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This paper proposes a two step procedure to detect collusion in asymmetric first-price procurement (auc-
tions). First, we use a reduced form test to short-list bidders whose bidding behavior is at-odds with compet-
itive bidding. Second, we estimate the (latent) cost for these bidders under both competition and collusion
setups. Since for the same bid the recovered cost must be smaller under collusion—as collusion increases
the mark-up—than under competition, detecting collusion boils down to testing for first-order stochastic
dominance, for which we use the classic Kolmogorov–Smirnov and Wilcoxon–Mann–Whitney tests. Our
bootstrap based Monte Carlo experiments for asymmetric bidders confirm that the procedure has good
power to detect collusion when there is collusion. We implement the tests for highway procurement data
in California and conclude that there is no evidence of collusion even though the reduced form test supports
collusion. This highlights potential pitfalls of inferring collusion based only on reduced form tests.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Auction is the most widely used selling mechanism for both pri-
vate and public goods. For example, in the U.S. the federal govern-
ment is the biggest auctioneer as it is used to sell the offshore oil
leases, timbers from national forests, rights to construct highways
and is also used to liquidate the assets of bankrupt businesses. How-
ever, auctions are susceptible to bid rigging where bidders collude to
dwarf the competition, thereby hurting the taxpayers. Bid rigging is
pervasive in various markets, such as public construction, school
milk supply, stamps; see Asker (2008), Bajari (2001), Comanor and
Schankerman (1976), Feinstein et al. (1985), Harrington (2008),
Lang and Rosenthal (1991), Pesendorfer (2000), Porter and Zona
(1993), Porter and Zona (1999) and municipal bonds among others.
Although in the recent years, criminal enforcement of the antitrust
laws has deterred price–fixing in some markets it has not deterred
bidder collusion (Marshall and Meurer, 2001), and hence, the social
value of any method to detect collusion has not decreased. Since bid

rigging either lowers the revenue collected or increases the cost of pro-
curement and if this shortfall were met through some distortionary
taxes then it creates further inefficiencies. Thus, the increased revenue
spent on procurements due to collusion is not simply a wealth transfer
from taxpayer to the colluders.1 It is important to detect and stop collu-
sion as soon as possible.

Previous empirical work on collusion either rely on data from civil
lawsuits to estimate the welfare cost of collusion or use reduced form
estimation that ignores potential strategic interactions amongst
colluders leading to misspecification errors.2 It is not an exaggeration
to say that such data from lawsuits are very hard to come by and even
if they do, in most cases, it is already too late. Therefore, it is desirable
to have a method that relies on publicly available bid data to deter-
mine if bidders could be colluding. The main objective of this paper
is to contribute in this direction by proposing a simple and usable
two step procedure to test whether or not the bids data are consistent
with collusion, thereby aiding in a potential civil lawsuit.

The basic idea of the procedure is the following. Suppose we have
a set of potential members of a collusive ring. If we use the same bid
data to recover the underlying cost (by using the Bayesian Nash Equi-
librium conditions for asymmetric auction to map bids to the costs, à
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la (Guerre et al., 2000)) twice, once under competition (Model A) and
once under collusion (Model B), then the cost under Model A must be
stochastically greater than cost under Model B because collusion
increases the mark-up (i.e. increases the difference between bids
and costs) by dwarfing the competition. And this suggests that if
indeed those bidders colluded then the empirical CDF of cost under
Model A should first order stochastically dominate (f.o.s.d) empirical
CDF under collusion. We assume that the ring is efficient and can con-
trol bids of all its members, and hence, there is only one serious bid
for the ring, the bid that pertains to the member with the lowest
cost.3 Once we recover the two sets of costs, we can test for f.o.s.d
using Wilcoxon–Mann–Whitney (W-MW) and Kolmogorov–Smirnov
(KS) tests.4 Since costs are nonparametrically estimated, to account
for the error in estimation we bootstrap both the tests to determine
the correct p-values.

However, the first step of the procedure involves determining the
aforementioned set of potential colluders. Since we do not know who
they are, we have to exploit the bidding pattern in the data. To do that
we separate regular bidders from fringe bidders, thereby introducing
asymmetry, and focus on high-valued (worth at least $1 million) pro-
jects where the regular bidders participate more often, and then
implement a test proposed in (Bajari and Ye, 2003) to determine if
the bidding pattern is consistent with competition and independence
or not. We then consider the regular bidders who fail this test as
potential colluders (we call them type 1).5

It is important to note that although we are interested in deter-
mining if the data are inconsistent with competition, our procedure
is incapable of deciding in favor of Model B (collusion) or Model A.
In other words our procedure exploits only one behavioral feature
of collusion, i.e. difference in mark-ups, and using classic hypothesis
testing can only answer if the implied cost under collusion is signifi-
cantly lower than competition to have been generated under compe-
tition. Hence, our procedure is not a model selection criterion but is in
fact much weaker (in terms of what can be said about the true DGP)
than a model selection such as (Vuong, 1989) for non-nested models
with finite parameters. Having said this, we have to make sure that if
indeed the alternative hypothesis (i.e. collusion) is true then the pro-
cedure should pick that up and reject the null of competition. To test
the power of the procedure we consider a Monte Carlo exercise. For
two asymmetric bidders where type 1 bidders collude, we use the
numerical algorithm proposed in Hubbard and Paarsch (2009)
based on Mathematical Programming with Equilibrium Constraints
(MPEC) method of Su and Judd (2012) to determine the equilibrium
bidding strategies. Then using these strategies we generate bids and
treat those bids as our data and perform the test on them, while
using bootstrapped p-values. We consider many widely used para-
metric densities (under different parameters) namely Normal, Log
Normal, Weibull, Exponential and Uniform and find that the tests de-
tect collusion.6 Then we apply this procedure on publicly available
data on Highway Procurement in the state of California. We find
that there is no evidence for stochastic dominance, i.e. collusion,

even though the test by Bajari and Ye (2003) detects inconsistencies
in bidding pattern.

This paper seeks to contribute to our attempt to understand impli-
cations of collusion. However we do not claim our procedure can and
should replace wiretapping and thorough criminal investigations. If
anything, the procedure should be taken only as a first step in
assessing the likelihood of bid rigging. On a technical ground, the
paper also seeks to contribute to the literature on empirical auction
pioneered by Guerre et al. (2000) by expanding their testable impli-
cations of first-price auction models by including a model of collu-
sion; see also Flambard and Perrigne (2006).7

This paper is organized as follows: Section (2) outlines the theoret-
ical models of competition and collusion; Section (3) proposes the two
tests; Section (4) shows the result of the Monte Carlo exercise; Section
(5) discusses the data; Subsection (5.1) collects the results and Section
(6) concludes. Appendix (A.1) explains our estimation procedure;
Appendix (A.2) shows how to extend the tests to allow for unobserved
auction specific heterogeneity. All tables and figures are collected in
Appendix (A.3).

