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Major depressive disorder (MDD) in general, and anxious-depression in particular, are characterized by poor rates of remission with first-
line treatments, contributing to the chronic illness burden suffered by many patients. Prospective research is needed to identify the
biomarkers predicting nonremission prior to treatment initiation. We collected blood samples from a discovery cohort of 34 adult MDD
patients with co-occurring anxiety and 33 matched, nondepressed controls at baseline and after 12 weeks (of citalopram plus
psychotherapy treatment for the depressed cohort). Samples were processed on gene arrays and group differences in gene expression
were investigated. Exploratory analyses suggest that at pretreatment baseline, nonremitting patients differ from controls with gene
function and transcription factor analyses potentially related to elevated inflammation and immune activation. In a second phase, we
applied an unbiased machine learning prediction model and corrected for model-selection bias. Results show that baseline gene
expression predicted nonremission with 79.4% corrected accuracy with a 13-gene model. The same gene-only model predicted
nonremission after 8 weeks of citalopram treatment with 76% corrected accuracy in an independent validation cohort of 63 MDD
patients treated with citalopram at another institution. Together, these results demonstrate the potential, but also the limitations, of
baseline peripheral blood-based gene expression to predict nonremission after citalopram treatment. These results not only support
their use in future prediction tools but also suggest that increased accuracy may be obtained with the inclusion of additional predictors
(eg, genetics and clinical scales).
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INTRODUCTION

Major depressive disorder (MDD) is a common psychiatric
disorder, affecting an estimated 19 million people each year
in the United States alone (Kessler et al, 2003, 2005; Murray
and Lopez, 1997). For patients with MDD, the lifetime
mortality due to suicide approaches 15% (Mann, 2003), and
the annual cost associated with MDD-related disability and
death ranks in the tens of billions of dollars in the US (Kupfer
et al, 2012; Murray and Lopez, 1997). A critical barrier to

devise optimal treatment and achieve sustained remission is
the lack of predictive tests for disease state and treatment
remission. The uncomplicated, nonintrusive, and cost-effec-
tive availability of blood samples make blood-based biomar-
kers leading candidates for large-scale development.

The potential of blood transcriptome (the panel of
detectable gene transcripts) for monitoring health and
disease states is being investigated for peripheral organ and
brain diseases (for review, see (Mohr and Liew, 2007)).
Convergent functional genomic approaches have proposed
biomarkers for mood states in bipolar depression (Le
Niculescu et al, 2008). Padmos et al (2008) have reported a
profile of proinflammatory gene transcripts that discrimi-
nated bipolar-depressed patients from controls. Pajer et al
(2012) differentiated between MDD and control subjects,
and between MDD with and without anxiety in adolescents,
using candidate blood and brain gene expression from
animal models of depressive-like behaviors. Using inflam-
matory, stress and neuroplasticity markers, Papakostas et al
(2011) developed a serum-based protein assay that robustly
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discriminated MDD from control patients, and that
replicated in an independent validation cohort. Similarly,
leukocyte expression of proinflammatory, neuroendocrine
stress axis and neuroplasticity markers discriminated
between MDD and control subjects; and baseline proin-
flammatory genes were differentially expressed between
responders and nonresponders to two antidepressant
treatments (Nortryptyline or escitalopram) (Cattaneo et al,
2012). Using a microarray approach, Mamdani et al (2011)
found that changes in the expression of 32 probesets
predicted changes in Hamilton Rating Scale for Depression
(HRSD) scores following citalopram treatment. Belzeaux
et al (2012) reported baseline changes between responder
and nonresponder MDD subjects and identified four gene
transcripts with predictive value for treatment response.

In this study, we tested the potential of gene expression to
predict nonremission prior to treatment initiation. We
focused on nonremission, as it significantly contributes to
the chronic illness burden suffered by many patients.
Specifically, we hypothesize that MDD patients who do not
achieve symptom remission after 12 weeks of treatment
(MDD-NR, MDD-nonremitter) differ in baseline gene
expression from the subjects who will remit (MDD-R,
MDD-remitter). If so, baseline blood gene expression
should predict remission after treatment with citalopram,
a common antidepressant. We measured large-scale blood
transcriptome changes in 34 MDD and 33 healthy control
subjects (initial cohort), as part of an ongoing study of
anxious-depression treated with a 12-week course of com-
bined citalopram and weekly psychotherapy treatment. In
the first phase, we performed an exploratory analysis of
differential expression to seek evidence for group differ-
ences, namely MDD-NR and MDD-R vs controls, being
cognizant of the high false positive rate associated with
these approaches. In the second and independent phase, we
used the same dataset to construct a predictive model with a
machine learning method with support vector machines and
corrected the results for the bias of reporting the ‘best’
prediction rates. We then sought to confirm the prediction
results using the existing clinical and blood gene expression
data in a second cohort of MDD subjects with similar,
although not identical characteristics, and who were treated
for 8 weeks with citalopram alone (validation cohort)
(Mamdani et al, 2011). We also had two sets of secondary
predictions; first, we predicted that baseline gene expression
profiles of MDD nonremitters would be characterized by an
upregulation of genes associated with immune activation
and inflammation. Second, we predicted that the inclusion of
clinical scales would improve prediction of nonremission.

MATERIALS AND METHODS

A short summary is provided here. Details and technical
information on the cohorts and analyses are in the online
supplements. The initial cohort included 34 anxious-
depressed adults recruited for an outpatient trial of
combined medication and psychotherapy treatment, and
an age- and gender-matched sample of 33 nondepressed
controls (Table 1). The patient sample met criteria for
a nonpsychotic MDD episode of sufficient severity
(documented by DSM-IV SCID interview and score X15

on the 25-item HRSD (Hamilton, 1960)) and elevated
symptoms of panic or anxiety (score X7 on the past-month
panic and agoraphobic spectrum selfreport (Cassano et al,
1997; Shear et al, 2001)). Demographic and clinical scales
are listed in Supplementary Table S1. Nonpatient controls
did not meet criteria for any mood or anxiety disorder.
Individuals with a history of schizophrenia, bipolar disorder
or antisocial personality disorder; drug or alcohol abuse/
dependence in the past 3 months; severe, uncontrolled
medical illness; history of nonresponse to citalopram; and
women who were pregnant or planning to become pregnant
were excluded from participation. Subjects were free of
antidepressant treatment prior to the start of the study.
All study procedures were approved by the University of
Pittsburgh Institutional Review Board. Treatment for the
MDD cohort included citalopram (average dose at week 12,
37.5±10.5 mg) and weekly psychotherapy with either
(randomly assigned) interpersonal psychotherapy for
depression with panic and anxiety symptoms (IPT-PS) or
brief supportive psychotherapy (BSP) (Hellerstein et al,
1998). Analyses were conducted on an intent-to-treat basis,
with depression remission defined as achieving three con-
secutive weeks of average HRSD-17 scores p7. The trial is
registered at ClinicalTrials.gov under NCT00930293.

Blood was collected in PAXgene tubes at study entry (T0)
and after 12 weeks of treatment (T12) and processed onto
Illumina HT12-v4.0 gene array. Gene functional analysis
was performed using Ingenuity Pathway Analysis (http://
www.ingenuity.com). Analysis of promoter transcription
factor enrichment was performed with Enrichr (Chen et al,
2013). Real-time quantitative polymerase chain reaction
(qPCR) was performed on a Mastercycler real-time PCR
machine (Eppendorf, Hamburg, Germany) using universal
PCR conditions (Sibille et al, 2009). Differential expression
was analyzed by random intercept model with variable
selection using Bayesian information criteria and class label
permutation (Wang et al, 2012). Prediction analyses for
nonremission were performed using standard machine
learning method with support vector machines (with linear
kernel) protocol. To correct for the selection bias of report-
ing the best model, we added a nested cross-validation step
(Tibshirani, 2009; Varma and Simon, 2006).

