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Abstract

One of the major challenges in ecology is to understand how ecosystems respond to changes in
environmental conditions, and how taxonomic and functional diversity mediate these changes. In
this study, we use a trait-spectra and individual-based model, to analyse variation in forest pri-
mary productivity along a 3.3 km elevation gradient in the Amazon-Andes. The model accurately
predicted the magnitude and trends in forest productivity with elevation, with solar radiation and
plant functional traits (leaf dry mass per area, leaf nitrogen and phosphorus concentration, and
wood density) collectively accounting for productivity variation. Remarkably, explicit representa-
tion of temperature variation with elevation was not required to achieve accurate predictions of
forest productivity, as trait variation driven by species turnover appears to capture the effect of
temperature. Our semi-mechanistic model suggests that spatial variation in traits can potentially
be used to estimate spatial variation in productivity at the landscape scale.
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INTRODUCTION

One of the major challenges in contemporary ecosystem
science is to understand how ecosystems respond to changes
in environmental conditions, and how taxonomic and func-
tional diversity mediate these changes (Lavorel & Garnier
2002). Environmental conditions change both in time and in
space, and transects along environmental gradients can pro-
vide valuable insights into controls of ecosystem function.
Tropical forest environmental gradients present a particularly
rich study system (Vazquez & Givnish 1998; Wright 2002),
with their high diversity facilitating general insights into the
relationships between diversity and function that are not con-
tingent on the characteristics and the presence or absence of
particular dominant species. More specifically, tropical eleva-
tion gradients, with their usually high levels of soil moisture
and year-long growing season, provide ‘natural laboratories’
to understand the influence of temperature on ecosystem

function without the complicating influence of variation in
temperature seasonality and winter dormant seasons (Malhi
et al. 2010; Sundqvist et al. 2013).
It is valuable to distinguish direct environmental controls on

ecosystem productivity from indirect controls mediated through
forest structure and composition, and to determine the degree
to which productivity can be estimated from surveying ecosys-
tem composition. Environmental conditions are usually consid-
ered direct drivers of ecosystem productivity (Fig. 1). Although
in most tropical regions temperature is not a limiting factor on
productivity, some studies suggest that across sites, tree growth
increases with mean temperature (Raich et al. 1997; Cleveland
et al. 2011) within the temperature range of currently observed
tropical climates. In seasonal tropical forests, rainfall is posi-
tively associated with tree growth (Brienen & Zuidema 2005),
while other studies identify solar radiation as a key driver of
forest productivity across Amazonia (Nemani et al. 2003) par-
ticularly during the rainy season (Graham et al. 2003). Soil
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fertility may be important: in lowland tropical forest, phospho-
rus (P) availability is considered a key limiting factor of primary
productivity (Quesada et al. 2012), whereas in montane regions
with colder and younger soils, nitrogen (N) may be the limiting
factor (Tanner et al. 1998). In summary, increases in one of the
above factors can have positive effect on tree growth (given no
other resource limitation), expressing a direct (‘proximal’) and
short-term effect of environmental conditions on ecosystem
productivity (Fig. 1).
Environmental conditions can additionally have an indirect

(‘distal’) effect on forest productivity by regulating the structure
and/or the species/functional composition of the community
(Fig. 1). Such effects tend to act on longer temporal scales,
where potential feedbacks between structure and functional
composition can also take place. Many studies have shown that
functional traits systematically vary with water availability (San-
tiago et al. 2004), soil fertility (Fyllas et al. 2009) and stand
development (Lebrija-Trejos et al. 2010), and trait variation can
predict individual-tree growth rate (Poorter et al. 2008) and
community productivity (Finegan et al. 2015). However, feed-
backs among environmental conditions, stand structure and
functional composition have also been identified. For example,
across Amazonia there exists a structural feedback on productiv-
ity, with rich soils favouring low biomass, fast-growing species
in contrast to poor soils that favour high biomass slow-growing
species (Baraloto et al. 2011; Quesada et al. 2012).
Disentangling the role of environmental and biotic controls

on tropical forest productivity requires appropriate data sets.