2. Models, identification and estimation

2.1. Competitive model (model A)

A single and indivisible project is procured to N≥2 risk-neutral
bidders using sealed bids. In view of the data, we assume that there
are three types (k=0,1,2) of bidders with nkb∞ bidders of type k.8 We
abuse the notation to use nk as both the number and set of type k
bidders. The cost Ci∼ iid Fk(⋅) with absolutely continuous and nowhere
vanishing density f k Cð Þ > 0;∀C∈ c !; c½ $, for all i∈nk. We also assume
that the number of bidders is exogenously given for each auction. Each
bidder i∈nk submits a bid, bik, to solve

max
b̃ik

πik ¼ b̃ik−cik
! "

Pr b̃ik < min
j≠i

Bjk

# $
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j¼1;…;n1
Bj1;

# $
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for k=0,1,2 where sk(⋅) denotes type k′s equilibrium strategy and Bik is
the (random) bid by bidder i∈nk. As shown in Lebrun (1996), Lebrun
(1999);Maskin andRiley (2000a,b, 2003), type specific bidding strategy
sk(⋅) exists and is unique. For each type k=0,1,2 they are characterized
as a solution to the following system of three ordinary differential
equations

1 ¼ bki−ckið Þ
nk−1ð Þf k s−1

k bkið Þ
! "

1−Fk s−1
k bkið Þ

% &' (
sk s−1

k bkið Þ
% &þ ∑

l≠k;l∈ 0;1;2f g

nlf 1 s−1
l bkið Þ

! "

1−Fl s
−1
l bkið Þ

% &' (
sl s

−1
l bkið Þ

% &

2

4

3

5;

ð1Þ

such that ∃!b : s0 cð Þ ¼ s1 cð Þ ¼ s2 cð Þ ¼ b, and s0 !cð Þ ¼ s1 !cð Þ ¼
s2 !cð Þ ¼ !c.

2.2. Collusive model (model B)

We assume that the bidding ring can control the bids of the mem-
bers and can eliminate all ring competition and hence there is only
one serious bidder, the most efficient bidder, i.e. n1=1. As mentioned
earlier, this is the most favorable environment for collusion and for
our purpose we do not have to spell out the exact rules of sharing

3 This is the most favorable condition for collusion and the failure to detect collusion
in this scenario means that it is unlikely to detect collusion when there is no central-
ized ring-mechanism. For our purpose, we do not need to know the side payments that
are necessary to sustain collusion; see Marshall and Marx (2007) for more on this.

4 The cost of other types (fringe and regular but non-colluding bidders) are the same
under both models and hence do not play any role in the testing procedures.

5 Asymmetry amongst bidders can be attributed to their locations, carrying capacity,
informational differences and hence any realistic model of procurement auction should
allow asymmetry, (Bajari, 2001; Bajari and Ye, 2003). Typically, only construction com-
panies who participate mostly on highly valued project are called the regular bidders.
It is important to note that using this test to narrow the set of potential colluders is just
one possible way. For instance, Conley and Decarolis (2011) exploit some special fea-
tures in Italian procurement data to identify the bidding rings.

6 To account for potential numerical errors we run each procedures 1000 times and
report the fraction of correct decisions.

7 We thank a referee for pointing this connection.
8 Type 1 represents large/regular bidders who bid simultaneously (on a pairwise ba-

sis) more often than others and are the candidates for collusion, type 2 bidders are the
regular but non-colluding bidders and type 0 are the small/fringe bidders, all of which
are explained in detail in Section (5).
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the surplus.9 We assume that the other bidders are unaware of the
existence of the bidding ring. Hence, everything else is the same as
in Model A except now only type 1 bidder with cost c1i solves

max
b̃1i

πi1 ¼ b̃1i−ci1
! "

Pr b̃i1b min
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# $
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# $
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! "

1−F0 s−1
0 b̃1i

! "h i! "n0 1−F2 s−1
2 b̃1i

! "h i! "n2
:

The corresponding first-order condition for type 1 bidder becomes
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which together with the first-order conditions in (1) determine a new
system of differential equations, and together with the same boundary
conditions, characterize unique bidding strategies.

2.3. Nonparametric identification

The model primitives are {Fk(⋅|X,N)} for k=0,1,2, which are type
specific conditional cost distributions given the auction specific char-
acteristics X and the set of bidders N (see Assumption (1) below) . The
data provide information on the characteristics of the project that is
being procured, the number of bidders in each auction and their
bids. Using the previous notation, the set of observables W are

W :¼ Xℓ;n0ℓ;n1ℓ;n2ℓ; b0if gn0ℓ
i¼1; b1if gn1ℓi¼1; b2if gn2ℓi¼1

) *
;ℓ ¼ 1;2;…L:

where bki is the bid of type k∈{0,1,2} bidder i∈nkℓ in the auction ℓ.
We make the following assumptions:

Assumption 1. (A1)

1. An auction ℓ has nl∈ n !;nf g risk-neutral bidders with n≥2:
2. The (d+3)-dimensional vector Xℓ; nkℓ; k ¼ 0;1;2ð Þð Þ∼ iid Qm(⋅,⋅)

with density qm(⋅,⋅) for all ℓ ¼ 1;2;…L.10

3. For eachℓ and each k∈{0,1,2} the variablesCkiℓ; i∈nkℓ∼ iid Fk(⋅|⋅,⋅)
with density fk(⋅|⋅,⋅) conditional on Xℓ;Nℓð Þ.

4. The type k bid Bk∼ iid Gk(⋅|⋅) with density gk(⋅|⋅) for k=0,1,2.
5. (Exogenous participation): The cost distributions do not depend

on the number of bidders, i.e. Fk(⋅|X,N)=Fk(⋅|X) for all k=0,1,2
and X.

All the assumptions are standard in the literature with exogenous
entry and note that this assumption does not require Xℓ;Nℓð Þ to be
independentwhich is still consistentwith the exogenous entry assump-
tion. Identification follows fromGuerre et al. (2000): (1) Usingnkℓ type
k bids estimateGk ⋅ Xℓ;Nℓj Þð andgk ⋅ Xℓ;Nℓj Þð nonparametrically (Kernel
density estimation method; see Appendix A.1); (2) then using the
first-order condition for optimal bids and the estimates from the first
step we can recover the cost for each bidder as

ĉkiℓ≡ξki bki; Ĝk ⋅ ⋅j Þ; ĝk ⋅ ⋅j Þ;nkℓ; k ¼ 0;1;2ð gð Þ:
n!