For the validation cohort, we used clinical and tran-
scriptome data from a published study (Table 1; Mamdani
et al (2011) for details), in which MDD patients were treated
with citalopram (10–60 mg, titration based on response and
tolerability) for 8 weeks, with depression remission defined
as HRSD-17 score p7 at week 8 assessment. Blood samples
were collected at T0 and T8 in PAXgene tubes and
processed onto U133þ 2.0 Affymetrix GeneChips. The top
genes identified in the initial cohort predictions were used
to construct the prediction model for response/remission in
the validation cohort.

RESULTS

Table 1 provides the baseline demographic and clinical
features of the two cohorts used in the report. A total of 34
MDD and 33 nondepressed control subjects comprised the
initial cohort. Six MDD subjects dropped out of treatment
prior to the week 12 (T12) blood draw. Only one of these six
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met remission criteria prior to drop out, and was thus
classified as a remitter; the remaining five were classified as
nonremitters in intent-to-treat prediction analyses, in line
with CONSORT clinical trial reporting standards (http://
www.consort-statement.org/). Of those who remained at

T12, 18 were classified as remitters (MDD-R) and 10 as
nonremitters (MDD-NR). Thus, 19 of 34 subjects (55.9%)
were classified as treatment remitters in intent-to-treat
analyses. At baseline assessment, MDD-R and MDD-NR
patients did not significantly differ in age, race, education,

Table 1 Clinical and Demographic Factors of the Initial Cohort

Combined cohort Test cohort

T0 T12

MDD CTRL Statistic P-value df MDD CTRL Statistic P-value df

Age 30.27 (10.31) 34.01 (11.15) t¼ # 1.42 0.16 64.2

Sex 27 (F)/7 (M) 27 (F)/6 (M) w2¼ 0 1.00 1

Race 28W/3B/2BW/1PI 28W/5B w2¼ 3.49 0.32 3

Marital 22A/6B/6D 20A/9B/2C/2D w2¼ 4.68 0.20 3

Education 8a/13b/13g 7a/5b/21g w2¼ 5.49 0.06 4

HRSD-17 18.47 (2.88) 1.36 (1.60) t¼ 30.15 1.58E-34 51.8 8.61 (4.81) 2.44 (3.73) t¼ 5.54 1.09E-06 50.3

HRS-A 16.33 (4.65) 1.13 (1.36) t¼ 17.97 4.33E-20 37.7 7.75 (4.37) 1.91 (2.45) t¼ 6.30 1.68E-07 40.6

QIDS-16 14.29 (3.70) 1.54 (1.20) t¼ 19.06 1.08E-21 40.1

MDD-R cohort MDD-R CTRL (R) Statistic P-value df MDD-R CTRL (R) Statistic P-value df

Age 28.66 (9.64) 31.72 (9.92) t¼ # 0.94 0.36 34.0

Sex 13 (F)/5 (M) 13 (F)/5 (M) w2¼ 0 1 1

Race 15W /2BW/1PI 16W/2B w2¼ 5.03 0.17 3

Marital 11A/5B/2D 14A/4B/0D w2¼ 2.47 0.29 2

Education 4a/8b/6g 4a/3b/11g w2¼ 3.74 0.15 4

HRSD-17 17.50 (2.81) 1.11 (1.08) t¼ 23.08 7.39E-17 21.9 5.83 (2.31) 2.67 (2.91) t¼ 3.62 0.001 32.3

HRS-A 15.76 (4.38) 1.06 (1.23) t¼ 13.29 5.77E-11 18.7 5.50 (2.68) 2.00 (1.49) t¼ 4.83 4.94E-05 26.6

QIDS-16 11.94 (3.00) 1.56 (1.20) t¼ 13.64 2.64E-12 22.3

MDD-NR cohort MDD-NR CTRL (NR) Statistic P-value MDD-NR CTRL (NR) Statistic P-value

Age 32.08 (11.12) 35.87 (12.21) t¼ # 0.86 0.40 25.8

Sex 13 (F)/1 (M) 13 (F)/1 (M) w2¼ 0 1 1

Race 11W/3B 11W/3B w2¼ 0 1 1

Marital 9A/1B/4D 6A/4B/2C/2D w2¼ 5.07 0.17 3

Education 4a/4b/6g 3a/2b/9g w2¼ 1.41 0.49 3

HRSD-17 19.64 (2.71) 1.71 (2.13) t¼ 19.49 1.77E-16 24.6 13.60 (4.03) 1.50 (2.91) t¼ 7.69 7.92E-07 16.4

HRS-A 16.93 (5.00) 1.07 (1.49) t¼ 11.37 7.27E-09 15.3 11.80 (3.91) 1.50 (3.06) t¼ 6.56 4.85E-06 17.0

QIDS-16 17.29 (2.40) 1.43 (1.22) t¼ 22.03 3.73E-15 19.3

Validation cohort

T0 T8

Age 38.68 (11.65)

Sex 35 (F)/28 (M)

Education 12.4d

HRSD-17 30.06 (6.47) 10.35 (7.28)

Abbreviations: HRS-A, Hamilton Rating Scale for Anxiety; HRSD-17, 17-item Hamilton Rating Scale for Depression; QIDS16, Quick Inventory of Depressive
Symptomatology.
Values are mean (±SD). Group codes are as following Sex: F, female; M, male; Self-declared race: Wwhite, Bblack, BWblack,white, PIpacific islander; Marital status:
Anever married; Bmarried; Cliving together as married; Dseparated/divorces. Education: aohigh school, high school, GED, technical school; bsome college; gcollege;
daverage years of education.
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anxiety (HRSA scores), or gender distribution (all p-values
40.10). However, the MDD-NR group did display higher
baseline clinician-rated and self-reported depression scores
as compared with the MDD-R group (HRSD-17¼ 19.6 vs
17.5, p¼ 0.02; Quick Inventory of Depressive Symptom
scores, QIDS¼ 17.3 vs 11.9, po0.01; Table 1).

Blood Gene Expression of MDD-NR Subjects Differ from
MDD-R and Control Subjects at Baseline

In the initial cohort, results from exploratory analyses of
differential gene expression at baseline (pretreatment; T0)

between MDD and control subjects are summarized in
Figure 1a. Few changes were observed between MDD-R and
matched control subjects, compared with between MDD-NR
and matched control subjects. Gene changes in MDD-R
subjects did not correlate with effects in MDD-NR subjects
(Pearson correlation factor, R¼ # 0.05), and a direct
comparison between MDD-R and MDD-NR revealed inter-
mediate number of differentially expressed genes. False
positives and/or normal background variability in gene
expression was assessed as differences observed between
subgroups of healthy (nondepressed) control subjects.
Results from these exploratory analyses suggest that at T0,
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Figure 1 Peripheral gene expression in MDD. (a) At T0, MDD subjects who will not remit (MDD-NR) displayed a greater number of differentially
expressed genes compared with controls (CTRL) and to MDD subjects who will remit (MDD-R). The line thickness indicates weighted numbers of
differentially expressed genes between groups. The two control groups (CTRL) correspond to subjects matched to the respective MDD groups (Table 1).
(b) At T12, the number of differentially expressed genes was reduced between MDD-NR and other groups, and was at the level observed between control
groups, suggesting that it reflected background gene variability. (c) The T0 profiles of changes in gene transcript levels for MDD-related genes are reversed
by antidepressant treatments. T0, upper panels: MDD-related genes are organized by the extent of their changes in expression along the x axis (po0.01,
FC420%). Vertical bars indicate the extent of changes [average log2 of MDD-NR/CTRL (Left) or MDD-R/CTRL (Right) expression ratios]. T12, lower
panels: vertical bars indicate the relative transcript levels for the same MDD-related genes after citalopram/psychotherapy treatments. Genes are sorted in
the same order as in upper panels. The T12 profiles correspond to a 34% reversal in MDD-NR and to a 50% reversal in MDD-R subjects (both po0.0001).
(d) Validation of array results by independent qPCR measurements in MDD-R and MDD-NR subjects. See Supplementary Tables S7-8 for details. Alr:
average log ratio.
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(a) untreated MDD subjects differ from control subjects,
(b) MDD differences are mostly driven by MDD-NR
subjects, and (c) MDD-NR subjects differ from MDD-R
subjects (Figure 1a). See Supplementary Table S2 for details
on individual genes.