In recent years, a large body of data has been emerging from
an elevation transect in the Andes and Amazon in SE Peru,
including rates of ecosystem carbon cycling (Girardin et al.
2010; Malhi et al. 2017a), forest structure and dynamics (Fee-
ley et al. 2011; Asner et al. 2014a), plant ecophysiology (van
de Weg et al. 2009, 2012; Bahar et al. 2016), and leaf and
wood traits (Asner et al. 2014b; Malhi et al. 2017b). Along this
3300 m gradient, there is a steep temperature decrease with
increasing elevation, a reduction in solar radiation and an
increase in soil N and P content that drive high species turn-
over (Malhi et al. 2017a). This species turnover is associated
with shifts in several functional traits including increasing leaf
mass per area (LMA) and leaf P concentration with elevation
(Asner et al. 2014b). Forest stature and structure vary greatly
between lowland and highland plots, resulting in a decline in
biomass with elevation and more open forests in the mountains
(Asner et al. 2014a; Malhi et al. 2017a). Productivity declines
with elevation but with some evidence of a step-change decline
near the cloud base (Malhi et al. 2017a). It thus seems that
various direct and indirect factors can potentially control forest
productivity along the Andes-Amazon gradient. The available
data sets present a unique opportunity to mechanistically
explore the influence of climate, plant functional traits and for-
est structure on forest productivity.
Individual-based vegetation models provide an ideal frame-

work to integrate forest inventory data with ecosystem
dynamics theory and to explore how climate, functional traits
and stand structure control primary productivity (Purves &
Pacala 2008). In particular, by accounting for interspecific
functional variation as well as tree-size variation, the perfor-
mance of alternative life history strategies can be explored
(Moorcroft et al. 2001; Scheiter et al. 2013). Functional traits
are extensively used as predictors of plant processes. For
example, LMA and mass-based leaf nitrogen (NLm) and phos-
phorus (PLm) concentration are the central elements of the
leaf economic spectrum and can be used to predict mass-based
photosynthetic and respiration rates (Wright et al. 2004;
Atkin et al. 2015), while wood density (qW) and maximum
height (Hmax) appear to be good predictors of tree growth
and mortality rates (Poorter et al. 2008; Wright et al. 2010).
In this study, we use a simplified version of a trait-spectra and

individual-based model of tropical forest dynamics (TFS, Fyllas
et al. 2014) to disentangle the relative importance of climate (di-
rect environmental effect), stand structure and functional traits
(indirect environmental effects) in controlling forest productivity
along the Andes-Amazon elevation gradient. We initially apply
the model along the gradient and validate its performance
against field-based estimates of productivity. We subsequently
exploit the model framework to perform a set of randomisation
exercises designed to quantify the relative importance of climate,
stand structure and functional traits in determining the observed
patterns of forest productivity.

MATERIALS AND METHODS

Study site

The study area is located along a 3300 m elevation gradient
in the tropical Andes and extends to the Amazon Basin.

Radiation
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Figure 1 Environmental and biotic controls on primary productivity.

Environmental factors, such as radiation, temperature and precipitation,

can have direct effects (black arrows) on GPP and net primary

productivity (NPP) and/or indirect effects (grey arrow) through the

regulation of stand structure and functional composition (expressed here

as the distribution of functional traits). Biotic controls related to the

stand structure and its functional composition can also have direct effect

on primary productivity (black arrows). However, stand structure and

functional composition are not only regulated by environmental factors

as, for example, the biogeographic and disturbance history of the region,

could also play a significant role. In this study, we explore the roles of a

number of environmental and biotic controls (dashed and solid black

arrows) and find that only two factors (traits and radiation; solid black

lines) are required to explain the elevational trend in productivity. This

study does not address how environmental factors influence biotic

attributes (grey arrow). Stand structure is defined in this study as the

number of trees and their diameter distribution within a plot. Functional

composition is defined by the distribution of four functional traits (LMA,

NL, PL and qW). Field-based estimates of GPP and NPP are made from

inventory data and autotrophic respiration measurements. A trait-spectra

individual-based model is used to simulate GPP and NPP by upscaling

tree diameter and functional traits measurements.
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Across this transect, a group of nine intensively monitored 1-
ha plots (Table S1.1) was established as part of the long-term
research effort coordinated by the Andes Biodiversity Ecosys-
tems Research Group (ABERG, http://www.andesconser
vation.org) and the ForestPlots (https://www.forestplots.net/)
and Global Ecosystems Monitoring Network (GEM; http://ge
m.tropicalforests.ox.ac.uk/projects/aberg) networks. Five of
the plots are montane plots in the Kos~nipata Valley, spanning
an elevation range 1500–3500 m (Malhi et al. 2010), two are
submontane plots located in the Pantiacolla front range of the
Andes (600–900 m) and two plots are found in the Amazon
lowlands in Tambopata National Park (200–225 m). The ele-
vation gradient is very moist (Table S1.1), with seasonal cloud
immersion common above 1500 m elevation (Halladay et al.
2012), and no clear evidence of seasonal or other soil moisture
constraints throughout the transect (Zimmermann et al.
2010). Plots were established between 2003 and 2013 in areas
that have relatively homogeneous soil substrates and stand
structure, as well as minimal evidence of human disturbance
(Girardin et al. 2010).