ð3Þ

Under competition (Model A), for every ℓ (suppressing the de-
pendence on Xℓ and Nℓ) for all i∈n1ℓ we have

ĉ1i ¼ ξ1i ⋅ð Þ ¼ b1i−
1

n0ℓ
ĝ0ðb1i ⋅j Þ

1−Ĝ0ðb1i ⋅j Þ
þ n1ℓ−1ð Þ ĝ1ðb1i ⋅j Þ

1−Ĝ1ðb1i ⋅j Þ
þ n2ℓ

ĝ 2ðb1i ⋅j Þ
1−Ĝ2ðb1i ⋅j Þ

: ð4Þ

and under collusion (Model B) n1=1 and hence

ĉ1i ¼ ξ1i ⋅ð Þ ¼ b1i−
1

n0ℓ
ĝ 0ðb1i ⋅j Þ

1−Ĝ0ðb1i ⋅j Þ
þ n2ℓ

ĝ 2ðb1i ⋅j Þ
1−Ĝ2ðb1i ⋅j Þ

; ð5Þ

where we abuse the notation and use b1i to mean the lowest bid
amongst type 1 bidders because under collusion the remaining bids
are just cover bids and hence arbitrary. Henceforth, in estimating and
testing Model B, we shall always only use the lowest bid.11

3. Detecting collusion

In this section we present our formal testing procedure to discrimi-
nate between twomodels, that is a model of competition from a model
in which a subgroup of bidders collude. These tests do not require the
researcher to have any previous knowledge about the existence of
rings in that data.

3.1. Collusion as stochastic dominance

As mentioned before, we pose the problem of “collusion” as a prob-
lem of testing for stochastic dominance, for which we use the rank test.
Then, for each model (competition and collusion) we can derive the
underlying cost associated with each bid for each bidder, therefore we
have two sets of random variables

MA :¼ Xℓ;n1ℓ; ĉA1i
n on1ℓ

i¼1

n o
;ℓ ¼ 1;2;…L;

MB :¼ Xℓ;n1ℓ; ĉB1
n on o

;ℓ ¼ 1;2;…L;

where ĉ j1i and ĉ j1 are the recovered type 1 cost from (4) and (5), respec-
tively. A benefit of estimating a structural model is the possibility that
we could not only have transparent identification from which we
could also infer the exact channel that links the data to the structural el-
ements of the model but also provide conditions on the data that are
necessary to rationalize the model. Choosing between two models
would then be the same as testing which of the two conditions hold
in the data. Although very intuitive, in first-price auction, the only test-
able conditions (Theorem 1, (Guerre et al., 2000)) are: (i) the observed
bids are iid conditional on Xℓ;Nℓð Þ; and (ii) given Nℓ the distribution
G(⋅|⋅,⋅) of observed bids can be rationalized by F(⋅|⋅) only if ξ(⋅), the in-
verse bidding strategy, in (3) is strictly increasing. These restrictions,
however, are weak and are insufficient for model selection. Since the
only difference between the two models is the recovered type 1 cost,
it is natural to see that the criteria to select appropriate model should
rely solely on these two sets of costs. Under our assumption of exoge-
nous entry and the assumptions (A1), from (4) and (5) it follows that
for the same bid b the implied cost c1A(b)≥c1B(b). In other words, be-
cause collusion lowers competition, if we observe the same bid under
both competition and collusion, then it must be the case that the cost
under collusion is smaller than under competition. This is consistent
with the fact that under collusion, the effective mark-up, defined as
the difference between the lowest cost among the type 1 bidders and
the bidsmust be higher than under competition.12 A necessary implica-
tion of this is that the recovered cost density underMAwould f.o.s.d. the
cost density under MB.13 To explain the proposed test we simplify the

9 (Marshall and Marx, 2007) show that only in the first-price auction, if the ring can-
not control the bids then the equilibrium entails multiple bids and the model need not
be identified.
10 We abuse the notation to use nkl to represent both the random variable and its
realization.

11 Since for the test we do not have to estimate the cost density, so strictly speaking
we only use the first step of Guerre et al. (2000).
12 This inequality holds only for one of type 1 bidders, the one with lowest bid.
13 It is important to note that this dominance criteria is applicable only to type 1 bid-
ders. Furthermore, we are comparing the distribution for the same bidder type and not
across different types. Thus, even though in an asymmetric auctions, weaker bidders
(type 0) will bid aggressively than stronger bidders (type 1 or 2) (Maskin and Riley,
2000a), the testing criteria is not picking that aggressive bidding behavior. In fact the
procedure aims to pick the weak bidding (hence high mark-up) within type 1.
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notation and say that the random variable c1A,c1B are the (recovered)
costs under MA and MB, respectively, with F1A(⋅) and F1B(⋅) as corre-
sponding distributions. Therefore, as a necessary condition for collusion
we wish to test the hypothesis that F1A=F1B (i.e. competition) against
the alternative that F1A first order stochastically dominates F1B (i.e.
collusion).

3.1.1. Rank based test
To test the dominance, we use rank sum test that relies on “U” sta-

tistics. To define the relative ranking of the random variables, let cA ¼
cA11; c

A
12;…; cA1nℓ

1

n o
and cB={c1B} for every auction ℓ. We begin with a

combined sample in ascending order. Then we define Rℓ
i ¼ 1 if the

ith observation of the combined and ordered sample is from MA and
zero otherwise. Then the test statistic is

R ¼ 1
L

XL

ℓ¼1

1
nℓ
1 þ 1

! "
Xnℓ1þ1

i¼1

Rℓ
i : ð6Þ

Intuitively, the test uses the entire sample to create a new sample
of zeros and ones, such that it is equal to one when the cost for a bid-
der i∈nℓ

1 (that rationalizes the observed bid) is less under collusion
than under competition, and zero otherwise. Then, averaging across
all L% nℓ

1 þ 1
! "

observations, we are looking at the empirical measure
of the probability of private cost from MA being higher than MB.14 If
Pr(R≤r∗)=α under the null hypothesis, the test will be considered
significant at the level α if R≤r∗ and the hypothesis of identical distri-
butions of c1A and c1B is rejected in favor f.o.s.d., i.e., we conclude that
we have found sufficient evidence in favor of collusion. Since costs
are estimated and not observed, we use the Bootstrap to compute
corrected p-value. We use the numerical procedure from Reiczigel
et al. (2005) to estimate bootstrap p-value.

3.1.2. Kolmogorov–Smirnov (KS) test
We formulate the KS test for whether (under the null hypothesis)

the type 1 cost distribution is the same for MA and MB against the
alternative that the distribution for MA stochastically dominates that
for MB:

H0 : ∀c∈ c !; c½ ' F1A cð Þ ¼ F1B cð Þ;
H1 : ∃c∈ c !; c½ ' F1A cð Þ≤F1B cð Þ:

The test statistic is

KSL ¼ sup
c∈ c ;c½ '

F1A cð Þ−F1B cð Þj j;

which can be shown to be consistent.15 However, because the costs
are estimated, we have to allow for estimation errors while comput-
ing the distribution of the test statistic. So, we bootstrap the density
of the test under the null, to compute the critical point tα∗ at α% signif-
icance level for a modified test statistic16:

K̃SL ¼ sup
c∈ c !;c½ '

1
L

XL

ℓ¼1

1
n1ℓ

Xn1ℓ

i¼1

1 ĉA1i≤c
n o

−1
L

XL

ℓ¼1
1 ĉℓB≤cf g

#####

#####:

Note:Even though by construction ĉB1bĉ
A
1, it does not mean that the

test will always reject the null even when the null is true because this

inequality is true only for L pseudo-costs with no restrictions imposed
on the remaining ∑L

ℓ¼1 n1ℓ−L
! "

pseudo-costs. Moreover the differ-
ence between the two costs ĉA1 and ĉB1 is not a constant but (under
the null) a mean zero random variable. The intuition behind the test
is that under the null, the differences between L observations will
not matter (in terms of test outcome) when we add the remaining
samples because adding these ∑L

ℓ¼1 n1ℓ−L
! "

i.i.d. observations will
only change the scale and both the tests use ranks and rank based
tests do not get affected by change in scale. On the other hand, if
alternative hypothesis is true by using only the minimum bids
(amongst type 1 bidders) the two ECDFs differ. In the Monte Carlo
exercise, we verify if the test can detect collusion when the true
DGP is collusion. But when we implement the tests in the data we
cannot reject the null, refer to Section (5.1) for more. Now, we
present the results from the Monte Carlo exercise.

