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ABSTRACT 

Six existing models and one proposed approach for estimating global solar radiation were tested in Buenos Aires using 
commonly measured meteorological data as temperature and sunshine hours covering the years 2010-2013. Statistical 
predictors as mean bias error, root mean square, mean percentage error, slope and regression coefficients were used as 
validation criteria. The variability explained (R

2
), slope and MPE indicated that the higher precision could be excepted 

when sunshine hours are used as predictor. The new proposed approach explained almost 99% of the RG variability with 
deviation of less than ± 0.1 MJm

-2
day

-1
 and with the MPE smallest value below 1 %. The well known Ångström-Prescott 

methods, first and third order, was also found to perform for the measured data with high accuracy (R
2
=0.97-0.99) but 

with slightly higher MBE values (0.17-0.18 MJm
-2

day
-1

). The results pointed out that the third order Ångström type 
correlation did not improve the estimation accuracy of solar radiation given the highest range of deviation and mean 
percentage error obtained.  Where the sunshine hours were not available, the formulae including temperature data might 
be considered as an alternative although the methods displayed larger deviation and tended to overestimate the solar 
radiation behavior.  
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1. INTRODUCTION 

Solar radiation, the primary natural energy source, has an irreplaceable role to play in the energy balance of the Earth-
Atmosphere system. In fact, due to global radiation arriving on the ground driving physical, chemical and biological 
processes, data on the Earth’s surface are required in many research and application fields such as hydrological and 
soil-vegetation-atmosphere transfer processes, agricultural and meteorological studies, ecology, architecture and 
environment, among others [1,2].  

Moreover, the availability of these data, or their estimation based on specific sites or mechanistic prediction models, 
improves the usefulness of the climate data sets [3]. The study of surface solar radiation can also be an instrument of 
great relevance to detect changes in the atmosphere composition. Authors like Stanhill and Cohen [4], Wild et al. [5]  or 
Mishchenko et al. [6], among others, have shown in their works that solar radiation studies revealed global dimming and 
brightening trends on decadal scales, affecting climate change processes. However there is a dearth of complete 
recorded data throughout the years in most areas of the world.  Insufficient or restricted data were reported by several 
authors in many countries [7,8]. In spite of its significance, current radiation measurements are sparsely instrumented 
over the world compared to other meteorological variables.  

In order to estimate the surface solar radiation at any location with the best possible accuracy, several techniques, with 
different degree of complexity, have been explored during past decades. Analysis with interpolation methods [9] , 
multivariate stochastic processes [10, 11], satellite based methods [12], estimation from substituted data from nearby 
stations [13] as well as empirical models have been considered for estimating solar radiation data. Notwithstanding, 
remote sensing data are still scarce in some areas, also only being available for limited periods of time. In addition, the 
low sampling frequency and coarse spatial resolution of these methods does not make them suitable for site specific 
application together with a limited precision [12,14]. Stochastically generated data are useful for exploring possible model 
scenarios long-term simulations, but the method is still not capable of generating data that would match the actual 
weather at particular time of interest [8],  although multi-site generation of weather data methods are being now tested.  
The solar radiation data obtained using data from nearby stations must consider the threshold distance so as far to be 
results with acceptable precision, considering season and topography factors. 

On the other hand, empirical methods involving a set of equations to estimate solar radiation have the advantage that the 
operational parameters required for estimation are meteorological variables observed and available within the site, 
allowing its widespread application. The parameters, frequently used as predictors of atmospheric parameters, usually 
are sunshine duration, cloud cover, ambient temperature, relative humidity, and precipitation data.  This kind of model is 
also called meteorological model and, depending on the relationship between global solar radiation and the atmospheric 
predictor, the models can be roughly divide into three categories; i.e. cloud-based models [15, 16], sunshine-based 
models [17, 18] and temperature based models [19, 20, 21]. 

Quite a number of studies were carried out with empirical relationships and the results obtained showed that the highest 
accuracy is generally to be expected when sunshine based method is used, instead of those based on temperature or 
clouds parameters. They also noted that solar radiation estimations could be improved when the models use more 
parameters in their equations and are locally calibrated, since the global solar radiation is strongly dependent on the local 
meteorological variables. However, this hypothesis must be in-situ tested and local analyses appear to be essential.  