An analysis of cell-specific markers between MDD-NR
and control subjects did not suggest that these findings were
supported by changes in cell-type densities (Supplementary
Results and Supplementary Table S3). Biological functions
identified as over-represented in MDD-NR patients at T0
compared with controls corresponded almost exclusively to
increased immune function, inflammation, and white blood
cell recruitment (Table 2; details in Supplementary Table
S4). Moreover, transcription factor binding sites enriched in
promoter regions of differentially expressed genes were
similarly linked to immune and inflammatory responses,
including NF-kB-related signaling and cell cycle regulation,
and/or mediation of tumor growth/suppression (Supple-
mentary Table S6).

qPCR was performed for 21 genes with T0 differences
(ADSL, ARHGEF11, CD3D, ECGF1 (TYMP), GBA, GZMA,
IFITM3, IL17RA, MBOAT1, MPST, MSH6, NAP1L4, OS-
CAR, PRDM4, RPL4, RPL5, RPL17, RPL24, RSPH3,
TBXAS1, and TIMM23). The qPCR results correlated with
array data for the MDD-R vs control (Pearson correlation
r¼ 0.86, p¼ 5e# 7), MDD-NR vs control (r¼ 0.92, po1e# 7)
and MDD-NR vs MDD-R (r¼ 0.85, p¼ 5e# 7) (Figure 1d),
together supporting the technical reliability of the
array data, although not all individual assays reached
significance. Results from individual genes are in
Supplementary Tables S7-8. Results from post-treatment
(T12) blood gene expression and treatment effects are
summarized in Figure 1b. All T12 groups differences were at
the level of background gene variability, as measured
between control subjects matching MDD-R or MDD-NR
subjects. Comparing T0 and T12, most genes reverted back

toward control expression levels after treatment (ie, closer
to x axis in Figure 1c).

Together, the results of those exploratory approaches
suggest that nonremitter subjects are biologically different
from remitter subjects, hence providing a rationale for
performing an independent prediction analysis for non-
remission.

Prediction of Nonremission After Treatment

To predict depression remission at T12 based on T0
transcriptome data, we constructed a predictive model with
a machine learning method with support vector machines.
As standard practice for machine learning protocols, we
started with the T0 dataset, ranked all genes based on
statistical significance, and filtered the data based on effect
sizes in the training set. We then systematically constructed
prediction models using the top sets of genes, ranging from
2–30 genes, and applied these models to the test set
(Figure 2). This process is iterated until each sample is
treated as test set once. Typically, the prediction accuracy
is reported for an optimal gene set; however, to address the
common bias that is introduced by reporting the ‘best
result’, we added an additional step to correct the results for
model selection, using a nested cross-validation approach
(Tibshirani, 2009; Varma and Simon, 2006) (Figure 2). The
results from these studies indicate an average cross-
validated accuracy (ie, model selection bias corrected) of
79.4% in predicting remission status, with the 13-gene
model displaying the highest individual noncorrected pre-
diction value (88%) (Tables 3 and 4 and Supplementary
Table S9). An analysis of correlation of expression with cell-
specific markers suggests that the 13-gene set is potentially,
although not exclusively, enriched in genes expressed in
lymphocytes (Supplementary Results and Supplementary

Table 2 Biological Functions Over-represented in Differentially-expressed Gene Groups

Group comparisons Numbers of biological
groups at qo0.01

Biological groups

(TO) MDD-NR/CTRL
(Details in Supplementary Table S3)

154 Neutrophils: function, homing, chemotaxis, cell movement. Myeloid cells: response, cell
movement, phagocytosis. Granulocytes: homing, chemotaxis, cell movement. Leukocytes: function,
cell movement, migration, chemotaxis, quantity, proliferation.
Phagocytes: phagocytosis, immune response, function, engulfment, homing, cell movement, response
of Lymphocytes: proliferation. Immune Cells: proliferation, adhesion.
Cells: chemotaxis, homing, immune response, phagocytosis Viral Infection, function of blood cells.
Apoptosis of lymphoma cell lines, Inflammatory response.

(TO) MDD-NR/MDD-R
(Details in Supplementary Table S4)

12 Viral Infection, replication of virus, replication of RNA virus, function of leukocytes, cell rolling of
phagocytes, replication of Influenza A virus, function of neutrophils, cell death of myeloid cells,
apoptosis of myeloid cells, infection of mammalia, immune response of cells, invasion of cells.

(TO) MDD-R/CTRL 0 None

(TO) CTRL(NR)/CTRL(R) 0 None

(T12) MDD-NR/CTRL 0 None

(T12) MDD-NR/MDD-R 0 None

(T12) MDD-R/CTRL 0 None

(T12) CTRL(NR)/CTRL(R) 0 None

Significant biological groups defined using an ingenuity pathway analysis were regrouped and summarized by cell types. See Supplementary Table S4 for details.
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Table S10), highlighting the value of using whole blood
transcriptome for predictive purposes.

Validation of Gene-based Prediction of Nonremission in
an Independent Cohort

Given the small size and unique features of the initial cohort
and the potential bias in model selection, we sought to

confirm the prediction model in an independent cohort
recruited and tested at another institution. We obtained an
archival dataset drawn from a study that evaluated gene
expression in blood from 63 MDD subjects who were
subsequently treated for 8 weeks with similar doses of
citalopram (see Table 1 and Mamdani et al (2011) for
details). Thus, this study represented a close, but not
identical, match to our initial cohort. We built a new
prediction model in the validation cohort using the same
13 genes identified in the initial cohort, and found through
another round of leave-one-out cross validation that a
6-gene model achieved the highest accuracy (76.2%) in the
validation cohort (Table 4 and Supplementary Table S11).

Exploratory Analyses

Predictive models including clinical data. We explored
the potential of clinical features to augment the gene-based
prediction models. These analyses were performed in the
initial cohort only, because of the availability of multiple
clinical scales in that study (Supplementary Table S1). We
first applied machine learning prediction methods using
clinical scale data only, considering models with 2–30

3 gene model
4 gene model

30 gene model

MDD (T0) 
(34 samples)

Outer Training set
(33 samples)

Select model with
smallest cross-

validation error rate
in inner model and

evaluate
performance in

outer test set

Inner training set
(32 samples)

2 gene model

Outer Test set
(1 sample)

Inner Test set
(1 sample)

patients

Figure 2 Flowchart of blood biomarker prediction performance assessment, including correction of model selection bias. To search for the optimal
number of features (2–30 genes) in the prediction model, we applied a nested cross-validation (CV) with two nested CV loops. The dataset is initially
divided into two: one sample as the test set, and the second as the training set. Then a leave-one-out cross validation (LOOCV) method is applied on the
training set using all classifiers (top 2–30 genes). The classifiers with the smallest error rates are selected and used to build the model within the training set.
The model is then evaluated on the left-out test sample. This procedure is repeated until all samples have been left out once. This means that the left-out
test sample is independent from the model selection stage, including the selection of the model with the minimum error rate. Together, this procedure
guarantees an unbiased error estimate.

Table 3 Prediction of Nonremission in MDD Patients at Baseline

Features used in prediction
model

Initial cohort
(genes only)

Validation cohort
(genes only)

# features used in model 13 6

Corrected accuracy (%) 79.4 76.2

Sensitivity (%) 66.7 86.1

Specificity (%) 89.5 59.3

Accuracy represents the percentage of correctly identified samples.
Sensitivity represents the ability to predict nonremission. Specificity
represents the ability to predict remission. The corrected accuracy was
obtained by nested cross-validation approach as described in Figure 2.
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clinical variables. The following three baseline clinical
variables provided optimal accuracy in predicting T12
remission status, with corrected accuracy of 70.6% as
determined by nested cross validation (as in Figure 2):
clinician-rated depressive symptoms (HRSD-17 scores),
patient-reported depressive symptoms (QIDS (Rush et al,
2003)), and perceived stress scores (4-item Perceived Stress
Scale (Cohen et al, 1983)). Next we tested models including
both clinical and gene expression data and show that T12
depression nonremission could be predicted with a
corrected accuracy of 97% based on T0 gene expression
and clinical data (Supplementary Tables S12-13), in a model
including just three features: two genes (IFITM3 and
TIMP1) and one clinical feature (QIDS). Notably the type
of adjunctive psychotherapy treatment provided in that
cohort in addition to citalopram (IPT-PS or BSP) did not
contribute to any of the prediction models.