Field-based forest productivity estimates

At all plots, the GEM protocol for carbon cycle measure-
ments was applied (Malhi et al. (2017a), see also Data S1).
The field measurements estimated gross primary productivity
(GPP, the total rate of carbon capture and storage) and net
primary productivity (NPP the rate of carbon uptake after
subtracting autotrophic respiration, here measured as the
rate of biomass production of wood, canopy and fine roots).
Within our study plots, all trees with a D > 10 cm were
identified at the species level, and in selected subplots all
trees with D > 2 cm were measured and identified. The
GEM protocol involves measuring and summing all major
components of NPP and autotrophic respiration monthly or
seasonally (Malhi et al. 2017a). NPP estimation is based on:
canopy litterfall, leaf loss to herbivory, aboveground woody
productivity of medium-large (D > 10 cm) trees (every
3 months), annual census of wood productivity of small trees
(D 2–10 cm), branch turnover on live trees, fine root produc-
tivity from ingrowth cores installed and harvested (every
3 months), and estimation of coarse root productivity from
aboveground productivity. Autotrophic respiration (Ra) is
calculated by summing up rhizosphere respiration (measured
monthly), aboveground woody respiration estimated from
stem respiration measurements (monthly) and scaling with
surface area, belowground coarse root and bole respiration
(fixed multiplier to stem respiration) and leaf dark respira-
tion estimated from measurements of multiple leaves in two
seasons. GPP is estimated from the amount of carbon used
for NPP and Ra, thus GPP = NPP + Ra. Carbon use effi-
ciency is given by c = NPP/GPP. We note that only a rela-
tively small component of GPP and NPP (woody NPP) is
based on diameter at breast height (D) measurements, with
larger components coming from litterfall and respiration and
fine root turnover. Wood productivity accounts for only
around 10% of GPP and 25% of NPP (Malhi et al. 2017a),
and the relationship between wood production and total
NPP or GPP is weak (Malhi et al. 2011). These estimates

are used as our best guess of stand-level GPP and NPP
although we acknowledge that they involve a number of
assumptions.

Model description

The original TFS model is a trait-continua and individual-
based model, which simulates the carbon (C) balance of each
tree in a stand (Fyllas et al. 2014), taking into account light
competition (Strigul et al. 2008). In the original model, the
carbon balance of each tree is estimated using a coupled pho-
tosynthesis stomatal conductance model. The parameters of
the photosynthetic model are estimated from three leaf func-
tional traits (LMA, NLm and PLm) that regulate the photosyn-
thetic capacity and the respiration rate of trees. Rather than
grouping trees into plant functional types, TFS prescribes
interrelated joint distributions of functional traits which repre-
sent trade-offs of possible plant strategies and responses to
environmental conditions. In addition to the leaf traits, wood
density (qW) is used to account for variation in aboveground
biomass (MA) and mortality rates.
Here, we use a simplified version of TFS (described in Data

S2), where the mechanistic representation of photosynthesis,
respiration and C allocation is replaced by a simple tree-
growth equation, where a time-integrated whole-tree averaged
photosynthetic rate is multiplied by the total leaf area of a
tree to estimate total biomass increment (Lambers et al. 1989;
Walters & Reich 1999; Enquist et al. 2007):

dMT

dt
¼ ð c

x
ALÞð 1

LMA
ÞML ð1Þ

with MΤ the total plant dry biomass (kg), c the carbon use
efficiency (no units), x the fraction of whole-plant dry mass
that is carbon, _AL the leaf area specific photosynthetic rate
(g C cm�2 per unit time), LMA leaf dry mass per area
(kg m�2) and ML the total leaf dry mass (kg). The growth of
each tree is estimated on a daily time-step. Annual tree
growth (NPP) is given by summing all daily dMT. Annual
GPP is estimated by dividing dMT by c and summing all daily
values. All simulations are performed in a snapshot mode, i.e.
for 1 year where ML is constant.
Allometric equations, with varying scaling coefficients esti-

mated from available data, are used to allocate plant biomass
to different plant components including leaf biomass. In addi-
tion, the photosynthetic rate of each tree is expressed as a
function of both leaf traits (that vary in a continuous way
across individuals) and irradiance that takes into account
competition for light between individuals. In the following
paragraphs, we describe how the model was parameterised
with available field and literature data. The main model
parameters are summarised in Table 1, and a sensitivity anal-
ysis of simulated GPP for some of the key model parameters
is provided in Data S2.