4. Monte Carlo exercise

In this section, we simulate bids data from asymmetric auctions
when type 1 bidders collude and see if the test can detect collusion.
Since the bidders do collude, we will have confidence in our procedure
if we reject the null of equal distribution in favor of the alternative that
F1A(⋅) f.o.s.d. F1B(⋅). We repeat this test for many widely used paramet-
ric families and for each case run the test 1000 times. This multi-step
exercise, however, is nontrivial because, unlike in symmetric auctions,
there is no closed form solutions for asymmetric auctions- except for
uniform distributions. So, we have to rely on numerical approximation
of the bidding strategies and solving this has been identified as a major
computational problem; see Marshall et al. (1994), Bajari (2001), Gayle
and Richard (2008), Hubbard and Paarsch (2009), Fibich and Gavish
(2011) among others. After exploring various methods and keeping in
mind the stability of the solution, the documentation and ease of use,
we decided to follow the numerical procedure proposed by Hubbard
and Paarsch (2009) by extending it to our environment.17 This method,
in turn, is based on Bajari (2001) and solves the equilibrium bidding
strategies by casting the problem within the MPEC framework pro-
posed by Su and Judd (2012). For simplicity, in this simulation exercise
we consider homogenous auctions with only two types of asymmetric
bidders with four bidders of each type. Then the steps we choose are
as follows: (1) We choose F1 and F2, cost distributions, for type 1 and
type 2 bidders, respectively18; (2) We consider four type 1 and three
type 2 bidders and numerically compute competitive and collusive bid-
ding strategies for each parametrization; (3) We draw four random
costs for type 1 and three random costs for type 2 from respective dis-
tribution; (4) We map costs to bids using the bidding strategy from
Step (2); (5) We repeat this for L=1000 homogenous auctions and at
the end have4,000 type 1 bids, of which only 1,000 corresponds to the
real cost (under Model B) and can be used for our purpose19; (6) We
perform the tests using the simulated bid data from step (5) while
Bootstrapping the asymptotic distribution. To account for possible
numerical errors, we repeat each test, for each parametrization, 1000
times and report the fraction of times the procedure makes correct
decision.20 The results are collected in Table 1.21

14 Observe that this intuition is straightforward once we note that the average of Rℓ
i

across all type 1 bidders in auction ℓ is 1
2nℓ

1
∑2nℓ

1
i¼1 Rℓ

i

$ %
¼ Prℓ cℓ2ibc

ℓ
1i

! "
.

15 Note that the modified test statistic has unbalanced samples of data, because for
collusion we can only use the cost that corresponds to the lowest bid for the type 1
bidders.
16 For bootstrap version of KS test in the context of policy evaluation see Abadie
(2002).

17 We also tried using the standard numerical method and Matlab's in-built ODE
package and also the methods proposed by Fibich and Gavish (2011), but we found
the results were sensitive to the parameters and unstable at the boundary. From our
experience (Hubbard and Paarsch, 2009) performed the best. The codes are written
by Hubbard and is available from his website, for which we are extremely thankful.
18 For each auction both cost distributions are from the same parametric family.
19 We know from our model that the only relevant bid is the smallest bid amongst the
ring members, while the rest can be arbitrary.
20 Since the true data generating process is collusion, we should reject the null in fa-
vor of the alternative that the cost distribution under competition f.o.s.d the cost distri-
bution under collusion.
21 To assess the performance of the tests, we repeated the exercise for different num-
ber of bidders and different number of auctions (with same number of bidders in each
auction). The conclusions from the tests remained the same. Although we do not report
the result here, on account of space, they are available upon request from the authors.
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5. Application to the procurement data

In this section, we describe the California Highway procurement
market where the rights to maintain and construct highways and
roads are granted through sealed low-bid auctions (procurements)
by the California Department of Transportation (Caltrans), between
January 2002 and January 2008.22 The data include important charac-
teristics about the project that was let, the name of the actual bidders
and the set of potential bidders i.e. those who showed interest in the
project, their bids and the identity of the winning bidder.

The process of selling the rights is conducted in three steps. First,
during the advertising period, which lasts between three to ten
weeks depending on the size of the project, the Caltrans Headquarters
Office Engineer announces a project that is going to be let and solicits
bids from bidders/companies. Potential bidders express their interest
by buying the project catalogue. Second, sealed bids are received only
from among the potential bidders. Third, on the letting day, the
received bids are ranked and the project is awarded to the lowest bid-
der, provided that the bidder fulfills certain responsibility criteria
determined by federal and state law. After each letting, the informa-
tion about all bids and their ranking is made public. When a company
submits a bid, it is also required to submit detail information about
subcontractors, their fees and obligation(s) of each subcontractor.
There is a significant overlap of subcontractors across bidders of sim-
ilar sizes and bidders tend to have different operational sizes,
suggesting that bidders are asymmetric. We divide bidders into two
broad types: the main bidders and the fringe bidders, and further
allow the possibility for some of the main bidders to collude. There-
fore, we assume there to be three asymmetric types of bidders: the
fringe bidders (type 0), the main bidders who can collude (type 1)
and finally the main bidders who do not collude (type 2), each with
a different cost distribution.23

Our data consist of 2,152 contracts that were awarded by Caltrans
for a total of $7,645 million but only 1,907 projects had at least two
bidders, with a total of 823 bidders who bid on at least one project.
The contracts in our sample include different kinds of projects. The
broad categories are asphalt repaving, road paving, bridge reconstruc-
tion, among other tasks.24

The first challenge for us is to identify the type of each bidder.
Determining main and fringe bidders is relatively easy; see Jofre-Bonet
and Pesendorfer (2003) but to determine the bidding ring is not straight-
forward. In the remaining of this section by way of explaining the data
we also explain how we determine the bidding ring. To identify the
ring members, we consider large projects that are worth between
$1 million and $20 million because smaller project typically do not
havemargin for profit and hencemight not beworth the risk, andwithin
that subsample we use the reduced methods that includes the test in
Bajari and Ye (2003) to determine bidders who could collude.25 There
are 724 such projects that worth $2,408 million (31% of the total) with

