting al-
gorithm is a has been called Proact and its novelty relies on
its proactivity.

To the best of our knowledge, in the published material
on self-adaptation of the migration policy in dEAs, the in-
duced changes solely affect the parameters of the local is-
land, i.e., no intervention is undertaken out of the scope of
each island. Our idea here is to proactively reach a controlled
entropy (and hence diversity) that enhances the search, but
based on new, promising individuals already evolved from a
neighboring subpopulation. There is a vast literature on self-
adaptation in EAs ([10] has 580 cites in Scopus© by itself),
but it is drastically reduced when considering dEAs.

The proactive strategy of Proact has been enhanced by
the adaptation of the mutation probability (pm), as another
critical parameter to control the diversity of the population
and, therefore, the performance of a dEA. By maintaining
the mutation probability into adequate values avoids the pre-
mature convergence and the loss of genotypic diversity, im-
portant to provide diverse solutions to the subpopulation
(i + 1). In this case, we also use the entropy information
to provide a measure of the diversity present in the subpop-
ulation in order to act proactively in the adaptation of the
mutation probability of a given population.

The goal of this paper is then to evaluate Proact in terms
of its effectiveness with respect to its homogeneous counter-
parts, in which the migration period and the mutation proba-

bility is fixed and preprogrammed during all the search pro-
cess. As a testbed, we have used a group instances of the
NK landscape problem since they allow us to easily tune the
ruggedness of their landscape [1]. This article is an extended
version of “Heterogeneity through Proactivity: Enhancing
Distributed EAs” presented in First International Workshop
on Soft Computing Techniques in Cluster and Grid Comput-
ing Systems (SCCG), part of the Eighth International Con-
ference on P2P, Parallel, Grid, Cloud and Internet Comput-
ing (3PGCIC) [24]. The newly developed research improves
upon [24] by the proactive strategy which is now enhanced
with the adaptation of the mutation probability to better con-
trol the population diversity. The results on NK have shown
that the resulting algorithm is able to outperform both their
homogeneous counterparts and the previous version of the
algorithm.

The rest of the paper is organized as follows. Section 2
describes state of the art. Section 3 describes the principal
characteristics of distributed EAs, meanwhile Sect. 4 intro-
duces essential characteristics of our proactive approach and
provides an overview of the algorithms that we considered.
Section 5 describes the testbed problem and discusses our
evaluation methodology. Section 6 presents the results of ex-
perimentation conducted. Finally Sect. 7 concludes the pa-
per and discusses future work.

2 Related work

As stated in previous section, little amount of works related
to self-adaptation in dEAs can be found. However, we want
to highlight several recent contributions that are related to
the ideas presented here. With respect to maintaining the di-
versity in a dEA, Araujo and Merelo introduced the multi-
kulti algorithm in [6]. It also uses a ring topology in which
each subpopulation Ni sends back to subpopulation Ni−1 a
genotype that represents its population (by using either the
best individual in Ni or the so-called consensus sequence).
When Ni−1 receives this information, it responds by send-
ing an individual different enough from the individual that
represents Ni . No adaptation of the migration policy param-
eters is carried out. In [15], the authors have evaluated an
adaptive migration scheme with three different topologies
in which the operation occurs in response to the current pro-
cess of the distributed search that is controlled by a cen-
tral manager. A third relevant work is developed by Osorio
et al. in [23], in which the migration period is automatically
adapted based on a predictive model of the takeover time.
To the best of our knowledge, the use of the entropy as the
condition to self-adapt the migration policy of a dEA has
not been used yet. Entropy has actually been adopted for
adapting other parameters in dEAs such as the probability
of applying the mutation and crossover operators [28, 32],
a local search [31], or even the subpopulation sizes [28].
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Researchers from the metaheuristics community have
also been motivated on the control the mutation probabil-
ity (pm). It is very difficult, though not impossible, to find
an appropriate parameter setting for pm in order to reach
an optimal performance, because the rates vary along with
the problem at hand, even within different stages of the ge-
netic process in a problem. Traditionally, determining what
probability of mutation should be used is usually done by
means of experience or trial-and-error [7, 9, 14, 22], and
these probability values are usually used in dEAs. Some
works in the field propose the adaptation of the mutation
rate in distributed EAs. The majority of them use the mean
fitness of the population as a measure control in the adaptive
strategy [13, 19, 28]. To the best of our knowledge, the com-
bined adaptation of the migration period of a remote island
and the local mutation probability to control the population
diversity based on entropy has been never addressed in the
literature.