Model initialisation

Within our study plots, all trees with a D > 10 cm have been
identified at the species level. In addition LMA, NLm, PLm and
qW were measured (Asner et al. 2016b; Malhi et al. 2017b) for
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approximately 7% of the stems of species that comprise 60%
(in diverse lowland sites) to 80% (in the less diverse montane
sites) of the total plot basal area. In our simulations, individu-
als with measured trait values were included as such, without
using an average species value, in order to incorporate
intraspecific variation. For the rest of the trees, trait values
were populated hierarchically using, in the decreasing order of
preference, the species mean plot value, the species transect-
wide mean value or, for trees for which no species-level traits
were available, the plot-level trait means.
Climate data were available from weather stations located

close to each study site (Table S1.1). The most complete time
series for most weather stations were for the year 2013 and
solar radiation, temperature and precipitation were recorded
at 30-min intervals. We used these time series to estimate
average daily climate.

Tree allometry
Transect-wide allometric equations of tree height (H) and
crown area (CA) as a function of tree diameter were used to
define the architecture of each tree in a stand (Shenkin et al.
2017). In the model, trees were considered to have a flat-
topped circular canopy with an area equal to the allometri-
cally estimated projected crown area.
Aboveground tree biomass (MA in kg) is estimated from the

Chave et al. (2014) equation that takes into account the diam-
eter, the wood density and the height of a tree. Total leaf bio-
mass was expressed as a power function of MA, parameterised
using the BAAD dataset (Falster et al. 2015). During simula-
tions, we allowed the coefficients of the power functions to
vary within their 95% confidence interval estimates, with indi-
vidual trees having different leaf allometries (Table S2–Tree
Allometry).

Functional traits and photosynthesis
The photosynthetic rate ( _AL) is controlled by the leaf func-
tional traits and the available light of each individual. A

Michaelis–Menten (MM) model was used for that purpose
where:

_AL ¼ AmaxI

kþ I
� Rd ð2Þ

with I (lmol m�2s�1) the irradiance at the top of each individual,
Amax the maximum gross photosynthetic rate (lmol m�2s�1), k
the half saturation coefficient (lmol m�2s�1) and Rd is the non-
photorespiratory mitochondrial CO2 release taking place in the
light (i.e. respiration in the light) (lmol m�2s�1).
The irradiance I is estimated through the light competition

scheme, while the three leaf functional traits (LMA, NL and PL)
regulate the parameters of the light response curve (Marino et al.
2010). An independent data set of 136 light response curves and
LMA, NL and PL measurements (Atkin et al. 2015) was available
for 14 study sites along the Andean elevation gradient. These data
were used to fit MM light response curves and express their
parameters (Amax, k and Rd) as a function of the leaf functional
traits (Data S2-Photosynthesis). An average daily _AL is estimated
using equation 2 and average daily irradiance, with the total daily
AL given after multiplying average _AL with the day length.
Analyses in Bahar et al. (2016) and here (Data S2-Photo-

synthesis) suggest that across the Andean gradient the maxi-
mum light-saturated photosynthetic rate does not vary with
elevation. Thus, photosynthesis strongly acclimates to prevail-
ing air temperature and this supports the use of a tempera-
ture-independent model of leaf photosynthesis in our
simulations. However, in order to specifically test for the
importance of direct temperature effects on photosynthesis,
we used a generic temperature sensitivity model (Higgins et al.
2016) and compared simulations with and without temperature
dependence.

Simulations

We performed two sets of simulations to elucidate the major
controls of forest productivity along the Amazon-Andes

Table 1 Key model parameters of the simplified tropical forest dynamics (TFS) model used in this study

Parameter Description Input/equation Origin

D Diameter at breast height Inventory data Malhi et al. (2017a)

LMA Leaf dry mass per area Inventory data Malhi et al. (2017a)

NL Leaf N content Inventory data Malhi et al. (2017a)

PL Leaf P content Inventory data Malhi et al. (2017a)

qW Wood density Inventory data Malhi et al. (2017a)

H Tree height H = exp(aΗ+bHD) Shenkin et al. (2017)

CA Crown area CA ¼ acDbc Shenkin et al. (2017)

MA Aboveground biomass MA ¼ aA � ðqw �D2 �HÞbA Chave et al. (2014)