413 bidders out of which 202 win at least once. Further, we consider
only 25 bidderswhohave a nontrivial revenue share (at least 1% revenue
share) in themarket as the bidderswhoparticipate inmany auctions and
might find it profitable to collude. Although we are agnostic about the
exact nature of collusion and how it is sustained, we think having sub-
contractors facilitates collusion as main bidders compete for the same
subcontractors. This effect is more pronounced for the bidders who par-
ticipate in multiple auctions and have some nontrivial market share,
hence the 1% cutoff. Table A.1 summarizes the bidding activity of these
25 (type 1 and type 2) bidders. All of the remaining bidderswill be treat-
ed as type 0 fringe/small bidders.26

The second column in Table A.1 gives the number of bids of each
main bidder and this represents 34% of all bids in the sample. To access
themarket power of each bidder we define “expected win” (see below)
and compare it with the actual number of wins: bidders with consis-
tently higher actual win than the expected win will be termed as
thosewho have highermarket power. To define expectedwin, consider
bidder A, who bids on a total of 50 projects against a varying number of
bidders, nℓ for ℓ ¼ 1;…;50 then his expected win is defined to be
∑50

ℓ¼1 1=nℓ. By comparing columns 3 and 4,we see thatwith the excep-
tion of five bidders, all bidders win more contracts than expected. The
fifth column reports the average bid of each main bidder in the sample
and the sixth column the revenue share computed as the total value of
the bidder's winning bid as a fraction of the total value of winning bids
for all contracts. The last column is the participation rate (i.e. the bid fre-
quency rate), and bidder D is the one that stands out at 44%. Table A.2
provides summary statistics with the following conclusions: (i) on an
average there are slightly more than four bidders; (ii) average winning
bid is $3.33 million, which is less than the average engineers’ estimate
of $3.77 million while the average bid is $3.79 million27; (iii) money
on the table—defined as the difference between the highest and the sec-
ond highest bid—is on average $300,000 suggesting informational
asymmetry among bidders. We also find that distance between the
bidder's office and the site of project has no bearing on the bids,
which could be because of the subcontracting and each bidder having
mobile units. In general higher valued projects (between $1 million
and $20 million) attract relatively smaller bidders, suggesting that it is
the main bidders who can gain the most by colluding and moreover,
larger projects are more profitable, ceteris paribus, see Fig. 1.

In the remaining part of this section we present a method of find-
ing bidders who could be colluding from the 25 bidders listed in Table
A.1. To determine potential colluders, we look at patterns that might
facilitate collusion or support the presence of collusion. First, from the
theoretical literature on collusion we know that members of a bid-
ding ring participate in the same auctions. For the 25 bidders we con-
sider all combinations of subgroups and select those bidders that
have at least 15 simultaneous bids, see Table A.3. The identity of the
bidder is in first column while the number of simultaneous bids is
in the second. Comparing the “expected win” with the actual win
for these pairs, we do see that at least one member of the pair wins
often which is in line with previous findings, see Table A.1. When
we compare Tables A.1 and A.3 we see: (i) firm A exclusively bids
against firm D; (ii) firm E bids remarkably frequently with both firm
A and firm D; (iii) the pairs (D,P) and (A,D) have the highest simul-
taneous bids. All of these suggest that the triplet (A,D,E) and the
pair (D,P) could be considered as potential candidates for collusive

22 The data is available from Caltrans web site: http://www.dot.ca.gov/hq/esc/oe/
awards/bidsum/.
23 The private cost is a reduced form for the real production function. So by allowing
each type to have unique distribution function we intend to capture the differences in
the technology of each bidder.
24 Some of these tasks include: laying asphalt; installing new sidewalks; striping the
highway; constructing, replacing and widening brides; planting, widening, resurfacing
and installing irrigation and waste water system in highways; reconstructing inter-
changes and widen over-crossing; rehabilitating roadways and pavements; repairing
and/or remove existing bridge and; storm damage repair, etc. The exhaustive list of
the projects is available from the Caltrans webpage.
25 The test checks if the observed bids are dependent or independent. Competition
requires the observed bids be uncorrelated and symmetric across bidders, which we
test by means of the Pearson correlation test. We also test for exchangeability (see be-
low for the implementation).

26 Hence, we only look at those bidders who are supposed to be colluding according
to Bajari and Ye (2003) but one can use any other method to choose the bidders and
our method would still work. As mentioned earlier, it is very difficult to sustain collu-
sion in first-price auction so assuming that the bidding ring can implement any bidding
strategy in the auction is enough for us; see Marshall and Marx (2007).
27 Even though the bids are highly correlated (corr. coef. 0.95) with the engineer's es-
timate, the estimates are not binding as 30% of winning bids are above the estimates.
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rings. Now, we use the procedure in Bajari and Ye (2003) to test the
criteria of competition developed by those authors. That is (i) condi-
tional on observables, bids are independently distributed; and (ii) bid
distributions should satisfy exchangeability. This set of conditions is
necessary for competitive bidding but rejection does not imply that bid-
ding is collusive.

First, we test independence using a regression–based (reduced
form) approach and consider the 15 pairs of bidders bidding fre-
quently described above.28 The model used is the following

BIDiℓ

EEℓ
¼ β0 þ β1LDISTiℓ þ β2CAPiℓ þ β3UTILiℓ þ β4LMDISTiℓ þ uiℓ ð7Þ

BIDiℓ

EEℓ
¼ α0 þ α1LDISTiℓ þ α2CAPiℓ þ α3UTILiℓ þ α4LMDISTiℓ þ ςiℓ;

ð8Þ

where UTILiℓ is the utilization rate and LDISTiℓ and LMDISTiℓ refer to
the logarithm of distance and logarithm of the minimum of distance
between bidder i′s registered office and the site ofℓth project, respec-
tively.29 For the bidders listed in Table A.3 we use (7) with bidder–
varying coefficients and for the rest we use (8) and use the pooled
data to estimate both models with a project fixed effect. Let ρij be
the correlation between the residual to bidder i's bid function ûiℓð Þ
and bidder j's bid function ûjℓ

! "
, then we use Pearson's correlation

test for independence and find that for all but one pair, we reject
the null hypothesis of independence at 5% level. To test exchangeabil-
ity we follow Bajari and Ye (2003) and construct two kinds of tests:
exchangeability at the market level by pooling the 15 bidders in one
group and exchangeability on a pairwise basis. The null hypothesis
of the test is: H0:βis=βjs for all i,j,i≠ j and for all s=1,…,4. Let T=
3,347 be the number of observations, m the number of regressors
and r the number of constraint implied by H0 then under the null
hypothesis we have

F ¼ SSRC−SSRUð Þ=r
SSRU= T−mð Þ →dF r; T−mð Þ:

At the market level, the restricted model imposes that the effect
of the four explanatory variables is the same for potential ring mem-
bers and the remaining bidders (i.e. this is the exchangeability

hypothesis). The null hypothesis of exchangeability is rejected when
comparing the group of potential cartel members against the
remaining bidders. Next, we conduct pairwise tests by pooling bid-
ders accordingly and find that the hypothesis of exchangeability is
rejected at conventional levels for 13 out of 15 pairs including the
pair (D,P), (A,D) and (D,E). Based on the previous analysis all pairs
of bidders considered do not pass at least one of the tests for compet-
itive bidding. However, as mentioned above, taking into account the
number of simultaneous bids, bidders D and P bid simultaneously
more than a handful of times. Also, the triplet (A,D,E) is chosen as a
potential cartel candidate. Therefore for the subsequent analysis we
concentrate on two groups of candidates, namely the pair (D,P) and
the triplet (A,D,E) as type 1 bidders. Firms D and P bid, on average,
in projects of smaller size than the remaining thirteen large bidders
(i.e. type 2 bidders in the model) and roughly of the same size as the
small bidders (type 0 bidders). At least one of the bidders participates
in 325 projects winning 113 out of 724 contracts with an average win-
ning bid of $3.67 million. On average the engineers’ estimate in these
projects is above the winning bid. The average number of bidders par-
ticipating in the 325 contracts is 4.65. Generally speaking, the data sug-
gests that this pair tends to participate more often in small size projects
with less competition. The other main bidders (type 2) tend to bid on
larger projects and participate in 312 projects. Type 0 bidders partici-
pate in almost all auctions (666 out of 724). Table A.4 below contains
summary statistics per type when type 1 bidders are the pair (D,P).

The triplet (A,D,E) also tends to bid in smaller size projects relative to
type 2 bidders. At least one of the bidders participate in 329 projectswin-
ning 117 times. The average winning bid for this group is $3.70 million
which is below the average of the engineers’ estimate. There are about
five bidders participating in the projects where the triplet bids, see
Table A.5 for some summary statistics. Hence, when we implement the
test, we consider two cases: one when type 1 bidders are A, D and E
(the triplet) and second, when they are D and P (the pair).

5.1. Implementation of the tests

Having laid out the model and estimation method in the previous
sections, we now move to discuss the results from the tests. To get an
idea of what the estimated costs look like we use quantile–quantile
plot in Fig. 2 to gauge the difference between the two sets of costs,
for both the pair and the triplet. And from the plot we expect both
the tests not to reject the null of equal distribution and hence rule
out collusion.

5.2. Rank based test

Herewe present the result of the rank test. Asmentioned above, this
is a nonparametric statistical hypothesis test for assessing whether the
distributions of two random variables is the same. We first computed
the test for the samples of pseudo-costs obtained from the estimation

28 The main reason for conducting pairwise tests is basically driven by the amount of
data because there are relatively few observations for the triplet (A,D,E) in the sample.
29 We define the rate as Utilit=Backlogit/Capi (if Cap=0, then Util=0 for all t) and as
an explanatory variable because it could be important in explaining bids; see Jofre-
Bonet and Pesendorfer (2003). Approximately 60% of bids in the data are explained
by capacity but it varies a lot across bidders.

Table 1
Fraction of right decisions when there is collusion.

Exponential Exponential Exponential Normal Normal Normal Normal

Type 1 1.5 0.8 0.4 (1.5, 1.5) (1.5, 0.9) (0.9, 1.2) (2.9, 0.3)
Type 2 0.5 0.5 0.5 (3.5, 0.8) (2.5, 0.3) (2.8, 0.4) (2.5, 0.3)
W-MW 1 1 1 1 1 1 1
KS 1 1 1 1 1 1 1

Normal Log norm Log norm Log norm Weibull Weibull Uniform

Type 1 (1.9, 0.3) (1.2, 1.3) (2.0, 0.3) (1.5, 1.0) (3.0, 2.5) (2.5, 1.8) (1.0, 4.0)
Type 2 (2.5, 0.3) (2.9, 0.7) (2.8, 0.2) (2.5, 0.8) (3.0, 4.0) (2.5, 3.0) (1.0, 4.0)
W-MW 1 1 1 1 1 1 1
KS 1 1 1 1 0.97 1 1

The table shows the proportion of tests that rejected the null of equal distribution in favor of f.o.s.d. when there was collusion. Proportion is defined as the number of times the
p-value was less than 0.05 and each test was run 1,000 times, for every parameter. The p-values were estimated using 10,000 Bootstrap replications.
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procedure, i.e. assuming that the asymptotic distribution of the tests is
not affected by the fact that we use pseudo-costs in lieu of true
(unobserved) costs. Since it is possible that the asymptotic distributions
of these tests get affected we also report the bootstrapped version of
each test in Table 2.30 As can be seen, in all cases the null hypothesis
of equal distributions cannot be rejected at conventional levels.

5.3. KS test

We next present the results from the KS two sample test. As before
we first implement this test directly on the two samples of pseudo-costs
recovered nonparametrically and then we computed the bootstrapped
standard error so that we can also report the corresponding p-value,
see Table 2. These results are again supporting the hypothesis that
both distributions are equal; therefore, we conclude that this evidence
is in favor of a model of competition for the Caltrans data set used.

6. Conclusion

In this paper we propose a two step procedure that can be used to
detect possible collusion in sealed bid first-price low-bid auctions
with asymmetric bidders. Themethod is based on structural estimation
and does not require any prior knowledge about collusion but exploits
the difference between the inverse bidding behavior with and without
collusion. Since collusion dwarfs competition, when we use the same
bid to estimate cost with and without collusion, the estimated cost
under collusion should be smaller than that under competition. This

30 All Bootstrapped results are based on 10,000 replications.
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Fig. 2. Quantile–quantile plot of cost.
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Fig. 1. Bidder concentration.

Table 2
Results of the tests.

Pair case Triplet case

Statistic p-value Bootstrap
p-value

Statistic p-value Bootstrap p-value

W-MW 0.503 0.4552 0.481 0.503 0.4434 0.469
KS 0.021 0.9931 0.9985 0.0013 0.995 0.994

32 G. Aryal, M.F. Gabrielli / International Journal of Industrial Organization 31 (2013) 26–35



difference is consistentwith the idea thatmark-up increaseswith collu-
sion, and hence bigger difference from bids to costs. Therefore, checking
if the cost distribution under competition f.o.s.d. the cost distribution
under collusion might be a valid test to detect collusion. Using the test-
ing procedure of Bajari and Ye (2003) we narrow the pool of bidders to
those whose bidding pattern fails to be in line with competitive behav-
ior and independence. For those bidderswemap their bids to latent cost
and then we test the null hypothesis of equal distribution against
first-order stochastic domination. We implement the tests on procure-
ment auction data from California and find no evidence of collusion
even though we implemented the tests only on those who failed the
reduced form test for competition and conclude that there is no evi-
dence of collusion.31

One caveat of our approach is that we only exploit the minimum
bid under collusion. This is because we do not have a theory to inter-
pret the observed “cover bids.” This suggests that there is room to
consider a more general model of collusion. So, just because our
tests reject collusion does not mean that there is no collusion. It just
confirms to the common wisdom that detecting collusion can be
awfully difficult and many major bid rigging takes place over a long
period, sometime even decades. On the flip side, finding collusion
by our method need not be admissible in the court of law as a suffi-
cient proof, and cannot substitute more reliable methods such as
wiretapping; it should, nonetheless, be used to raise the “red flag”
against the bidders.