3 Distributed EAs

It is widely known that when EAs [8, 21] work with a pop-
ulation of individuals of considerable length for a complex
problem it usually means a significant utilization of compu-
tational resources. A straightforward way to decrease these
requirements is to resort to parallel families of EAs. Paral-
lel EAs modify the typical behavior of the equivalent se-
quential (panmictic) algorithm since they are actually using
a structured population in most cases. Among the most well
known types of structured EAs, distributed (dEA) [30] and
cellular (cEA) [2, 27] algorithms are very popular optimiza-
tion procedures. In short, separating one single population
(panmixia) into several subpopulations (decentralization) is
a healthy line of research since not only the resulting tech-
niques are faster in terms of numerical cost (visited points
in the problem landscape), but they also can be easily paral-
lelized to perform a larger number of steps per time unit in
a cluster of workstations or any other multiprocessor system
(parallel environment).

In particular, in this work we use distributed EAs (dEAs)
[30], which is a multi-population (island) model perform-
ing sparse exchanges of individuals (migration) among the
elementary populations Pi (where i is the identifier of an
island). The migration policy must define the island topol-
ogy, when migration occurs, which individuals are being
exchanged, the synchronization among the subpopulations,
and the kind of integration of exchanged individuals within
the target subpopulations. In this work, we have always in
mind asynchronous communications [5] so that when a mi-
gration operation takes place, the subpopulations send the
corresponding individuals and proceed right to the next iter-
ation without waiting for an incoming solution to arrive.

Algorithm 1 Elementary Distributed EA (dEAi )
t = 0; {current evaluation}
initialize(Pi(t));
evaluate(Pi(t));
while (t < maxgenerations ) do

P ′
i
(t) = evolve(Pi(t)); {recombination and mutation}

evaluate (P ′
i
(t));

P ′
i
(t) = send/receive individuals from dEAj ; {interaction

with neighbors}
Pi(t + 1) = select new population from P ′

i
(t) ∪ P ′

i (t);
t = t + 1;

end while

Algorithm 1 outlines the structure of an elementary evo-
lutionary algorithm (dEAi ) [29]. Each dEAi randomly gen-
erates an initial population Pi of μ solutions, and evaluates
them afterwards. Then, the population goes into the evolu-
tionary loop, which means the application of genetic opera-
tors, to create λ offspring. This loop includes an additional
phase of individual exchange with a set of neighboring al-
gorithms, denoted as dEAj . Finally, each iteration ends by
selecting μ individuals to build up the new population from
the population (μ + λ). The best solution is identified as the
best individual ever found which maximizes the fitness func-
tion.

4 A proactive dEA

This section is aimed at presenting the two algorithmic pro-
posals devised in this work. These proposals include proac-
tive strategies in order to modify the migration period and/or
the mutation rate during the evolution. The proactive strat-
egy controls these parameters in order to maintain the ge-
netic diversity at desired levels in each subpopulation, avoid-
ing the converge to a local optimum or the stagnation. This
strategy is guided by the entropy information, which mea-
sures the genetic diversity present in a population. For that
reason, the sections are organized to follow certain structure
in order to explain the following topics: what parameters to
adapt, on what evidence to adapt and how to adapt. First,
the details of Proact, which proactively adapt the migration
period, are motivated and introduced. Then, we present its
enhanced version, Proact-PmAdap in which the adaptation
of the mutation rate comes into play in order to better control
the population diversity.