ML Leaf biomass ML ¼ aL �MA�bL This study
_AL Leaf photosynthetic rate _AL = (Amax�I/(k+I)) - Rd This study

I Irradiance I = a�I�exp(�0.5�SLAI) Modelled

a Leaf absorptance a = 0.75 Assumed

SLAI Shading leaf area index Modelled Modelled

Amax Max photosynthetic rate Amax = 10.25 or Amax=f(PL) Table S2.1

k Half saturation coefficient k=f(LMA, NL, PL) Table S2.1

Rd Respiration in the light Rd=f(LMA, NL, PL) Table S2.1

c Carbon use efficiency c=N(0.33, 0.04) Malhi et al. (2017a)

x Carbon dry mass fraction x=0.5 Assumed

g(T) Temperature response maxð0;�0:242þ 0:0937T� 0:00177T2Þ Higgins et al. (2016)

Please see Data S2 for a complete model description.
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gradient. First, the importance of temperature sensitivity was
explored following a ‘leave-one-out’ procedure that explored
the ability of TFS to simulate GPP and NPP patterns under
four different model setups that accounted for: (1) photosyn-
thetic temperature sensitivity (PTS), variation in functional
traits along the gradient (FTV) and the effects of traits on
Amax (P�Amax), (2) PTS + FTV, (3) only PTS and (4) only
FTV. The P�Amax parameterisation accounts for the positive
effect of PL on Amax and it was used to explore for potential
counteracting effects of temperature and PL on photosynthetic
rate that could cancel each other out if considered separately.
Secondly, to explore the importance of climate, stand struc-

ture and functional traits in determining GPP and NPP across
our study sites, we applied within TFS a set of randomisation
exercises. These are described in detail in Data S3. To test the
importance of climate (Climate only Setup – CoS), we simu-
lated GPP and NPP using the local (plot-specific) climate and
a regional average stand structure and trait distribution (i.e.
the average stand structure and traits distribution across all
plots along the transect). The hypothesis behind CoS is that
climate, and particularly variation in incoming solar radiation,
is sufficient to explain variation in productivity across the ele-
vation gradient, with no between-plots variation in traits or
stand structure required. The role of stand structure was
tested using the Structure only Setup (SoS). Following this
setup, the observed D distribution in each plot was used to
initialise trees, while climate and functional diversity were

kept constant. The hypothesis behind the SoS is that change
in stand structure, via its effects on the partitioning of avail-
able light, is the most important determinant of productivity
along the elevation gradient. Finally, the potential control of
functional trait variation, expressed through the distributions
of the four traits, was explored by initialising TFS with the
locally measured trait distribution while keeping climate and
stand-size distribution fixed [Traits only Setup (ToS)]. The
hypothesis tested by this setup is that knowledge of the local
distribution of the four functional traits is adequate to predict
observed variation in GPP and NPP with elevation.

RESULTS

The predictive ability of the various model setups were quanti-
fied through standardised major axis (SMA) regressions and
estimation of root mean square error (RMSE in
MgC ha�1 year�1) between field estimated (observed) and sim-
ulated GPP and NPP. In addition, ordinary least square regres-
sions of simulated GPP and NPP with elevation were
performed with the estimated slope (bOLS in MgC
ha�1 year�1 km�1) representing the sensitivity of each setup to
changes in elevation.
All simulations that included photosynthetic temperature

dependence were over-sensitive to elevation changes, underesti-
mating both GPP and NPP particularly at upland sites (Fig. 2,
Table S5.1). Even when the positive Amax-PLa effect was
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enabled, productivity was underestimated at upland sites sug-
gesting that the relative effect of PLa is lower than that of tem-
perature. However, when trait values were allowed to vary with
elevation in accordance with observations and temperature sen-
sitivity was excluded, the model performed best [GPP:
RMSE = 3.87, bOLS = �4.24, NPP: RMSE = 0.99, bOLS =
�1.40]. We named this model setup, initialised with plot-specific
solar radiation, stand structure and functional traits data, as
the fully constrained model setup (FcS). We note here that
accounting for light competition was particularly important for
accurate GPP and NPP simulations (Fig. S5.2, Table S5.2). The
FcS captures the broad gradient between higher productivity in
lowland sites and lower productivity in montane sites, suggest-
ing that direct photosynthetic temperature sensitivity could be
excluded from our modelling framework (although it could still
matter through its effects on traits), and that across the gradient
solar radiation is the main climatic driver of spatial variation in
forest productivity.
After validating the model, we used the randomisation exer-

cises to test the importance of climate, stand structure and
functional traits to drive GPP and NPP patterns. When
exploring for the effects of climate (CoS), i.e. factoring out
stand structure and traits variation, the RMSE increased both
for GPP and NPP [3.99 and 1.99, respectively] and the model
was less sensitive to elevation changes [bOLS = �1.40 and
bOLS = �0.46, respectively] (Table 2). Hence, CoS captured
the mean productivity across the gradient but was not as sen-
sitive as FcS to changes in elevation and in particular overesti-
mated forest productivity at upland sites (Fig. 3).
When site-specific structure was used as the main driver