Nonetheless, not much work has been done with regards to solar radiation in Buenos Aires, even though some efforts 
have been made for different parts of the country; i.e., La Pampa [22], Córdoba [23]. In fact, to the best of our knowledge, 
there is no published record of in situ measurements over Buenos Aires. In order to fill this gap, the aim of this study was 
to evaluate different empirical models for the estimation of the monthly average daily solar radiation on a horizontal 
surface. The tested methods were chosen depending on the availability of the datasets required by the set of equations 
under evaluation.  The results thus derived from the analysis of the meteorological data from 2010-2013 of Buenos Aires, 
were compared. Finally, and in light of the results, an exponential parameterization is proposed for predicting the monthly 
solar radiation. The paper is organized as follows: datasets and methodology, including a brief description of the current 
methods used, are in the next section. Section 3, deals with the results derived from different approaches. Conclusions 
are given in Section 4. 

2. DATA AND METHODS  

 2.1 Data 

Buenos Aires is located on the western shore of the Río de la Plata, on the continent's southeastern coast. The site has a 
warm humid temperate climate with hot summers and no dry season. The area within 25 kilometers of the place of 
measurements is covered by oceans and seas (43%), croplands (24%), built-up areas (19%), floodplains (9%), and 
grasslands (4%). Over the course of a year, the temperature can range from 7° C to 28 ° C, although it is not uncommon 
finding days with temperatures below 3 ° C or above 35 ° C in the recent decade. The warm season extends from late 
November to middle March with daily high temperature above 27° C in average while the cold season goes from May to 
August with an average daily maximum temperature below 16° C. The relative humidity typically ranges from 40% 
to 90%. Over the entire year, the typical forms of precipitation are basically thunderstorms (40%) and moderate rain.  

The meteorological data used in this study were collected from two data source far between less than 10 km.  The 
Servicio Meteorológico Nacional (SMN) provided the sunshine hours data while solar radiation (±5%), atmospheric 
pressure (±0.2 hPa), temperature (±0.2 °C), the direction and speed of winds (±0.5 m/s) and precipitation (±0,5%) have 

http://en.wikipedia.org/wiki/R%C3%ADo_de_la_Plata
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been regularly measured by the automatic weather station operated by the “Equipo Interdisciplinario para el Estudio de 
Procesos Atmósféricos en el Cambio Global (PEPACG)”, Pontificia Universidad Católica Argentina in the vicinity of the 
Buenos Aires harbour, near its southern end at 50 m amsl  (-34,61 S, -58,36 W), with a sampling frequency of 0.003 Hz, 
from midnight to midnight (24/24 h) recorder at 5-min intervals.  Based on the measured data, an integrated dataset 
including both data sources was established with 302400 available observations belonging to the period July, 2010-
January, 2013. Hourly solar radiation measurements were integrated to daily values and then averaged monthly. The 
quality control of the values was applied considering physical and statistical criteria; i.e., the higher boundary of 
measured solar radiation were imposed considering that the global solar radiation measured on a horizontal surface at 
the Earth´s surface has to be lower than the extraterrestrial solar radiation incident and cannot be high in rainy days [24].  
As Geiger et al. [25].  proposed, solar radiation values (RG) equal or higher than 3% of the extraterrestrial value (Rext) 
incident on horizontal surface, in case of hourly and daily cumulative data were considered as lower limit of the measured 
data set. Data that failed this quality control were excluded from the final database. Table 1 shows the number of missing 
data and the corresponding unit of each item. Trnka et al. [26] proposed in their work an interesting way to show the 
relationship between the measured data and the quality criteria by plotting the distribution of the observed data, grouped 
at predefined intervals, plus the incident global solar radiation (RG) vs extraterrestrial radiation (Rext) ratio distribution.  
Similarly, the distribution of our observed RG values, plotted at 2 MJm

-2
day

-1
 predefined intervals is shown in Figure 1. 

The six intervals show that most of the data is in the 15-30 MJm
-2

day
-1

 range. Daily total extraterrestrial radiation, also 
known as Angot radiation was calculated as a function of latitude, day of year, solar angle and solar constant (1367W m

-

2
) according to Allen et al. [27].  

 

Variable Missing data Unit 

Measured daily global solar radiation 22 Mjm
-2

 

Sunshine hours 0 Hour 

Measured daily (maximum/ minimum) temperature 0 °C 

Measured daily precipitation 0 mm 

Measured daily pressure 0 hPa 

Wind speed 0 m/s 

Table 1. Meteorological measured data from 2010-2013 at Buenos Aires  provided by SMN plus own source 
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Figure 1. Distribution of observed monthly RG within predefined intervals 

 

 

2.2   Methods 

The underlying approach in most existing global radiation estimation methods is to express solar radiation reaching the 
Earth surface as function of extraterrestrial radiation, each empirical approach being distinctive through the 
meteorological parameters involved. 
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Brief descriptions of the models employed in this analysis are as follows: 

a) The Ångström model (AP).  