4.1 Proact

In this section, we explain the proactive strategy followed
by Proact, which introduce the adaptation of the migration
period. Traditionally, the subpopulations in a dEA exchange
information, usually individuals (but any other kind of popu-
lation statistics can be transferred [4]), in a blind way, i.e., in
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a fixed number of steps. According to the results presented
by Tanese [30], performance degrades if migration happens
too frequently or too infrequently, such that the migration
period is a critical parameter for dEAs. It also occurs, as
stated by [10], that the best parameter setting of an algo-
rithm is different depending on the stage of the evolution.
These two factors lead to engineering algorithms whose pa-
rameterization is automatically modified according to an in-
telligent adaptive strategy. The decisions of this strategy can
be guided by some run-time characteristics of the search per-
formed by the algorithm.

Since the subpopulations are searching using their own
information, it is easy to converge to a local optimum or to
stagnate. These states could be avoided if each subpopula-
tion asks for new genetic material to its neighbors when the
beginning of some of those situations is detected.

Considering the previous observations, we propose here
the dynamical adjustment of the migration period, mig_period
(what to adapt), using information from the current state
of the search in terms of the (Shannon) entropy metric
(H ∈ [0,1]) [25]. The remaining parameters of the migra-
tion operation of our approach remains fix during all the
evolution. Proact uses an unidirectional ring topology so
that each subpopulation pi only receives/sends individu-
als from/to subpopulation pi−1/pi+1. The selection and re-
placement strategies are, respectively, sending the best and
always replacing the worst. The migration rate (or the num-
ber of individuals involved in each operation) is one.

The working principle of our proactive strategy is as fol-
lows. When the H value is close to 1.0 in a given island, we
assume that the island has a good and diverse genetic mate-
rial, so therefore the search has to be further intensified (in-
crease exploitation with less frequent incoming individuals).
On the other hand, the strategy tries to promote the explo-
ration (more frequent migrations) when H is close to zero.
Let H(g)i be the entropy value of pi at generation g. When
pi detects an decreasing diversity (low value of H(g)i ), it
asks pi−1 to send individuals with higher frequency by up-
dating the mig_period at pi−1. That is, pi receives new ge-
netic material proactively by taking into account its actual
needs. In this way, pi acts in advance due to a diversity loss.
This is the evidence on what Proact adapts the migration
period. These decisions are proactive in the sense that they
anticipate some of the scenarios previously described and,
in consequence, introduce changes to the migration period.
These are the design goals of Proact.

Up to now, we have generally talked about “high diver-
sity” and “low diversity” (“high entropy” or “low entropy”,
respectively). It is time to define these concepts accurately.
Our proactive scheme uses an upper and a lower bound of
H(g)i , H and H respectively, in order to modify the migra-
tion period. Therefore, if H(g)i > H , Proact increases the

value of the migration period in a value equal to the popu-
lation size (μ value); analogously, if H(g)i < H , Proact de-
creases the period in μ units. Finally, if H ≤ H(g)i ≤ H ,
we assume the search has a controlled entropy and, con-
sequently, the migration period remains without modifica-
tion. Algorithm 2 sketches the proactive strategy followed
by each subpopulation of Proact. Of course, the migra-
tion periods are assumed to be discrete values in the range
[mig_periodmin,mig_periodmax ]. Thus, Proact can directly
measure and control the migration period.

The execution is initialized by randomly assigning the
mig_period parameter with multiples of pop_size in the
range [1,max_migration_period] to each island. The bound-
ing cases are the total communication (migration period
equals to one) or almost isolated execution, as given by
max_migration_period. If mig_period = 1 and Proact needs
to change to the next lower one, the algorithm does not make
any change in the migration period at all. The same action is
performed when the mig_period = max_migration_period
and the algorithm needs to increase the value to the next
one. Each subpopulation has a set of bounds initially deter-
mined in a fixed way, which is adaptively adjusted regarding
the problem characteristics and the search difficulty.