(SoS), there was a substantial decline in the predictive ability
of the model. The broad scale decline of primary productivity
with elevation could not be reproduced adequately (Fig. 3),
and RMSE increased both for GPP and NPP (Table 2). This
suggests that knowledge of the tree-size distribution alone is
not enough to estimate patterns of productivity along the

Andean elevation gradient. It should be remembered, how-
ever, that the SoS setup represents mainly variation in size-
class distribution and not variation in established biomass,
which in the model is additionally influenced by variation in
wood density.
When functional trait variation alone was considered (ToS),

the model reproduced the broad scale decline with elevation but
both GPP and NPP were overestimated compared to FcS, par-
ticularly at mid-elevations (Fig. 3). For GPP, the RMSE
increased [5.38] compared to the FcS and the CoS but the sensi-
tivity of the model to elevation was close to observations
[bOLS = �3.26] (Table 2). For NPP, the RMSE [1.64] was
higher than FcS but lower than CoS and sensitivity with eleva-
tion [bOLS = �1.08] was higher than CoS. These results suggest
that the local traits distributions captures the declining trend in
productivity with elevation, but additional knowledge of solar
radiation, is required to accurately estimate GPP and NPP.
To gain further insights into the mechanisms that drive vari-

ation in forest productivity, we explored how some key stand-
level parameters vary with elevation using inferences from the
FcS (Fig. 4). Average light availability over all canopy depths
(Im) declines with elevation and then increases at the upper-
most plot, following variation in incoming solar radiation at
the top of the canopy (SO) and inversely the number of stems
per area (NS). On the other hand, the basal area-weighted
average LMA and PLa increase with elevation, while NLa does
not change much. Simulated Rd does not vary much across
the gradient and given the constant Amax the decline in actual
photosynthesis ( _AL) is mainly a result of variation in light
availability, with a small divergence at the uppermost plots.
However, the half saturation coefficient also increases with
elevation and this suggests that trees at upland sites have a
lower photosynthetic rate for a given light intensity (below
maximum rates) compared to their lowland counterparts,
explaining the divergence in _AL. Thus, reductions in average
photosynthetic rate with elevation are likely to be mainly due

Table 2 Results of tropical forest dynamics (TFS) performance under different setups

Setup

q simulations-

observations

Slope simulations-

observations (bSMA)

RMSE simulations-

observations

Slope simulations

-elevation (bOLS)

GPP

FcS:

Fully constrained

0.77 1.03 (0.93–1.14) 3.87 �4.24 (� 0.90)

CoS:

Local climate

0.79 1.09 (1.00–1.18) 3.99 �1.40 (� 0.83)

SoS:

Local stand structure

0.06 4.92 0.51 (� 0.41)

ToS:

Local traits

0.51 5.38 �3.26 (� 0.69)

NPP

FcS: Fully constrained 0.90 1.01 (0.93–1.10) 0.99 �1.40 (� 0.30)

CoS: Local climate 0.60 1.07 (0.92–1.24) 1.99 �0.46 (� 0.27)

SoS: Local stand structure �0.31 2.13 0.17 (� 0.13)

ToS: Local traits 0.62 1.07 (0.93–1.24) 1.64 �1.08 (� 0.23)

Bold values of the Pearson’s correlation coefficient (q) between field measurements and simulations indicate a statistical significant associations (P < 0.05).

In cases of significant correlations a SMA regression was fit and the slope bSMA along with a 95% CI is reported. An adequate model performance is con-

sidered when bSMA estimates include 1. RMSE (Mg C ha�1 year�1) between observations and simulations are also reported with lower values indicating a

better model performance. The slope of an ordinary least square regression of simulated productivity with elevation bOLS (� standard error) is also

reported here to summarise the sensitivity of GPP and NPP with elevation. For comparison the estimated slope from observations for GPP is �3.05

(Mg C ha�1 year�1 km�1) and for NPP is �1.53 (Mg C ha�1 year�1 km�1).
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to reductions in light availability as well as due to the higher
light levels required for photosynthetic light saturation for
trees at higher elevations.