We hope this research highlights the importance of considering
carefully various alternative environments, such as dynamic bid-
ding, subcontracting and endogenous entry in auction. All of these
are important extensions and can help us understand better how to
use the bid data to detect and then deter welfare reducing collusive
behavior or to use the bid data to help us design a collusion proof
mechanism.

Appendix A

A.1. Estimation

We first discuss some practical issues. The skewness of the bid dis-
tribution is a typical problem encountered with auction data and as in
any kernel estimation, some trimming is usually done to account for
the so-called boundary effect. To reduce the number of variables
lost under trimming, it is a common practice to use a logarithmic
transformation; see Li and Perrigne (2003). We also use this transfor-
mation, even though we do not have to, as the tests can be
implemented on the ECDF and ranks. For notational simplicity we
suppress the dependance of the distributions on (X,N). Later, when
presenting the estimators we include these variables explicitly.
Applying the log transformation to (4) gives

cA1 ¼ ξ1 d1;nð Þ ¼ 10d1− 10d1

n0
g0d d1ð Þ

1−G0d d1ð Þ þ n1−1ð Þ g1d d1ð Þ
1−G1d d1ð Þ þ n2

g2d d1ð Þ
1−G2d d1ð Þ

; ð9Þ

where d1= log(b1) and Gkd(⋅),gkd(⋅) are the distribution and density
of log(bk) for k=0,1,2. Similarly log transformation of (5) forMB gives

cB1 ¼ ξ1 d1ð Þ ¼ 10d1− 10d1

n0
g0d d1ð Þ

1−G0d d1ð Þ þ n2
g2d d1ð Þ

1−G2d d1ð Þ

: ð10Þ

Let Sdk d x;nj Þ ¼ Pr D≥d x;nj Þðð . Then, the hazard rate functions
involved in the expressions for private costs given by the system of
Eqs. in (9) and in (10) can be written as

gkd ðd x;nj Þ
1−Gkd ðd x;nj Þ ¼

gkd ðd x;nj Þ
Skd ðd x;nj Þ ¼

gkd d; x;nð Þ
Skd d; x;nð Þ ;

for k=0,1,2. Let Tk denote the total number of observations for bid-
ders of type k. We consider L auctions in which different types of bid-
ders participate. Thus bidder i, i=1,…,nk of type k participates in
auction ℓ ¼ 1;…; L. Relabeling bidders such that j ¼ i;ℓð Þ, i.e. the ith
bidder in auction ℓ, the sample consists of observation (dj,xj,nj).32,33

Thus, the estimators involved are

ĝ kd d; x;nð Þ ¼ 1
Tkh

pþ1
g

XTk

j¼1

Kg
d−Dj

hg
;
x−Xj

hg
;
n−nj

hgn

 !
;

Ŝkd d; x;nð Þ ¼ 1
Tkh

p
Gx

XTk

j¼1

1I dj≥d
! "

KG
x−Xj

hG
;
n−nj

hGn

# $
;

where Kg(⋅) and KG(⋅) are the kernels, hG, and hg are the bandwidths
for the continuous variables and hGn and hgn are bandwidths for dis-
crete ones. Since, the choice bandwidths are critical to determine
the rate of convergence, now we discuss their choice in detail.

A.1.1. Choices of kernels and bandwidths
Since the exact choice of the kernels is not crucial for inference, we

use product of univariate kernels to represent the multivariate kernel,
i.e.

Km
a−Ak

hg
;
b−Bk

hg
;
n−Nk

hgn

 !
¼ Ka

a−Ak

hg

 !
Kb

b−Bk

hg

 !
Kn

n−Nk

hgn

 !
:

Here, Km(⋅,⋅,⋅) is the multivariate kernel, Ka(⋅) and Kb(⋅) denote the
univariate kernels corresponding to the continuous variables A and B,
respectively, and Kn(⋅) is the kernel for the discrete variables such that
Kn :¼ Kn0Kn1Kn2 . The kernels for continuous variables should be sym-
metric with bounded supports (Guerre et al., 2000); we decided to
use the triweight kernel function K uð Þ ¼ 35=32 1−u2% &31I uj j≤1ð Þ.

For the discrete variables, we use Gaussian Kernel because, as
there is less variation in the number of bidders it is desirable to
give less weight to observations farther from the point at which
estimation takes place and is best achieved with a kernel with un-
bounded support.34 We assume the smoothness parameter R for
the cost distribution is 1. To ensure the uniform consistency at the
optimal rates the bandwidths for the continuous variables are cho-
sen to be hg ¼ 1:06% 2:978% σ̂ % Tð Þ−1= 2Rþ4ð Þ, hG ¼ 1:06% 2:978%
σ̂ % Tð Þ−1= 2Rþ3ð Þ. The constant term comes from the so-called rule
of thumb and the factor 2.978 is the one corresponding to the use
of triweight kernels instead of Gaussian kernels; see Hardle
(1991). In total, there are 27 bandwidths for both continuous and
discrete variables and are reported in Tables A.6 and A.7.

A.2. Unobserved heterogeneity

In this sectionwe showhowthe tests canbe implementedwhen there
is unobserved heterogeneity. In particular we consider the unobserved
heterogeneity of multiplicative form as in Krasnokutskaya (2011),
where the cost of a bidder i in an auction ℓ is given by c̃iℓ ¼ yℓ % ciℓ.

31 We believe that our method can also be adapted to symmetric multi-unit (share)
auction, using (Hortaçsu, 2002) to identify the marginal value, making the procedure
important to analyze markets such as municipal bonds and Treasury bills auctions.

32 To keep the notation simple, we just include nj in the formulas above. However, for
the computation of the estimator we have used , n1k and n2k separately.
33 Recall that X characterizes auction heterogeneity, thus it only varies across auc-
tions. In terms of the notation used this means that Xj ¼ Xℓ . In other words, for each
auction ℓ the value x is the same for all bidders participating in that auction. A similar
argument applies to the number of bidders, Nℓ .
34 There are no theoretical restrictions to the kernels applied to discrete variables.
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(Krasnokutskaya, 2011) shows that (suppressing the index for auction
and asymmetry in bidders):

1. The bids with auction heterogeneity y is just y times the bids with-
out auction heterogeneity35;

2. Under the assumption of independence between yℓ and ciℓ the
model structure [FY(⋅),FC(⋅)] can be nonparametrically identified.

So, in every auction, yℓ is common and affects all bid in the sameway
(bids are multiplied by y), the variation in bids must be through the indi-
vidual cost, which is independent ofyℓ. Therefore,whether y=1or y≠1,
under collusion (MB) the pseudo-cost recovered must be smaller than
under competition (MA) for type 1 bidders. So, we could estimate the
cost distribution using the procedure in Section 4 of Krasnokutskaya
(2011) and then implement all the tests.