Regarding the characteristics of each problem and in-
stance, the adaptation of the upper and lower bound (H
and H respectively) values are adapted during the run. The
bound values are decreased//increased by some given factor
b at the end of each generation. If the H(g)i value is three
consecutive times lower than the lower bound H , then H

is decreased in a factor of b. The reason of this update is
that the population has little genotype diversity so Proact
will need to emphasize their needs of new genetic mate-
rial from its neighbors. On the contrary, if the H(g)i value
is three consecutive times higher than the upper bound H

then it is increased in a factor of b. In the case that the
H(g)i value falls three consecutive times within the upper
and lower bounds, then both bounds are modified: the upper
bound is decreased meanwhile the lower one is increased.
Algorithm 3 shows the mechanism followed by our dEAs to
adapt the bounds.

Summarizing, each subpopulation pi of the Proact sends:

– its migration period to the left neighboring subpopulation
in the ring (island pi−1) in a proactive way by using the
Algorithm 2, and

Algorithm 2 adapt_migration(mig_period)

if (H(g)i > H ) then
mig_period = mig_period − μ;

else
if (H(g)i < H ) then

mig_period = mig_period + μ;
end if

end if
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Algorithm 3 adapt_bounds(H,H )

if (H(g)i > H ) then
#_higher + +;
if (#_higher == 3) then

H+ = H × b;
#_higher = 0;

end if
else

if (H(g)i < H ) then
#_lower + +;
if (#_lower == 3) then

H− = H × b;
#_lower = 0;

end if
else

#_middle + +;
if (#_middle == 3) then

H− = H × b;
H+ = H × b;
#_middle = 0;

end if
end if

end if

Fig. 1 Outline of the ring topology of Proact

– its best solution found so far to the right neighboring sub-
population in the ring at a frequency indicated by the pi+1

island.
Consequently, there is a double sense of information flow
between the islands. Figure 1 outlines this scheme. More-
over, locally each subpopulation pi adapts the bounds used
to make the changes to the migration period. The refined
dEA incorporating this proactive strategy is described in Al-
gorithm 4.

4.2 Proact-PmAdap: adding adaptive mutation

In this work we also considered another parameter to intro-
duce into the proactive strategy: the pm value. The reason
is that it will allow the algorithm to better control the pop-
ulation diversity in a simple, straightforward and efficient

Algorithm 4 Elementary Proact algorithm (Proacti )
t = 0; {current evaluation}
initialize(Pi(t));
evaluate(Pi(t));
while (t < maxgenerations ) do

P ′
i (t) = evolve(Pi(t)); {recombination and mutation}

evaluate (P ′
i (t));

P ′
i (t) = send/receive individuals from Proactj at

mig_period_toSend rate; {interaction with neighbors}
Pi(t + 1) = select new population from P ′

i (t) ∪ P ′
i (t);

adapt_migration(mig_period);
send/receive the mig_period to/from Proacti−1/i+1;
adapt_bounds(H,H );
t = t + 1;

end while

way. The pm value is updated depending on the genetic di-
versity present in the population (entropy value), in order
to improve the performance of the search process during run
time. The goal is also to proactively act when a low diversity
is expected to appear. The strategy tries to include more ge-
netic diversity in the island i with the purpose of disposing
a diverse population from which solutions can be selected in
each migration step.

The strategy gives a positive or negative reinforcement to
the mutation probability values. In this way, a decrease in the
entropy values indicate a lost of diversity, in consequence
the mutation probability value will be increased in order to
introduce some genetic diversity. Otherwise, the pm value
is decreased. The variation introduced to the pm value is
shown in (1)

pm = pm − δ ∗ (
H(g)i − H(g − 1)i

)
(1)

where δ is included for providing smooth parameter adjust-
ments, as it is required for any effective dynamic parameter
control strategy. Its value is fixed at 0.01.

The algorithm controls that pm value belongs to [pm,pm],
to prevent the overshooting of pm; where the lower bound
of pm is pm = 0.001 and the upper bound is pm =0.1. These
bounds are selected taking into the account the values sug-
gested in literature [9, 14].