DISCUSSION

Various environmental and biotic drivers can control forest
productivity along the Amazon-Andes elevation gradient
(Fig. 1). We developed a simplified version of a vegetation
model that integrates a range of field measurements in order
to understand the relative importance of climate, stand struc-
ture and functional traits on forest productivity. Overall, TFS
provided simulations that were in line with field estimates of
the magnitude and trends in GPP and NPP across the eleva-
tion gradient. In the following paragraphs, we describe how
the performed simulations and randomisation exercises were
used to understand the decline in productivity with elevation.

Temperature and photosynthesis acclimation

Variation in primary productivity has been traditionally consid-
ered to reflect the effects of climate variables such as radiation,
temperature and precipitation on plant metabolic rates (Chapin
et al. 2011). A recent study reported that, along the Andean ele-
vation gradient, maximum carboxylation and electron transport

rates at a standardised temperature of 25 °C were significantly
higher at upland sites, possibly reflecting greater P per unit leaf
area at high elevations and/or thermal acclimation to sustained
lower growth temperatures (Bahar et al. 2016). By contrast,
when measurements of gas exchange were made at the daytime
temperatures at each site (20–28 °C; Fig. S2.2), light-saturated,
area-based rates of net photosynthesis, as well as maximum car-
boxylation and electron transport rates, show no significant
trend with elevation (Bahar et al. 2016; Malhi et al. 2017a).
The latter observations support the use of a temperature-inde-
pendent equation for photosynthetic carbon assimilation. Our
simulations show that accurate GPP and NPP predictions can
be made without a direct temperature sensitivity effect on pho-
tosynthesis (Fig. 2). When both temperature sensitivity and
functional traits variation was included in the model, forest pro-
ductivity was too sensitive to elevation changes. This suggests
that the effect of temperature is likely to be manifested through
variation in leaf traits, which may be controlled by variation in
environmental conditions (including temperature) along the
gradient. The shift in leaf traits and photosynthetic characteris-
tics with elevation cancels out much of the ecophysiological
temperature dependency found in single plant measurements.
This does not imply that short-term temperature changes
(months to decades) will not affect forest productivity but
rather that long-term changes lead to a turnover in species such

20

30

40

3000

G
P

P
 (M

gC
 y

−1
ha

−1
)

Setup
CoS
FcS
SoS
ToS

8

10

12

14

16

1000 2000

1000 2000 3000
Elevation (m)

N
P

P
 (M

gC
 y

−1
ha

−1
)

TAM-05

TAM-06

PAN-02
PAN-03 TRU-04

SPD-01

ACJ-01

WAY-01

ESP-01

TAM-05

TAM-06

PAN-02

PAN-03
TRU-04

SPD-01

ACJ-01

WAY-01ESP-01

Setup
CoS
FcS
SoS
ToS

Figure 3 Simulated GPP (upper panel) and net primary productivity (NPP) (lower panel) under the different model setups. Grey points indicate GPP or NPP

simulations following the fully constrained model setup (FcS). Green points present simulations using the local climate (CoS) and average regional structure

and trait data. Blue points present simulations using the local stand structure (SoS) and average regional climate and trait data. Red points present

simulations using the local traits distributions (ToS) and regional climate and stand structure data. Black points indicate estimates of GPP or NPP from field

measurements � 2 standard errors. Line presents local polynomial regressions (loess) of simulated GPP or NPP with elevation for each model setup.

© 2017 John Wiley & Sons Ltd/CNRS

736 N. M. Fyllas et al. Letter



that the local community is acclimated to local growing condi-
tions, resulting in little sensitivity of productivity to temperature
on long time scales, and within the temperature range studied.
An alternative possibility is that temperature shows a strong
but non-causal relationship with leaf traits along the gradient,
and this obscures a real direct temperature effect.