A.3. Tables

Table A.1
Revenue shares and participation of main firms.

Firm Number
of

Number
of

Exp.
Number

Average
bid

Revenue Participation

ID bids wins of wins (Mill. $) share rate

A 50 9 10.34 4.83 0.020 0.07
B 34 13 10.51 3.21 0.012 0.05
C 43 9 10.46 5.32 0.013 0.06
D 319 97 87.32 3.61 0.145 0.44
E 46 11 10.15 4.49 0.015 0.06
F 42 15 10.70 3.63 0.016 0.06
G 25 12 5.84 4.09 0.027 0.03
H 26 6 5.16 5.03 0.011 0.04
I 21 7 4.27 4.54 0.012 0.03
J 20 9 4.69 3.84 0.015 0.03
K 34 4 6.90 8.44 0.019 0.05
L 35 16 7.95 4.32 0.020 0.05
M 29 13 6.94 3.69 0.016 0.04
N 9 3 1.55 6.33 0.012 0.01
O 31 5 6.82 6.37 0.011 0.04
P 50 16 12.95 4.03 0.027 0.07
Q 33 9 6.31 3.35 0.017 0.05
R 28 10 8.10 3.48 0.012 0.04
S 47 12 8.82 4.37 0.021 0.06
T 25 13 5.99 3.75 0.021 0.03
U 68 16 15.22 4.77 0.026 0.09
V 26 7 4.78 5.75 0.025 0.04
W 41 11 7.18 2.92 0.019 0.06
X 41 7 10.27 4.50 0.021 0.06
Y 11 4 1.89 6.04 0.012 0.02
Total 1148 351 282 0.57

Only bidders with revenue shares ≥1% are reported.

Table A.2
Summary statistics.

No. observations Mean SD

No. bidders 724 4.62 2.37
Winning bid 724 3.33 3.11
Money on the table 724 0.30 0.46
Engineers’ estimate 724 3.77 3.49
All bids 3347 3.79 3.51
Backlog 3347 4.30 9.76
Distance (miles) 3347 123.98 162.93
Capacity (across bidders) 413 2.30 5.69
Utilization rate 3347 0.20 0.32

All dollar figures are expressed in million. Utilization rate is the ratio of backlog to
capacity.

Table A.3
Simultaneous bids.

Firm Simultaneous Expected First bidder Second bidder

pair bids wins wins wins

(A,D) 44 9.03 9 5
(A,E) 20 4.05 3 6
(B,D) 29 9.51 12 10
(C,D) 17 5.65 5 9
(D,E) 41 8.67 8 9
(D,F) 26 7.46 5 9
(D,H) 19 3.92 7 3
(D,I) 18 3.68 1 7
(D,O) 25 5.16 7 5
(D,P) 44 11.08 13 14
(D,R) 27 7.96 10 10
(D,V) 22 4.20 5 6
(D,W) 19 2.97 2 3
(M,X) 22 4.91 11 2
(W,X) 15 2.81 5 2

Table A.4
Summary statistics per type.

Type 0 Type 1=(D,P) Type 2

Number of Mean Number of Mean Number of Mean

observations (S.E) observations (S.E) observations (S.E)

No.
bidders

666 4.81 325 4.65 312 5.17
(2.36) (2.46) (2.77)

Winning
bid

488 3.07 113 3.67 123 4.01
(2.93) (3.08) (3.65)

Money on
the
table

488 0.28 113 0.29 123 0.36
(0.46) (0.34) (0.53)

Engineers’
estimate

666 3.64 325 3.74 312 4.32
(3.38) (3.27) (3.72)

All bids 2520 3.69 369 3.66 458 4.41
(3.49) (3.18) (3.81)

Backlog 2520 1.37 369 24.60 458 4.05
(3.40) (16.44) (6.00)

Distance
(miles)

2520 116.98 369 194.29 458 105.85
(168.91) (98.51) (157.12)

Capacity
(across
bidders)

398 1.67 2 39.12 13 15.73
(4.09) (32.07) (6.09)

Utilization
rate

2520 0.16 369 0.42 458 0.25
(0.32) (0.26) (0.32)

All dollar figures are expressed in million.

Table A.5
Summary statistics per type.

Type 0 Type 1=(A,D,E) Type 2

Number of Mean Number of Mean Number of Mean

observations SD observations SD observations SD

No.
bidders

666 4.81 329 4.66 306 5.08
2.36 2.45 2.76

Winning
bid

488 3.07 117 3.70 119 3.99
2.93 3.12 3.63

Money on
the table

488 0.28 117 0.30 119 0.36
0.46 0.34 0.54

Engineers’
estimate

666 3.64 329 3.76 306 4.35
3.38 3.34 3.77

All bids 2520 3.69 415 3.85 412 4.30
3.49 3.34 3.75

Backlog 2520 1.37 415 22.75 412 3.62
3.40 16.64 5.39

Distance
(miles)

2520 116.98 415 146.87 412 143.74
168.91 100.69 172.66

Capacity
(across
bidders)

398 1.67 3 31.72 12 15.63
4.09 26.84 5.72

Utilization
rate

2520 0.16 415 0.42 412 0.23
0.32 0.28 0.30

All dollar figures are expressed in million.

35 Because ‘no–unobserved heterogeneity’ is a special case of unobserved heteroge-
neity when yℓ ¼ 1;∀ℓ ¼ 1; s; L, if sik(⋅) is the bidding strategy when y=1 and βik(⋅)
when y≠1 then βik ˜cikð Þ ¼ βik y$ cikð Þ ¼ y$ sik cikð Þ:
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Table A.6
Bandwidths used in the triplet case.

First step

Continuous
variables

Discrete variables

hgd0 0.276 hg0n0 0.624 hG0n0 0.481
hgx0 0.272 hg0n1 0.417 hG0n1 0.321
hGx0 0.209 hg0n2 0.624 hG0n2 0.481
hgd1 0.372 hg1n0 0.826 hG1n0 0.676
hgx1 0.382 hg1n1 0.735 hG1n1 0.601
hGx1 0.313 hg1n2 0.826 hG1n2 0.676
hgd2 0.400 hg2n0 0.894 hG2n0 0.732
hgx2 0.394 hg2n1 0.734 hG2n1 0.600
hGx2 0.323 hg2n2 0.894 hG2n2 0.732

Table A.7
Bandwidths used in the pair case.

First step

Continuous
variables

Discrete variables

hgd0 0.276 hg0n0 0.624 hG0n0 0.481
hgx0 0.272 hg0n1 0.417 hG0n1 0.321
hGx0 0.209 hg0n2 0.624 hG0n2 0.481
hgd1 0.369 hg1n0 0.963 hG1n0 0.791
hgx1 0.379 hg1n1 0.441 hG1n1 0.362
hGx1 0.311 hg1n2 0.963 hG1n2 0.791
hgd2 0.396 hg2n0 1.049 hG2n0 0.856
hgx2 0.392 hg2n1 0.539 hG2n1 0.439
hGx2 0.319 hg2n2 1.049 hG2n2 0.856
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