Treatment response trajectory. Because MDD-NR and
MDD-R patients differed significantly in baseline depres-
sion scores (Table 1), we explored whether observed
differences in posttreatment remission status represented
differences in treatment trajectory. Figure 3 shows a large
overlap in baseline depression scores between the MDD-NR
and MDD-R groups, and significant group differences in
slopes between T0 and T12 in the initial cohort (po0.00137)
and T0 and T8 in the validation cohort (po1.25e# 6), hence
confirming the presence of a different trajectory of
treatment response in MDD-NR subjects. Consistent with
the overlap in values (Figure 3), baseline HRSD-17 values
provided moderate prediction for nonremission (67.6% in
initial and 57.1% in validation cohort).

DISCUSSION

Results from the first and exploratory phase of this
study suggest that at pretreatment assessment, the gene

expression profiles obtained from blood samples of MDD
subjects who will not attain remission after treatment
(MDD-NR group) differ from nondepressed controls and
also from MDD patients who will remit with treatment
(MDD-R) (Figure 1). The nature of genes affected in MDD-
NR subjects suggests a state of inflammation and immune
system activation in those patients, although this was not
confirmed by independent approaches (Table 2). In the
second phase of the study, using a machine learning
prediction model and a leave-one-out cross validation to
correct for multiple model testing, we show that pretreat-
ment baseline gene expression predicted nonremission after
treatment with 79.4% accuracy (Table 3), based on a 13-
gene panel (Table 4). A strength of this study is that we
confirmed our results in an independent validation cohort.
Specifically, we showed that 6 out of 13 genes identified in
the initial cohort could predict remission in an independent
cohort (n¼ 63 MDD patients) with 76.2% accuracy (Table 3).
Together, this report demonstrates the potential, but also
the limitations, of pretreatment peripheral gene expression
profiles to predict nonremission following an 8- to 12-week
course of citalopram treatment.

Although the sample size of the initial cohort was small,
the gene expression prediction results replicated in an
independent cohort, despite differences in experimental
design (8- vs 12-week drug exposure, no psychotherapy)
and inclusion of nonanxious MDD patients in the validation
cohort. It is worth noting that we did not apply the
optimized 13-gene model from our cohort directly to the
validation cohort study, but instead used those top 13
candidate markers to perform a new model selection in the
independent cohort with feature selection and leave-one-out
cross validation to assess the prediction accuracy. This
approach was designed to facilitate the analysis and mitigate
differences across the two cohorts and platforms, and it
may explain why genes differentially expressed in specific
cohorts (see introduction) may not necessarily be
included in the final common set of predictors. For future

Table 4 Top Genes Included in the Prediction Models

Gene symbol Gene name Frequency of
use in initial cohort

Frequency of use in validation
icohort

CD3D CD3d molecule, delta (CD3-TCR complex) 34 46

CD97 CD97 molecule 34

IFITM3 Interferon induced transmembrane protein 3 34 63

RPL5 Ribosomal protein L5 34

GZMA Granzyme A 33 63

TAGLN2 Transgelin 2 33

TIMP1 TIMP metallopeptidase inhibitor 1 33

RPL24 Tibosomal protein L24 29 63

PSMA4 Proteasome (macropain) subunit, alpha type, 4 25

MATR3 Matrin 3 18 63

RPL9 Ribosomal protein L9 15

PSMA6 Proteasome (macropain) subunit, alpha type, 6 12

RPL17 Ribosomal protein L17 7 58

Genes in bold were included in the independent qPCR validation (Figure 1). Consistent with the previous functional and transcription factor analyses, this 13-gene
model included genes associated with immune/inflammatory activation (CD3D, CD97, IFITM3, and GZMA) and mediation of cell proliferation (GZMA and TIMP1),
although not exclusively.
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translational and clinical utility, a randomized prospective
clinical trial using a preestablished predictive model is the
ultimate validation. To date, however, direct application of
predictive models to different test studies has been difficult
due to cross-laboratory variability in probe designs from
different array platforms and different experimental proto-
cols. Such issues could be addressed in the future through
the use of carefully standardized experimental protocols or
commercialized products. For example, prognostic predic-
tion of breast cancer treatment (Cheng et al, 2009; Shen
et al, 2004; Xu et al, 2008) has been greatly facilitated by the
use of MammaPrint (van’t Veer et al, 2002) and Oncotype

DX (Paik et al, 2006), two successful microarray and qPCR
examples with cross-laboratory standardization.

The combination of clinical scales and gene expression
data enhanced the accuracy of the nonremission prediction
to 97% in the initial cohort (Table 3 and Supplementary
Table S11). Notably, of all clinical scales included in the
combined machine learning models (including those
assessing current and lifetime mood and anxiety symptoms,
childhood trauma, and social/interpersonal function; see
supplements and Supplementary Table S1), the only scale
retained in the combined prediction model was the QIDS-
16; a patient-reported indicator of depressive symptom
severity. This finding may highlight the importance of
assessing subjective levels of patient-reported distress which
may, moreover, be more closely linked to over-activation of
pro-inflammatory pathways (Cole, 2010; Miller et al, 2008;
Pace and Miller, 2009).

What could we learn from the exploratory analyses of
differential gene expression? We are cognizant of the high
false positive rate associated with the uncorrected statistical
approaches used here, so we briefly discuss results at the
gene group level rather than for independent genes. As
hypothesized, biological functions represented by genes
showing baseline expression differences largely suggest pre-
treatment elevations in inflammation and immune activa-
tion in MDD-NR subjects (Table 2). This may, in part, relate
to baseline elevations in symptoms of depression and of
perceived stress in the MDD-NR group. In this regard,
MDD-NR subjects also displayed heightened expression of
numerous transcripts with response elements for NF-kB, a
proinflammatory transcription factor associated with the
experience of chronic stress (Cole, 2010; Miller et al, 2008;
Pace and Miller, 2009). The fact that the prevalence of these
predictive gene markers was reduced after treatment despite
elevated HRSD scores (Table 2) suggests that while inflam-
mation and immune-related pathways could have contrib-
uted to MDD onset, their presence may not be necessary for
the maintenance of MDD in those subjects. Alternatively,
putative remodeling of brain circuitry and other molecular/
neurochemical changes (such as changes in glucocorticoid
receptor sensitivity) may sustain the depressive state despite
the absence of continued peripheral immune and inflam-
matory gene markers. Finally, it is worth noting that the
extent of correlation of expression between the predictive
genes and cell-specific markers suggests the contribution of
various cell types. Future studies may address the contri-
bution of changes within and across specific leukocyte cell
populations, but the current results suggest that using total
blood gene transcripts may be appropriate for predictive
purpose.

The finding that MDD-NR subjects showed differential
gene expression and trajectories of reduction in HRSD-17
scores following treatment (Figure 3) supports the intrinsic
difference of this group compared with other MDD subjects.
Future studies will need to characterize those differences on
longer timescales and to examine the association between
the observed pretreatment gene expression profiles and
functional indicators of systemic inflammation or stress-
induced immune/inflammatory reactivity (Maes, 1995;
Zunszain et al, 2013). Conversely, subjects who remitted
after treatment (MDD-R) had pretreatment gene expression
profiles similar to background variability in control
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subjects, demonstrating that diagnostic MDD status is not
necessarily accompanied by peripheral gene changes (at
least with the technical sensitivity of the gene arrays used
here). This observation highlights the underlying biological
heterogeneity in MDD subjects, and underscores the need
for future mental health biomarker research to move
beyond traditional diagnostic categories, as articulated in
the NIMH Research Domain Criteria initiative (Insel et al,
2010).