Functional traits

Previous studies along this and other elevation gradients in
the Andes region found that more than 80% of LMA and NL

turnover between communities is determined phylogenetically,
suggesting that these traits may have been involved in evolu-
tionary adaptation (Asner et al. 2014b). Furthermore, Asner
et al. (2014b) found that these intercommunity differences in
LMA and NL were dominated by changes in temperature,
rather than by other factors such as moisture or radiation. By
contrast, between-community variation in PL is controlled by
substrate rather than temperature effects (Asner et al. 2016b).
Along the Amazon-Andes gradient leaf N:P ratio declines
with elevation (Malhi et al. 2017b) and this might indicate a
switch from P to N limited photosynthesis consistent with soil
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properties (Nottingham et al. 2015), with Bahar et al. (2016)
suggesting that knowledge of growth temperature is not
required to estimate photosynthetic capacity if leaf and soil P
data are available. Here, we used empirical relationships to
infer the parameters of the photosynthetic light response curve
form LMA, NLa and PLa and thus determine how changes in
traits regulate C-fixation. In an additional simulation exercise,
the progressive increase in the functional strategies included in
the model (from one Plant Functional Type (PFT), to nine
PFTs, to a continuum of plant strategies), increased the pre-
dictive ability of the model. This outcome suggests that spe-
cies turnover (Malhi et al. 2017a) and the associated shifts in
plant functional traits is a stronger driver of spatial variation
in forest productivity than direct environmental filtering
effects (S5–Importance of elevation shifts in functional traits).

Solar radiation and light competition

Along the Andean gradient, solar radiation declines at mid-
high elevations, associated with a higher frequency of both
cloud occurrence and cloud immersion (Halladay et al. 2012),
and then rises again at the uppermost treeline plot. In our
simulations, the actual photosynthetic rate follows variation
in light availability, while at the uppermost plots this relation-
ship could be additionally controlled by the higher photosyn-
thetic light saturation level that characterises upland trees
(Fig. 4). Thus, solar radiation is the strongest direct climatic
determinant of forest productivity, and therefore, actual pho-
tosynthesis does not track potential photosynthesis (van de
Weg et al. 2014; Malhi et al. 2017a). One of the key criticisms
of classical Metabolic Scaling Theory is that it fails to account
for asymmetric competition for light (Coomes & Allen 2009).
The proposed modelling framework addresses this issue by
explicitly simulating the hierarchical position of each individ-
ual within a stand, using the perfect-plasticity approximation
assumption (Strigul et al. 2008). Our simulations show that
inclusion of light competition is necessary for accurately pre-
dicting GPP and NPP (S5–Light Competition).

Stand structure

Our simulations suggest that stand structure and in particular
diameter distribution do not have a strong effect on forests pro-
ductivity along our study plots. Although woody biomass decli-
nes with elevation, basal area does not (Malhi et al. 2017b).
This constancy of basal area may diminish the effect of biomass
variation in contrast with studies that identify biomass as the
strongest predictor of forest productivity, for example during
succession (Lohbeck et al. 2015). Thus, in mature stands, like
the ones studied here, variation in functional traits that control
carbon assimilation and biomass allocation might be stronger
predictors of forest productivity than standing biomass (Fine-
gan et al. 2015). In our case, this functional trait variation
seems to be primarily controlled by species turnover.

CONCLUSIONS

Here, we combine a uniquely rich data set of plot-level pro-
ductivity coupled with functional traits and a modelling

framework to understand what drives the trend of productiv-
ity along a tropical forest elevation gradient. We have shown
that an individual-based model that explicitly describes func-
tional trait variation within and between plots, and accounts
for light competition can realistically capture variation in pri-
mary productivity along the investigated gradient. Our find-
ings suggest that the decline in productivity with increasing
elevation is explained by a combination of shifts in plant
traits values and a decline in solar radiation. Remarkably, we
do not need to account for direct temperature dependence of
photosynthesis, beyond what may be an effect of temperature
through the observed plant traits. The turnover in the plant
community and ensuing shift in plant traits cancels much of
the temperature dependency that is found in single plant
in situ measurements. The work not only demonstrates the
utility of tropical elevation transects in yielding important
insights into long-term ecosystem sensitivity to temperature,
but also suggests that variation in solar radiation introduces a
moderate complicating caveat. Advanced new techniques,
such as airborne spectroscopy, have demonstrated the poten-
tial to map key leaf traits at landscape and regional scale,
both along elevation gradients and across edaphic contrasts in
the lowlands (Asner et al. 2014a, 2016a). Our work shows
that this spatial variation in traits can translate into poten-
tially mapping spatial variation in productivity at landscape
scale, with spatial variation in leaf traits capturing much of
the spatial variation in environmental conditions. However,
mapping traits alone is not sufficient, and there is still a need
to account for (i) variation in the abundance or dominance of
traits not only in the canopy but also in the understory as
well as (ii) light-limitation of photosynthesis. In combination
with airborne mapping of canopy traits at large scale, this
work opens the door to a mechanistic approach to mapping
ecosystem productivity at landscape and regional scales.
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