The adaptation of pm has a strong negative correlation
with the migration period as it gets increased when the en-
tropy falls below the threshold, whereas the mig_period is
decreased. Analogously, pm decreases when a very high en-
tropy is detected, while mig_period is increased.

5 Experimentation

In this section we present the necessary information to re-
produce the experiments that have been carried out in this
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research. First we will introduce the problem used to as-
sess the performance of our proposal: the NK-Landscapes,
a classical combinatorial optimization problem. Second, we
will present the parameters used by our Proact.

5.1 NK-Landscapes

An NK-landscape is a fitness function f : {0,1}N → � on
binary strings [16], where N is the bit string length and K

is the number of bits in the string that epistatically inter-
act with each bit. Each gene xi , where 1 ≤ xi ≤ N , con-
tributes to the total fitness of the genotype depending on
the value of its allele and on those of each of the K other
genes to which it is linked. Thus K must fall between 0 and
N − 1. For K = 0, there are no interaction among genes and
a single-peak landscape is obtained; in the other extreme (for
K = N − 1), all genes interact each other in constructing the
fitness landscape, so a completely random landscape is ob-
tained (a maximally rugged landscape). Varying K from 0
to N − 1 gives a family of increasingly rugged multi-peaked
landscapes.

The fitness value for the entire genotype is given as the
average of the fitness contribution of each locus fi by:

f (x) = 1

N

N∑

i=1

fi(xi, xi1, . . . , xiK ) (2)

where {xi1, . . . , xiK } ⊂ {x1, . . . , xi−1, xi+1, . . . ,N} are the
K genes interacting with gene xi in the genotype x. The
other K epistatic genes could be chosen in any number of
ways from the N genes in the genotype. Kauffman [17] in-
vestigated two possibilities: adjacent neighborhoods, where
K genes nearest to gene xi on the chromosome are chosen,
particularly a gene interacts with K/2 left and K/2 right
adjacent genes; and random neighborhoods, where these K

other genes are chosen randomly on the chromosome. We
adopted the first type of neighborhood and considered cir-
cular genotypes to avoid boundary effects. The fitness con-
tribution fi of xi is taken at random from a uniform dis-
tribution [0.0, 1.0] and depends upon its value and those
present in K other genes among the N . Each gene has as-
sociated a fitnesstable, mapping each of the 2K+1 possible
combinations of alleles to a random, real value number in the
range [0,1]. Figure 2 gives an example of the fitness function
f4(x4, x41, x42) associated to gene x4 for N = 8 and K = 2.
Gene x4 is linked to two other genes, in this case, genes to
either side, x41 and x42 .

In the experiments of this work, we have used NK in-
stances with N = 192 bits varying the epistatic relations
from K = 8 to K = 96. For each combination of N and K

we generated 30 random problem instances. Each algorithm
were tested with each one of these instances.

Fig. 2 An example of a genotype and a fitness table associated to gene
x4 for a problem with N = 8 and K = 2

Table 1 Experimental parameters

Population size 512 individuals

Number of islands 8 islands

Selection of parents Binary tournament

Recombination two-point, pc = 0.65

Bit mutation Bit-flip, pm = 1/L

Replacement Rep_always

5.2 Algorithm parameterization and methodology

In order to evaluate the proactive strategy, we have com-
pared the Proact versions to several homogeneous, non-
proactive dEAs that have the migration period parame-
ter fixed. They have been named Hom〈mig_period〉, with
mig_period ∈ {1,32,64,128,256,512}, that is, from maxi-
mum coupling among islands to fairly isolated search. For
each of the homogeneous algorithms, we also considered a
variant considering the dynamical adaptation of the muta-
tion rate, denoted as 〈alg_variant〉PmAdap. The common
settings for all the algorithms is as follows. The whole pop-
ulation is composed of 512 individuals. They all use a con-
figuration with 8 islands, so each island has a subpopulation
with 64 tentative solutions. The maximum number of gener-
ations is fixed to 5000 (Table 1).