Together, the current and prior studies (see introduction)
not only support the biomarker potential of peripheral gene
expression in predicting MDD treatment outcome but also
highlight the need for additional studies. Future studies will
need to be performed in larger cohorts and may need to
combine measures of gene expression with selected clinical
scales, specifically related to mood symptoms and chronic
life stress. The inclusion of genetic information, measures of
peripheral metabolites and treatment history may further
increase the predictive value of those assays. For instance,
Gudayol-Ferre et al (2013) showed that a combination of
clinical, genetic (val/Met COMT polymorphism) and neuro-
psychological variables were associated with a pattern of
remission in MDD subjects. The fact that in our study
baseline peripheral gene expression did not differ between
MDD subjects who remitted and healthy controls also
suggests that different sets of biomarkers may be needed to
capture the heterogeneity of MDD subjects. The findings
from this study show the potential of blood gene expression
to identify prior to treatment—with high sensitivity and
specificity—a population of individuals that would benefit
from treatment augmentation. Future studies will need to
assess means of treatment augmentation in the context of
prediction of nonremission. Whether gene expression
biomarkers will provide insight into disease mechanisms
for a rational choice of drug augmentation is currently
unknown, so the added value of those assays will have to be
determined based on optimized design and better knowl-
edge of successful augmenting factors, but the levels of
accuracy and confirmation obtained under the current
conditions are promising. Finally, future treatment para-
digms will benefit from determining whether other anti-
depressants are successful in treating the nonremitting
patients identified in this study.

Notes and Limitations

Several limitations to the current study are noteworthy.
First, the initial cohort sample size was small and thus
potentially associated with high false positive rates for both
differential expression and prediction analyses. Second,
with the exception of the Mamdani et al (2011) study, direct
comparisons of prediction results with prior reports (see
Introduction) were not performed due to differences in
study goals (eg, disease status vs outcome prediction here).
Third, the lack of available anxiety measures in the valida-
tion cohort may have limited the analysis in that cohort.
Fourth, we did not attempt to separate blood cells and
instead investigated transcriptome profiles at the time of
collection, so that expression of putative markers would not
be influenced by sample manipulation. Instead, using prior
results, we ruled out the possible interference of blood cell
proportions on differential expression of genes. Fourth, the

biological validity of the inflammation and immune activa-
tion was not confirmed by other biological tests and is thus
speculative at this time. Fifth, the study was not designed to
assess later time points regarding delayed remission and
potential biomarkers for future relapse.
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DETAILED MATERIAL AND METHODS 

 

Initial cohort: Subjects and treatment  

Subjects. (Table 1) 34 anxious-depressed adults were recruited for an outpatient trial of 

combined medication and psychotherapy treatment (NIH-MH085874, J. Cyranowski, PI), at the 

Western Psychiatric Institute and Clinic (WPIC) Depression and Manic-Depression Treatment 

Program (Pittsburgh, PA). The patient sample met current criteria for a non-psychotic, MDD 

episode of sufficient severity, as documented by the Structured Clinical Interview for Axis I, 

DSM-IV Disorders (SCID) and by a rating of >15 on the 25-item HRSD (Cyranowski et al, 2005; 

Hamilton, 1960). Patients were also required to report significant co-occurring panic or anxiety 

symptoms, as determined by a score >7 on the past-month Panic and Agoraphobic Spectrum 

Self-Report (PAS-SR) (Cassano et al, 1997c; Markowitz et al, 2005; Rush et al, 2003; Shear et 

al, 2001a). By contrast, non-patient controls (n=33) assessed with the same scales did not meet 

criteria for any SCID-diagnosed mood or anxiety disorder. Individuals with a history of 

schizophrenia, bipolar disorder, or antisocial personality disorder; primary diagnosis of anorexia 

or bulimia nervosa; drug or alcohol abuse/dependence in the past three months; severe, 

uncontrolled medical illness; a history of nonresponse to an adequate trial of citalopram; and 

women who were pregnant or planning to become pregnant were excluded from study 

participation. All subjects were free of antidepressant treatment prior to study start, including 4 

subjects with wash-out periods (3 weeks, 2 weeks and 8 days (2 subjects)). Study procedures 

were approved by the University of Pittsburgh Institutional Review Board (IRB). All subjects 

provided written, informed consent after receiving a complete description of the study and prior 

to study participation. 

Treatment and blood sampling. Citalopram was administered using a flexible titration schedule, 

starting at 10 mg per day and, if tolerated, increased daily by 10 mg increments until 

stabilization was achieved or until a daily dose of 60 mg was reached. At 12-weeks, the average 
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citalopram dose was 37.5 +/- 10.5 mg. In addition to medication, patients received weekly 50-

minute sessions with one of two randomly-assigned manualized psychotherapies: Interpersonal 

Psychotherapy for Depression with Panic and Anxiety Symptoms (IPT-PS) (Cyranowski et al, 

2005) a version of IPT for depression modified to explicitly target both depression and co-

occurring anxiety symptoms, or a standardized depression psychotherapy control, Brief 

Supportive Psychotherapy (BSP) (Hellerstein et al, 1998; Markowitz et al, 2005). Whole blood 

(2.5 ml) was collected in PAXgene tubes at entry (T0) and after 12 weeks of citalopram 

treatment (T12), and stored at -80˚C.  

 

Initial cohort: Measures 

Mood and Anxiety Symptoms. Clinician ratings of patients’ current (past-week) symptoms of 

depression and anxiety were evaluated with the 25-item HRSD (which allowed for calculation of 

traditional 17-item HRSD scores, more atypical presentations of depression, and factor-derived 

HRSD subscales for core mood, anxiety and sleep items(Hamilton, 1960; Shafer, 2006)) as well 

as the 14-item Hamilton Rating Scale for Anxiety, (HRSA) (Shear et al, 2001c). Treatment 

progress was evaluated weekly with 17-item HRSD scores (Hamilton, 1960)" with remission 

defined as a mean HRSD-17 score <7 over three consecutive weeks. Self-reported assessment 

of mood and anxiety symptoms were also obtained with the Quick Inventory of Depressive 

Symptoms–Self Report (QIDS-SR) (Rush et al, 2003), the Mood and Anxiety Symptom 

Questionnaire (MASQ) (Watson et al, 1995a; Watson et al, 1995b), and the Anxiety Sensitivity 

Scale (ASI) (Reiss et al, 1986).  

Baseline Social / Role Function. Patients also provided self-report data regarding baseline 

levels of social role function including, for example, measures of life enjoyment and satisfaction 

(14-item Quality of Life Enjoyment and Satisfaction Questionnaire (QLESQ) (Endicott et al, 

1993)), social support (12-item Interpersonal Support Evaluation List (ISEL) (Cohen S et al, 
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1985)), perceived stress (4-item Perceived Stress Scale (PSS) (Cohen et al, 1983)), and 

perceived mastery (7-item Perceived Sense of Mastery scale (Pudrovska et al, 2005a; 

Pudrovska et al, 2005b)). Interpersonal difficulties or dysfunction were also assessed with the 5-

item Negative Interaction Scale (NIS) (Krause, 1995) and a 25-item short-form of the Inventory 

of Interpersonal Problems (IIP) (Horowitz et al, 1989). 

Childhood Trauma or Abuse. Patient-reported levels of abuse or neglect experienced prior to 

age 18 were assessed with subscales of the 28-item Childhood Trauma Questionnaire-Short 

Form (CTQ) (Bernstein et al, 2003). 