Ångström (1924) developed a simple model for estimating solar radiation reaching the Earth based on the linear 
relationship between radiation and sunshine hours. The first version of this formula was available only for sites with 
radiation data. Prescott in 1940 [18] proposed an improved version where the solar radiation is based on a fraction of 
extraterrestrial radiation derived from sunshine hours and the day length: 

    

           

where n is 
the sunshine duration (hours), N the maximum possible sunshine duration (hours) and the coefficients "a" and "b" are 
site-independent. The physical significance of the regression coefficients is that “a” represents the case of overall 
atmospheric transmission for an overcast sky condition, while “b” is the rate of increase of RG/Rext with n/N. The sum 
(a+b) represents the overall transmission under clear sky condition. Equation 1 is also known as first order Ångström 
correlation (AP). Angström suggested values of 0.2 and 0.5 for empirical coefficients “a” and “b” respectively. Other 
authors have calibrated this expression for different places and found they vary significantly as Doorenbos and Pruitt  [28] 
showed.  

The following second (AP2) and third (AP3) order expressions are as follows: 
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where a, b, c and d are the regression coefficients. 

b) The Hargreaves & Samani model (HS) 

Another relatively simple method of estimating solar radiation was proposed by Hargreaves and Samani [29]  based on a 
linear regression between the clearness index and the square root of the temperature difference:  

 5.0TbaRR extG 
 

(4) 

where ΔT is the air thermal amplitude (daily or monthly), with “a” and “b”, the regression constants. The authors proposed 
equation (4) to estimate RG on a monthly basis; however it also works well on a daily basis [30].  

c) Allen model (A) 

The so called Allen model is a special type of Hargreaves model. If the coefficient “a” becomes equal to cero, then the 
relationship of Hargreaves turns to a simply equation based on air temperature difference values. Consider 

 5.0TbRR extG 
 

           (5) 

 

 

 

with b empirical coefficient. 

 

d) García model (G) 

García in 1994  introduced a slight modification in the AP model, considering the maximum number of sunshine hours or 
day length (N). If a and b are the empirical coefficients:  

)(
N

T
baRR extG




 

 

(6) 

e) Annandale model (AN) 

The modified Hargreaves-Samani model developed by Annandale et al. [31] includes a correction for altitude (Z), as 
follows: 

  2/15 )107.21( TZaRR extG  

 

(7) 

where “a” is an empirical coefficient. 

f)  Exponential new Parametrization (NP) 
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As an alternative to conventional approaches, the following exponential equation based on the sunshine hours and the 
maximum possible sunshine duration hours, was successfully applied to solar radiation estimation: 









 )caeRR b

nN

extG

 

 

(8) 

where “a”, “b” and “c” are the regression coefficients, n is the sunshine duration (hours) and N the maximum possible 
sunshine duration (hours). 

Using the preceding relationship (1) – (7), solar radiation is supposed to be calculated for any point in the earth’s outer 
atmosphere for each day of the year as a function of latitude and solar declination. However, gases and clouds introduce 
changes to both magnitude and spectral composition of solar radiation. 

 

2.3 Performance indicators 

Agreement between predicted and measured values was tested using the Nash Sutcliffe coefficient (NSE) also known as 
coefficient of determination (R

2
) of the regression line between predicted and measured values, providing information 

about the variability explained by the tested method, slope of regression line including regression function forced through 
origin, the mean bias error (MBE), root mean square error (RSME) and the mean percentage error (MPE). A model is 
more efficient if R

2
 is closer to 1. While the MBE provides information on long-term performance of the models under 

consideration and can be understood as an indicator of systematic error, the test on RSME gives an idea of the 
magnitude of the non-systematic error and provides information on the short-term performance of the models as it allows 
a term by term comparison of the actual deviation between the predicted value and the observed one. A positive MBE 
value usually shows a model overestimation while a negative value a underestimation. The MPE is an overall measure of 
forecast bias, computed from the actual differences between a series of forecasts and actual dataset observed. As 
Almorox showed, [32] the disadvantage associated with MPE and MBE is that values with different signs may cancel 
each other. However, low values of both parameters are desirable, even when the over or the underestimation could be 
due to few values in the dataset.  

The MBE, RMSE (in MJm
-2

day
-1

), NSE, and MPE (%) performance indicators, calculated for each month of each year as 
well as for the whole period considering the whole series of RG expressed in MJm

-2
day

-1
, can be calculated as follows: 
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where obsQ  is the measured value, preQ , the estimated value, Q  is the average value of the observed radiation, and 

Nobs the number of data. 