The tentative solutions for the NK-landscapes are en-
coded as binary strings. The genetic operators used within
the evolutionary loop are binary tournament selection, two
point crossover, and bit flip mutation. The crossover rate is
set to 0.65. In the case the mutation rates is not adapted,
this value is set to 1/L, where L is the length of the solu-
tions (L = 192). Proportional selection is used to build up
the next population from the set of (μ + λ) individuals. The
values for the lower and upper bound that triggers the proac-
tive actions of Proact, i.e., H and H , has been set to 0.3 and
0.6, respectively. Moreover, the allowed range of movement
for the bound values are [H/H − 0.1,H/H + 0.1].
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All the algorithms considered in this work are stochas-
tic, so a thorough analysis has been performed in order to
provided the results with statistical confidence. First, 30 in-
dependent runs are carried out. We use the non-parametric
Kruskal Wallis test, to distinguish meaningful differences
among the mean of the results for each algorithm. We have
considered a level of significance of α = 0.05, in order to
indicate a 95% confidence level in the results.

The algorithms are implemented inside MALLBA [12],
a C++ software library fostering rapid prototyping of hybrid
and parallel algorithms. Our computing system is a cluster
of 8 machines with AMD Phenon X3 at 2.66 GHz and 2 GB
RAM, linked by Fast Ethernet, under Linux with 2.6.27.7
kernel version. Each island is physically run on a separate
processor.

6 Results and discussion

In order to organize the presentation, we divide this section
in two parts. As the main contribution of this paper with re-
spect to our previous work is the adaptation of the mutation
rate, the first section is precisely devoted to analyze the im-
pact produced by that adaptation (as explained in Sect. 4.2)
into the performance of the dEAs. The second part shows the
benefits of the proactive approaches when compared with
best performing homogeneous dEAs.

6.1 Adaptation vs. no adaptation of the mutation rate

This section shows how the adaptation of the mutation
rate can impact in the quality of dEAs results. Let us be-
gin with the analysis of the results of the homogeneous
dEAs with fixed migration period. From the analysis of
the best solutions reached by each algorithm, we can con-
clude that the dEAs maintaining the probability rate fixed
(Hom〈mig_period〉PmAdap) variants perform better than
(Hom〈mig_period〉), regardless of the landscape ruggedness
(a table detailing the values is not shown because of the ho-
mogeneity of the results). These differences are validated

by the statistical test carried out, where p-values far above
0.05 were obtained. Even it is not the goal of this work to
propose a standalone adaptive mutation scheme, this results
have been included just to highlight the later synergy in-
duced when this mechanism is endowed with the proactive
migration strategy.

In the following, we carry out an analysis of the perfor-
mance of our proactive approach with fixed mutation rate,
Proact, and its enhanced version with adaptive pm, Proact-
PmAdap. Table 2 encloses the results. The most relevant as-
pects that were measured in this comparison are the follow-
ing ones: the best fitness value obtained (column best), the
average objective values of the best found feasible solutions
along their standard deviations (column mean ± σ ), the av-
erage number of evaluations needed to reach the best value
(numerical effort) (column genbest), and the time spent in
the search in seconds (column time). The last row in Table 2
shows average results over all the instances obtained by each
algorithm just as a summary of the trends. The maximum
best values are printed in bold.

We want to remark that the Proact-PmAdap has signif-
icantly outperformed Proact in both aspects: solution qual-
ity and numerical effort (p-values well below 0.05). This
could be somehow unexpected because is a very different
scenario as observed in the previous analysis. In this case,
the adaptation of the mutation rate is able to generate a valu-
able genetic diversity which is useful to the search. This
new material is exchanged between subpopulation improv-
ing the quality of final solutions, which are found in a lower
number of generations (except for instance with K = 64
and K = 96). That is, as stated before, the two mechanisms
proposed (proactive migrating strategy and mutation rate),
when working together, work much better than when they
are applied separately. Finally, as expected the time spent in
the search by Proact-PmAdap is a little longer than the case
of Proact, mainly because of the cost incurred when the new
pm value is computed each generation.