Lifetime Mood and Anxiety Symptoms. Lifetime mood and anxiety symptom loadings (many of 

which have been associated with poorer depression treatment outcomes in previous clinical 

trials (Frank et al, 2011; Frank et al, 2000)) were assessed using four self-report instruments: 

the Mood Spectrum scale (MOODS-SR) (Dell'Osso et al, 2002a) the Panic-Agoraphobic 

Spectrum scale (PAS-SR) (Cassano et al, 1997a, b; Shear et al, 2001a, b), the Obsessive-

Compulsive Spectrum scale (OBS-SR) (Dell'Osso et al, 2002b) and the Social Phobia spectrum 

scale (SHY-SR) (Dell'Osso et al, 2002b; Fournier et al, 2012).  All self-report and assessment 

scales are summarized in Table S1. 

 

Validation cohort  

Clinical and transcriptome data from a previous study were used (Table 1). See Mamdani et al 

(Mamdani et al, 2011) for details. Briefly, subjects were recruited from a community outpatient 

clinic at the Douglas Mental Health University Institute, Montreal, Canada. 63 patients were 

analyzed, consisting of males and females with a diagnosis of MDD without psychotic features, 

according to the SCID. Subjects did not previously use citalopram and were not treated for their 

current episode if they had a recurrent form of MDD. Patients were treated with citalopram 

(initial dose of 10 mg per day, titrated up to a maximum of 60mg per day) for 8 weeks. 

Assessments of depression severity were carried out at pretreatment (T0), one month after (T4) 
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and post-treatment (T8) using the HRSD-17 rating scale. Blood samples were collected at T0 

and T8 in PAXgene blood RNA tubes. All subjects provided informed consent and the project 

was approved by the internal review board for the Douglas Mental Health University Institute. 

 

Microarray samples  

Initial cohort. Whole blood RNA was extracted using the PreAnalytix kit (Qiagen), verified for 

quality (A260/A280 ratio>2) and integrity (RNA integrity number >7; Agilent Technologies, Palo 

Alto, CA, USA). A GlobinClear (Invitrogen, Carslbad, USA) treatment was applied to deplete 

globin mRNA transcripts from total RNA samples. Samples were processed for hybridization 

onto Illumina HT12 human array v4.0, allowing for the analysis of 47,231 probes. 

Validation cohort. Whole blood RNA was processed for hybridization onto Affymetrix GeneChip 

Human Genome U133 Plus 2.0 array (Affymetrix, Santa Clara, CA, USA), consisting of 54,000 

probes. Quality control for all array data included normalization for potential batch effects and 

cross-correlation and principal component analyses for the putative presence of outlier samples. 

All samples passed the quality control and were included in the analyses. See details in 

Mamdani et al (Mamdani et al, 2011). 

 

Gene functional analysis 

Gene lists were analyzed using Ingenuity Pathway Analysis (IPA), using Holm-Bonferroni 

corrected p-value <0.01 for over-representation of biological functions within gene groups. 

 

Real-time quantitative polymerase chain reaction (qPCR)  

500ng total RNA was converted into cDNA using the qScript kit (Quanta, Gaithersburg, MD). 

Small PCR products (70-160 base-pairs) were amplified in quadruplets on a Mastercycler real-

time PCR machine (Eppendorf, Hamburg, Germany), using universal PCR conditions (Sibille et 

al, 2009). Results were calculated as the geometric mean of relative intensities compared with 
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two validated internal controls (actin and glyceraldehyde-3-phosphate dehydrogenase). 

 

Statistical analysis  

Antidepressant reversal. Antidepressant reversal of MDD effect represents the extent by which 

transcripts measured at T0 were brought back to control level at T12. Percentage of reversal 

was calculated using “0%” as no change in expression over time compared to control, and 

“100%” meaning that gene transcript levels were back to control levels at T12. Reversal was 

capped at 100% for genes whose antidepressant-related changes were in opposite directions. 

Gene-wise T0 and T12 values were compared by paired t-tests in the MDD-NR and MDD-R 

groups.   

Differential analysis to detect candidate marker genes. Subjects with T0 and T12 expression 

data were included for analyses of differential expression to compare pre- to post-treatment 

(n=28/group). After filtering for low expression and variance, 11,797 probes were retained. A 

random intercept model with variable selection was applied to detect candidate marker genes 

for all two-group comparisons. We described this method in Wang et al (Wang et al, 2012). 

Specifically, a random intercept model was used to accommodate disease-control paired 

information and covariates (age, gender and dosage) to detect differential effects. All possible 

RIM models that included at most two (i.e. 0, 1 or 2) clinical variables were computed and 

compared. The model with the smallest Bayesian Information Criterion (BIC) value was selected. 

This additional variable selection avoided the inclusion of more than 2 clinical variables in the 

model and allowed the inclusion of different sets of covariates for each gene, which offers more 

relevant biological conclusions and interpretations."The obtained p-values from the best BIC 

model were, however, not corrected p-values for differential expression since they were biased 

by the variable selection procedure and the type I error control was voided. As a result, a 

permutation analysis that randomly shuffled the disease labels within each pair was performed 
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to generate a null distribution for p-value assessment (B=500). Subsequently, the permutation-

corrected and unbiased p-values were further adjusted by Benjamini-Hochberg procedure for 

multiple comparisons within each study to control the false discovery rate (FDR). "

Prediction analysis-model building.  To investigate the prediction power of genomics features on 

predicting MDD status and non-remission status in 12 weeks, support vector machine (SVM) 

with feature selection was applied to construct the models. SVM has been shown to give 

excellent performance in comparative study (Lee et al, 2005). We use SVM as the classification 

algorithm with a linear kernel (implemented in R package e1041). Feature selection is applied 

on the 11797 probes with 4 criterions: (i) p-value calculated from standard t test between two 

class in the training samples, (ii) effect size (difference of average of log2 expression between 

two groups), (iii) the background probe variability, as identified by differentially-expressed 

between CNR and CR at both time 0 and time 12; (iv) the probes should correspond to a 

matched gene symbol and should also have a matched gene in the independent cohort. In 

selecting the genes to construct model, probes were first ranked by p-value, then the log2 fold 

changes of less than 0.5 was filtered away as well as the probes associated with background 

variation. This is because small log2 fold change could result in false positives (Spijker et al, 

2010). Probes without corresponding gene symbol or matched genes in the independent cohort 

were further filtered. The background variation genes were defined as probes between CNR 

and CR at time 0 and time 12 with p value smaller than 0.05. In this study, 766 probes were 

obtained as background variation probes.  We attempted different models with features from 2 

to 30. 

Prediction analysis-performance assessment.  N-fold cross validation is commonly used to 

evaluate the performance of individual classifier. In this study, we evaluated different models 

with leave-one-out cross validation (LOOCV). However, when multiple models are considered in 

the study, the model selection bias is often ignored by simply reporting the model with the 
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highest CV accuracy. In this study, we not only assessed the performance of each classifier with 

leave-one-out cross validation but we also report the performance by correcting the potential 

model selection bias by applying nested-cross validation (Varma and Simon, 2006). For each 

iteration of nested-cross validation, 33 of the 34 samples are treated as training samples and 

the rest 1 sample is treated as the independent test sample. The models are only evaluated 

within the 33 training samples with another round of leave-one-out cross validation. The model 

with the best CV accuracy is then selected and applied to the independent test sample. The 

whole process was iterated 34 times and the average performance is reported. The 

performance evaluation workflow is illustrated in Table S8. The 9 and 13 genes features can 

achieve 88.2% accuracy; however, the accuracy could be biased upward because multiple 

classifiers are attempted. The corrected accuracy with nested CV is 79.4%. If 47 baseline 

clinical variables are included together with the genomic features for model selection, a 3-

feature model is most frequently selected in nested CV, with a corrected accuracy of 97%, the 

same as the performance of 3-feature model without nested CV correction. 

Validation in an independent cohort with the 13 top genes. In the prediction analysis of the initial 

cohort, we concluded that the 13 gene model provided the best performance. Therefore, we 

applied the top 13 genes selected in the initial cohort to an independent cohort of 63 samples 

from Mamdani et al (Mamdani et al, 2011) publication. The original study was designed to 

examine the difference of responder versus non-responder groups, instead of remission status. 