 

3. RESULTS AND DISCUSSION 

By means of different existing empirical approaches we estimated the monthly average daily global solar radiation in 
Buenos Aires during July, 2010-January, 2013. Figure 2 shows the comparison between monthly mean of predicted and 
the observed global radiation for all the methods. A simple inspection of the figure allows noting that the estimated values 
derived for RG exhibit a good variation trend along with the observed values; thus the seven tested approaches were able 
to reproduce RG data and in general fitted well both the patterns and values of the observed data.  
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Using the technique of least square regression, regression equations were developed based on Eqs. (1) - (8). The fitted 
coefficients are shown in Table 2. The performance of the eight models (Eqs. (1) - (8)) is compared in Table 3. Results 
displayed that sunshine hour based models explained the highest portion of the solar global radiation variance out of all 
the tested approaches. Of the four models which use sunshine hours (Eqs. ((1-3),(8)), the exponential proposed method 
seems to explain the highest fraction (99%) of RG variability, with a regression slope constrained through the origin, 
closest to unity. Even though the Angström-Prescott models, for first and third order, displayed very similar slope values, 
they are not accurate. The statistical predictors for these methods showed that on average 98% of the values were 
estimated with a deviation of less than ± 1 MJm

-2
day

-1
 and their MPE's are among the lowest, under 1% and close 

together. 

 A special mention must be made regarding the AP model, second order, which also showed a regression coefficient and 
slope close to one, but with a deviation range that at least trebles the previous ones and the highest MPE. It has a 
remarkable tendency to underestimate solar radiation values throughout the entire period (Figure 2).  

Models using daily extreme temperature or mean temperature values had similar regression slope line values, but the 
variability explained was much lower in comparison with Eqs. (1-3) and (8). Of the four temperature based approaches, 
the Allen model displayed the best performance, and explained, on average, 93% of the monthly RG variability, although 
the values were estimated with a root mean square of the order of ±3.8 MJm

-2
day

-1
. It must be noted from Figure 2 that 

Allen approach tended to overestimate the radiation values as also did the Annandale method. In fact, the performance 
of both models was almost identical since the altitude correction factor applied by Annandale, can be considered 
irrelevant for Buenos Aires.  

Similar characteristics can be found when the performance of H&S and García approaches are discussed. Both of them 
displayed similar MPE values, with 93% of the data estimated with a deviation range within 0.4-0.8 MJm

-2
day

-1
. As Li et 

al. [33] pointed out, the main common characteristic shared between Eqs. (4)–(7) is that they are directly and explicitly 
correlated with solar radiation and air temperature but implicitly include the influence of relative humidity by means of ΔT, 
which is linearly related to relative humidity, a parameter with high variability, difficult to measure accurately and hence a 
high potential error source. Despite the fact that according to analyses as Barry et al. and more recently Trnka et al. 
[7,26], the temperature range is considered to be a poor predictor of RG, it was found that Eqs. (3) - (7) performed fairly 
well for Buenos Aires. The difference in monthly average daily solar radiation for all approaches presented in Figure 3 
can help to illustrate the temporal distribution of the mean monthly error over the entire analyzed period, supporting 
previous results and in addition, the model´s systematic behaviour. The lower values of these differences can be attribute 
to AP (first and third order) and the exponential proposed estimations, with differences ranging in ± 6 MJm

-2
day

-1 
, while 

temperature based models presented a poorer agreement between observed and predicted solar radiation values, with 
differences reaching ±14 MJm

-2
day

-1
.  
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Figure 2. Comparison between measured and predicted values of solar global radiation, monthly mean for all 
tested empirical model and the new proposed. 

 

 

Figure 3 can also contribute to infer some preliminary seasonal characteristic of the model´s systematic behaviour. For 
those techniques based solely on temperature parameters, the highest differences appear in summer time, although in 
winter these can also be considerable. Furthermore, these monthly/seasonal variations fluctuate throughout each studied 
year, making an annual or seasonal pattern difficult to assess.  
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Table 2. Regression Coefficients of the model equations (1)-(8) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Coefficient of determination (R
2
), Slope of linear regression including forced through the origin and 

statistical predictors of predicted against measured solar radiation data 

 

 

 

If regression line forced through origin is replaced by standard linear regression for all the methods, the variability 
randomly increased and therefore performance decreased for all tested regressions. 