Table 2 Experimental results
for the two Proact variants K Proact-PmAdap Proact

best mean ± σ genbest time best mean ± σ genbest time

8 0.7659 0.7525 ± 0.0064 4054.37 17.48 0.7643 0.7297 ± 0.0185 4125.33 14.19

16 0.6368 0.6273 ± 0.0046 486.80 15.56 0.7194 0.6995 ± 0.0084 4049.52 14.84

32 0.7065 0.6833 ± 0.0078 3279.43 18.34 0.6978 0.6753 ± 0.0103 3342.10 14.97

48 0.6828 0.6671 ± 0.0072 2866.47 18.77 0.6775 0.6585 ± 0.0099 3080.93 15.36

64 0.6683 0.6558 ± 0.0054 2782.37 19.35 0.6671 0.6476 ± 0.0089 2658.43 15.74

80 0.6582 0.6414 ± 0.0069 2660.20 19.77 0.6461 0.6360 ± 0.0056 2815.33 16.48

96 0.6509 0.6300 ± 0.0068 2734.83 17.00 0.6572 0.6362 ± 0.0086 2318.40 15.49

Mean 0.6887 0.6717 3062.94 18.45 0.6850 0.6639 3056.75 15.37
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Table 3 Gap values for Proact
variants and homogeneous dEAs K ProAct Hom1 Hom32 Hom64 Hom128 Hom256 Hom512

gapbest

8 0.208 2.416 1.552 3.418 5.089 3.741 4.702

16 1.454 1.236 2.009 −0.080 1.031 2.847 3.419

32 1.240 3.015 1.827 1.620 3.081 3.649 3.671

48 0.773 2.224 −0.201 0.555 0.367 2.238 1.718

64 0.176 0.908 1.684 −0.175 0.524 0.782 1.167

80 1.828 1.881 1.869 −1.618 1.069 0.506 1.652

96 −0.980 0.941 1.442 1.754 1.409 0.301 −0.492

gapmean

8 3.035 2.132 2.750 3.295 4.125 3.749 4.034

16 2.164 1.460 1.594 1.837 1.907 2.354 2.847

32 1.171 2.283 1.538 1.155 1.685 2.036 1.675

48 1.298 2.112 1.509 0.730 1.398 1.891 1.782

64 1.241 1.812 1.185 0.994 1.427 1.665 1.825

96 0.196 0.676 0.912 0.813 0.201 −0.255 −0.096

6.2 Proactive vs homogeneous dEAs

This section compares the two proactive algorithms, Proact
and Proact-PmAdapt, and the homogeneous algorithms
without the adaptive mutation rate (which have performed
the best in the previous section). In a first analysis, the
quality of a solution is measured by the percentage gap
(see Eq. (3)) with respect to the fitness of the best solution
reached by Proact-PmAdap (bestProact−PmAdap), i.e., the rel-
ative distance between the two fitness values. Table 3, which
shows the gap values, has been split into two parts: the up-
per one displays the aforementioned gap with respect to the
best solution obtained in the 30 runs (gapbest ), whereas the
lower part includes the gap with respect to the average val-
ues (gapmean). Positive values mean that Proact-PmAdap
has reached better (higher) fitness values than that the ho-
mogeneous counterparts or Proact, while negative values
point out the opposite situation.

gapbest = bestProact−PmAdap − bestalg_variant

bestProact−PmAdap
(3)

From the values included in Table 3, we can first observe
that the gapbest is positive in 43 out of 49 combinations
between dEA variants and NK instances. There are, how-
ever, negative values (i.e., a homogeneous dEA or Proact
has computed a more accurate best solution than Proact-
PmAdap), but most of them are very close to zero, mean-
ing that the best solutions obtained by the algorithms are
very similar in these cases. When considering the gapmean,
Proact-PmAdap has reached the best average values in 47
out of 49 comparisons. The statistical tests have pointed out
that Proact-PmAdap have significant differences with the
rest of the algorithms for most of the instances (in 4 out of

Fig. 3 Number of generations to converge for Proact and homoge-
neous dEAs

7 instances). The tendency in a column-wise comparison is
clear: the lower the K value, the larger the gap. That is, the
higher diversity induced by Proact-PmAdap has largely im-
proved the search, with a deeper impact on not very rugged
landscapes, but always allowing to improve upon Proact and
all the homogeneous dEAs. The reason for the better perfor-
mance of the Proact-PmAdap on not very rugged landscapes
is that the diversity values induced by the proactive mecha-
nism are too high for very rugged landscapes that prevent
the algorithm to converge very fast.