We obtained the HAMD 17 item score and divided the samples into 36 remitted and 27 non-

remitted samples by the HAMD score 7 cutoff which is consistent with our definition. We applied 

the same feature selection criteria in the prediction model construction: (i) p value, (ii) effect size 

and (iii) background variation genes. For assessing the predictability of the 13 genes on the new 

cohort, we performed an additional round of feature selection due to the larger cohort and 

different platform of the gene expression arrays (Illumina HT12-v4.0 in initial cohort and 
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Affymetrix U133 plus in validation cohort). In the end, we selected 6 out of 13 genes to achieve 

an optimal 76.2% accuracy (with nested CV correction, see Table S9) and we showed that the 

effect sizes of the top frequent features involved in the 6-gene model in both the initial and 

validation cohorts are highly consistent and correlated. 
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"

Supplemental Results 

"

Inference of blood cell-type proportions  

MDD-related genes: To address the possibility that our results may reflect differences in the cell 

pool rather than differences in per-cell gene expression, we estimated the distribution per blood 

cell compartment of our 842 differentially expressed genes between MDD-NR subjects and 

CTRLS (at T0). Percent of genes identified as enriched in various cell types were assessed and 

compared with previous findings (Abbas et al, 2005). Results show statistical differences 

(χ2=41.1, p<0.0001, Table S3), although the percentage changes are modest (10% at best). 

Importantly for our analysis, over 50% of the genes appear to be expressed in various blood cell 

types, and 45% of genes are expressed across different cell groups.  

Biomarkers of non-remission (13 genes list): Due to the smaller group size we used an 

alternative approach and assessed putative cellular origin of transcripts for the 14 genes using 

Pearson correlation with known cellular markers. Based on a (Palmer et al, 2006) reported list of 

genes selectively enriched in specific cell types, we measured the proportion of genes within a 

blood-cell population that displayed correlated patterns with each of the 13 predictive genes 

using data from T0 and T12. 9 out of the 13 genes (CD3D, GZMA, MATR3, PSMA4, PSMA6, 

RPL17, RPL24, RPL5, RPL9, Table S9) displayed correlated expression with lymphoid-related 

genes. However this was not specific, as the same genes also moderately correlated with 

expression of genes belonging to other cell types. Moreover 4 of the 13 genes (CD97, IFITM3, 

TAGLN2, TIMP1, Table S9) showed correlated patterns with granulocytes-related genes, 

together confirming that the genes used in our model do not belong to a specific cell 

compartment. 
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SUPPLEMENTARY TABLES 

Table S1. Self-report and assessment scales 

Demographic Variables
  AGE
  SEX
  RACE
  MARITAL
  EDUCATION
  BODY MASS INDEX
  INCOME
Clinical Variables Assessment Scales

17-item Hamilton Depression Rating Scale (HRSD-17)
HRSD - core mood symptoms
HRSD - core anxiety symptoms
HRSD - core sleep symptoms

 Clinican-rated anxiety symptoms HRSA (Hamilton Rating Scale for Anxiety)
 Self-reported depression Quick Inventory of Depressive Symptomatology (QIDS-SR)
 Self-reported anxiety sensitivity Anxiety Sensitivity Scale (ASI)

MASQ General Distress-Anxiety
MASQ General Distress-Depression
MASQ Anxious Arousal
MASQ Anhedonic Depression

 Lifetime panic symptoms Panic-Agoraphobic Spectrum Scale (PAS-SR) - total
 Lifetime mood symptoms Mood Spectrum Scale (MOOD-SR) - total
 Lifetime OCD symptoms Obsessive-Compulsive Spectrum Scale (OC-SR) - total 
 Lifetime social phobia symtpoms Social Phobia Spectrum Scale (SHY-SR) - total 
Baseline Social / Role Function

Negative Interaction Scale (NIS) 
Interpersonal Support Evaluation List (ISEL)
Quality of Life Enjoyment and Satisfaction (QLESQ) scale 
Perceived Stress Scale (4-item PSS)
Perceived Sense of Mastery (PMAST) scale
IIP Interpersonal Sensitivity
IIP Interpersonal Ambivalence 
IIP Aggression
IIP Need for Social Approval
IIP Lack of Sociability
IIP Personality Disorder screener

Childhood Trama or Abuse
CTQ Emotional Abuse
CTQ Physical Abuse
CTQ Sexual Abuse
CTQ Emotional Neglect
CTQ Physical Neglect

 Inventory of Interpersonal Problems 
(IIP) subscales

 Self-reported social/role function

 Clinician-rated mood symptoms 

 Childhood Trauma Questionnaire 
(CTQ) subscales

 Mood and Anxiety Symptom 
Questionnaire (MASQ) self-report 
subscales
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Additional information included in the prediction models included: Treatment type, number of 

lifetime depressive episodes, age at first depressive episode, duration (in weeks) duration of 

current episode. 

Table S2. Differential expression of genes between MDD, control, MDD-NR, and MDD-R at 

T0 and T12. 

See separate excel tabl 

Note that probesets are indicated in the supplemental tables, which were reduced to gene 

numbers in the manuscript. 

- Worksheet a) Differential expression of genes between MDD and control, MDD-NR and 

control, MDD-R and control and MDD-NR and MDD-R at T0;  

- Worksheet b) Differential expression of genes between MDD and control, MDD-NR and 

control, MDD-R and control and MDD-NR and MDD-R at T12  

- Worksheet c) Differential expression of genes between MDD, MDD-NR and MDD-R at T12 

vs T0. 

 

 

Table S3: Blood cell group distribution of genes differentially expressed at T0 between 

MDD-Non remitter (NR) versus controls 

B-cells Dendritic cells Lymphoïds Monocyte Multiple Myeloïd Neutrophils NK-cells T-cells
Number of genes in whole blood (%) 93 (5.2) 74 (4.1) 241 (13.4) 84 (4.7) 821 (45.8) 343 (19.1) 45 (2.5) 16 (0.9) 77 (4.3)

Number of genes in our dataset (%) 0 (0) 2 (1.6) 3 (2.4) 7 (5.6) 67 (53.6) 37 (29.6) 8 (6.4) 0 (0) 1 (0.8)  

 

 

Table S4: Functional analysis in MDD-Non remitter (NR) versus controls 

See separate excel table 
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Table S5: Functional analysis in MDD-Remitter (R) versus controls 

See separate excel table 

 