 

 

 

 

 

 

 

 

Methods  Regression Coefficients   

 a b c d 

H&S 0.14 0.39   

García 0.56 0.29   

AP 0.89 1.69   

AP2 0.45 -1.0 1.32  

AP3 -18.67 56.32 -55.45 18.58 

A 0.01 0.25   

AN - 0.25   

NP 0.21 0.62 -0.25  

Methods R
2
 Pearson's r Slope MBE RMSE MPE(%) 

H&S 0.93 0.96 0.94 0.80 6.82 -0.19 

García 0.93 0.98 0.97 0.40 6.49 -0.12 

AP 0.97 0.99 1.00 -0.17 3.02 -0.35 

AP2 0.97 0.95 1.07 -3.27 6.04 -26.84 

AP3 0.99 0.99 1.01 -0.18 2.95 -0.25 

Allen 0.93 0.96 0.95 0.60 3.81  -0.94 

Annandale 0.92 0.96 0.94 0.60 6.84 -0.90 

New Proposed 0.99 0.99 1.00 -0.09 2.87 0.19 
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Figura 3. Difference in monthly mean solar radiation for 2010-2013 in Buenos Aires for each proposed 

methods 
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The annual distribution of the MBE, RMSE and MPE is shown in Figure 4, which illustrates the general trend of all 
methods. The results lend weight to the foregoing discussion regarding the statistical performance, indicating that 
deviation lower values are correlated with sunshine hour dependent models, with MPE values ≤ 1%. 

It is worth emphasizing that although the empirical methods proposed in Eqs. (1) –(8) involve only temperature and 
sunshine hour data, since the initial database contained pressure, humidity and wind values, as well as different 
meteorological models (not shown) involving these variables were tested; however, their regression coefficients barely 
reached values close to 0.5; hence they were discarded. 
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Figure 4. Annual values for statistical predictors for all the applied empirical approaches. 

 

4. Summary 

Solar radiation and its interaction with the atmosphere, is the driver and ultimate control of weather and climate. Hence 
understanding solar radiation throughout the planet is crucial to our understanding of the climate system and the changes 
it is undergoing.  Given the various difficulties frequently encountered when measuring solar radiation a number of 
formulae and methods have been developed to estimate daily or monthly radiation, at different places. There exist a 
plethora of equations that have been published and tested making it difficult to choose the most suitable for a particular 
site. In this sense, eight methods for estimating monthly mean global solar radiation, were tested parameterizing the 
measured data in Buenos Aires. Explained variability, root mean square error, mean bias error and mean percentage 
error indicate that the highest precision was reached when sunshine duration was used as predictor. The PCs analysis 
confirms these results. The new exponential proposed method was found to be the best of the tested methods. It 
explained 99% of the RG variability with RMSE value, annual average, close to 2.9 MJm-2day-1 and MBE less than 0.1 
MJm-2day-1. With virtually equal accuracy, the Ångström-Prescott model, at first and third order, makes reliable 
estimations of the observed data, explaining on average 98% of the RG variability with similar values of RMSE and MPE. 
Figure 2 also reveals the lowest differences between estimated and observed values for these three approaches and 
underscores behaviours with no clear trends to underestimate (overestimate) the global solar radiation in Buenos Aires. 
Second order of Angström-Prescott type model did not have significant improvement on the accuracy of the estimation of 
global solar radiation: on the contrary the model outputs deteriorated. 

If temperature values are the only available data, obtained results show that the explained variability of RG is also higher 
but the deviation range triples their values, with remarkable overestimation tendency in all the tested models. The 
inclusion of an altitude correction factor in these techniques did not improve their statistical performances as Annandale 
approach has revealed. Similar conclusions can be inferred when the models differ only by the N-weighting factor 
(number of cases) as is the case of García and Hargreaves-Samani methods. Both approaches have shown similar 
statistical predictor values, overestimating the predicted solar radiation. As was previously mentioned, the temperature 
based model implies considering the relative humidity and thus water vapour influence in their equations, yielding 
increasing sources of error due to the inherent variability of the parameter besides the difficulty to achieve accurate 
measures.  Moreover, daily temperature amplitude range, which implies monthly amplitude, may also explain the poor 
performance gained in reproducing the interdependence between observed and predicted values. This amplitude may be 
related not only with relative humidity, but also with air pollution, as well as cloud cover percentage influencing the 
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regression coefficients and the explained variability. Further investigations are necessary for replacing temperature (or 
combining with) with other meteorological parameters, as RH, mixing ratio, dew point temperature or different kinds of 
associations.  
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