All the previous claims state that the devised algorithm
in this paper, Proact-PmAdap, has outperformed its previous
version Proact and its homogeneous counterparts in terms of
solution quality. But it also has an additional benefit: its con-
vergence speed. Figure 3 shows the average number of gen-
erations that all the algorithms considered in this analysis
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Fig. 4 Execution times of homogeneous dEAs and Proact

need to compute their best solution. It can be seen that two
Proact versions have reported a low number of generations
for the majority of the NK instances considered, together
with Hom1. The statistical tests have pointed out that dif-
ferences are significant, except for instances with K = 64
and K = 96. The tests also indicate that Proact-PmAdap
and Hom1 have significant differences regarding the conver-
gence velocity. Refining a little bit more the discussion, on
the one hand, Proact-PmAdap has clearly converged much
faster than Proact, so a compromise between solution qual-
ity and converged speed arises here. Many scenarios may be
considered in which saving as many function evaluations as
possible is a must (e.g., when the fitness function involve
tasks demanding high computational tasks such as simula-
tions, or optimization problems that require very short re-
sponse times). On the other hand, our proactive algorithm
has not only been the algorithm that reached the best av-
eraged solutions, as mentioned previously, but also the one
that reaches them using a low number of evaluations. This,
again, points out the suitability of Proact-PmAdap to deal
with not very rugged landscapes because of the strategies to
control the diversity in its populations.

Regarding the execution time, the results presented in
Fig. 4 (averaged over the 30 independent runs) show that
Proact approach presents slightly longer execution times to
the majority of the homogeneous approaches. The longest
run times are reported by Proact-PmAdap. The statistical
tests have provided these results with confidence.

Summarizing, the results of Proact-PmAdap are very en-
couraging, since it can compute accurate solutions with high
fitness values in a low number of generations.

7 Conclusions and future work

In this work, we have introduced Proact-PmAdap, a dis-
tributed EA which proactively controls the migration period

of the neighboring subpopulations and the mutation proba-
bility in order to maintain a good genetic diversity within
each island. The algorithm bases these proactive changes
on information of the current state of the search in terms
of the Shannon entropy. We have tested our technique on a
set of high dimensional NK instances. In order to evaluate
the performance of Proact-PmAdap, it has been compared
to Proact (a dEA enhanced with a proactive strategy with-
out the adaptation of the mutation rate) and several homoge-
neous dEAs using different migration periods, fixed after an
empirical exploration over different configurations. The re-
sults reported have shown that our proactive algorithms are
able to reach solutions for the NK-landscape instances with
a similar quality than those of the best homogeneous dEAs.
Proact-PmAdap has performed specially well on not highly
rugged landscapes for which it clearly improves upon homo-
geneous dEAs, but always allowing to improve upon Proact.
An additional truly interesting point is that our proposal ex-
hibits a faster convergence speed, i.e., it has reached their
best solutions in a lower number of generations that the ma-
jority of the homogeneous dEAs.

We consider that these results are encouraging and they
open many promising research lines for future work. From
an algorithmic point of view, we plan to extend Proact
for adapting other configuration parameters (from the mi-
gration or genetic operators) that allows the algorithm to
have a better control of the search. The information used
to perform this adaptation is also a matter for future re-
search, not just the entropy, but also other statistics de-
rived from the search history. From the application point of
view, we also plan to further evaluate Proact in other do-
mains, specially those in which a fast convergence is re-
quired.
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