Table S6. Transcription factor analysis.  p-value are from fisher’s exact test using the Enrich-
R software  (Chen et al, 2013). 
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Term P&value Adjusted0P&value Z&score Combined0Score
PPARG% 1.08E+17 3.16E+15 +1.65 54.98
E2F1% 3.28E+17 4.82E+15 +1.60 52.61
RELA% 1.67E+15 1.23E+13 +1.58 47.09
TP53% 8.26E+15 4.86E+13 +1.61 45.58
FOXC1% 6.40E+13 2.69E+11 +1.70 41.47
PCBP1% 2.37E+12 7.75E+11 +1.68 39.01
RUNX1% 3.01E+13 1.48E+11 +1.52 37.87
CREB1% 1.08E+12 3.99E+11 +1.52 36.42
NR1H3% 3.43E+11 8.41E+10 +1.64 34.30
WT1% 1.09E+11 2.92E+10 +1.50 32.85
NR5A2% 7.58E+12 2.23E+10 +1.46 32.34
SP3% 2.23E+10 4.69E+09 +1.64 31.46
NFKB1% 7.64E+11 1.73E+09 +1.49 30.09
SP1% 3.79E+10 7.44E+09 +1.59 29.82
HIF1A% 4.58E+10 7.92E+09 +1.58 29.43
TCFAP2A% 1.52E+09 2.13E+08 +1.56 27.53
RARA% 9.31E+10 1.44E+08 +1.52 27.51
E2F6% 1.17E+09 1.71E+08 +1.45 25.95
GATA2% 5.29E+09 5.98E+08 +1.55 25.72
ZBTB7A% 1.81E+09 2.31E+08 +1.45 25.55
SRF% 8.12E+10 1.33E+08 +1.37 24.86
NR1I2% 6.13E+09 6.67E+08 +1.42 23.39
SREBF1% 5.03E+09 5.92E+08 +1.40 23.36
ETS1% 1.62E+08 1.70E+07 +1.42 22.07
HINFP% 4.89E+09 5.92E+08 +1.31 21.84
ATF2% 3.94E+08 3.73E+07 +1.34 19.86
NFE2% 3.13E+08 3.11E+07 +1.26 18.89
RELB% 1.13E+07 1.00E+06 +1.33 18.39
PITX2% 3.17E+08 3.11E+07 +1.22 18.23
ELK1% 1.49E+07 1.29E+06 +1.30 17.70
MTF1% 2.42E+07 1.98E+06 +1.30 17.12
JUN% 9.23E+08 8.48E+07 +1.22 17.10
KLF5% 2.73E+07 2.11E+06 +1.30 17.05
TEAD4% 2.72E+07 2.11E+06 +1.29 16.86
SPI1% 3.28E+07 2.41E+06 +1.29 16.71
MIR138% 2.86E+07 2.16E+06 +1.22 15.94
RBPJ% 5.28E+07 3.70E+06 +1.24 15.49
AHR% 6.63E+07 4.53E+06 +1.26 15.46
CEBPD% 8.64E+07 5.29E+06 +1.19 14.43
MAX% 7.86E+07 4.91E+06 +1.17 14.32
IRF8% 7.37E+07 4.71E+06 +1.16 14.25
NFYA% 3.56E+07 2.56E+06 +1.10 14.13
TFAP2A% 9.84E+07 5.90E+06 +1.14 13.73
RXRA% 1.35E+06 7.93E+06 +1.12 13.19
SNAI2% 3.05E+06 1.50E+05 +1.11 12.33
TCF3% 3.05E+06 1.50E+05 +1.11 12.31
SNAI1% 3.05E+06 1.50E+05 +1.11 12.31
GFI1% 2.99E+06 1.50E+05 +1.10 12.22
LTF% 1.43E+06 8.26E+06 +1.04 12.15
NRF1% 2.46E+06 1.36E+05 +1.07 12.04 

Table S7: Validation of microarray results by qPCR (with the primer sequences). Effect 

size are in average log2 ratio of (MDD-R/control), (MDD-NR/control) and (MDD-NR/MDD-R). 
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Red shadow indicates up-regulation. Green shadow indicates down-regulation. Grey shadow 

indicates p<0.05.  
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ADSL 0.05 0.427 0.02 0.496 -0.24 0.002 -0.60 0.001 -0.33 0.0001 -0.48 0.002

ARHGEF11 -0.06 0.237 -0.17 0.066 0.35 0.0001 0.54 0.021 0.21 0.001 0.37 0.006

CD3D 0.22 0.144 0.28 0.229 -0.54 0.037 -0.82 0.023 -0.59 0.004 -0.76 0.009

ECGF1 (TYMP) -0.09 0.459 -0.14 0.258 0.20 0.152 0.60 0.142 0.44 0.001 0.80 0.025

GBA -0.01 0.941 -0.13 0.139 0.35 0.002 0.14 0.164 0.32 0.001 0.15 0.153

GZMA 0.35 0.006 0.39 0.242 -0.58 0.022 -1.03 0.035 -0.64 0.002 -0.65 0.037

IFITM3 -0.23 0.476 -0.11 0.510 0.36 0.499 0.26 0.307 1.28 0.000 0.51 0.034

IL17RA -0.09 0.486 -0.14 0.136 0.39 0.005 0.55 0.002 0.46 0.003 0.37 0.004

MBOAT1 -0.05 0.737 -0.17 0.079 0.24 0.001 -0.09 0.191 0.31 0.0001 0.09 0.233

MPST -0.06 0.444 -0.16 0.342 0.27 0.009 0.67 0.149 0.28 0.002 0.67 0.042

MSH6 0.02 0.719 0.04 0.441 -0.13 0.105 -0.45 0.016 0.19 0.007 -0.37 0.002

NAP1L4 0.04 0.558 0.20 0.453 -0.25 0.003 -0.06 0.253 -0.27 0.001 0.03 0.365

OSCAR -0.06 0.512 0.03 0.421 0.48 0.002 0.49 0.006 0.41 0.001 0.25 0.015

PRDM4 0.08 0.136 -0.10 0.105 -0.07 0.389 -0.34 0.001 -0.19 0.001 -0.26 0.013

RPL17 0.42 0.121 0.52 0.224 -0.80 0.022 -1.68 0.006 -0.79 0.013 -1.16 0.005

RPL24 0.09 0.514 0.30 0.270 -0.62 0.012 -0.84 0.054 -0.59 0.006 -0.96 0.012

RPL4 0.20 0.112 0.28 0.313 -0.24 0.045 -0.59 0.003 -0.46 0.001 -0.60 0.008

RPL5 0.11 0.444 0.10 0.422 -0.64 0.01 -0.88 0.007 -0.73 0.002 -0.76 0.027

RSPH3 -0.15 0.005 -0.14 0.094 0.05 0.333 0.33 0.132 0.24 0.001 0.57 0.002

TBXAS1 -0.10 0.302 -0.18 0.238 0.34 0.026 0.52 0.021 0.34 0.001 0.56 0.01

TIMM23 0.10 0.117 -0.07 0.186 -0.36 0.003 -0.16 0.036 -0.33 0.001 -0.03 0.097

MDDR vs control t0 MDDNR vs control t0 MDDNR vs MDDR t0

microarray qPCR microarray qPCR microarray qPCR
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Table S8. Primer sets used in RT-qPCR experiments. 

 

Gene Name Forward Primer Sequence Reverse Primer Sequence 
ACTIN ACGGTGAAGGTGACAGCA TTAGGATGGCAAGGGACTTC 
ADSL TCCCATTCACTCCCAGTT TCACCTTCATCACGCTTTC 

ARHGEF11 TCCCTGGACTTCTCATCTTC GCTCCGTACCTGCTTCAC 
CD3D TGAGGACAGAGTGTTTGTGAA TCCCAGGTCCAGTCTTGT 

GAPDH TGCACCACCAACTGCTTAGC GGCATGGACTGTGGTCATG 
GBA ACATCACCAAGGACACGTT CACAACAGCAGAGCCATC 

GZMA GTGAAACCAGGAACCATGT TATCGGACCAAGATGCACTAT 
IFITM3 GGACAGGAAGATGGTTGG CCCAGATGTTCAGGCACT 
IL17RA GTGCAGCGGTCTGGTTAT CATGCAATTTATCTTGGTATCC 
MBOAT ATTGGAAATCAGAAAGTCTCCT TGAGGCATGAACATTTGG 
MSH6 TCTCCCAGAGGAAGTTATTCA TCAAAGTCAGCAATTTATGGA 
MSPT CCTACGAGGACATCAAGGA CTCAGGGCTCTTCTCCAG 

NAP1L4 AGCGTCAAGTCCTGCTTT TAAGGTTAGGCCGAGCAC 
OSCAR TGTGCTGTAGCTTCTTTCCA CACGTCTCACTACTACCTTTCTGT 
PRDM4 CACATCCAGCGTTTCTCA CTACTCCAGCCCAGAGGTT 
RPL17 CCTAAACCAGAAGAGGAGGTT ATTTACTCCCGTGCCATAAG 
RPL24 CTGGTGCATCTCTTGCTG GCAGCCCTGATAGCTTGT 
RPL4 ACCCACTGAAAAACTTGAGAAT CTTTCCTTTCTTACCTACCACAG 
RPL5 TGCTATACGAGAGAATCCAGTC AGCTACCCGATCCTTCTTC 

RSPH3 GGGGAGGAAGAATTGTCATA CCCAGTCCATTACACAAAAA 
TBXAS GTCTAGGGCTGCTTGAGG AGCGGGATACGATCTTGA 
TIMM23 CATTAGTGAGTTGAAGCCAAA TTAAATGAATGGACTTGGTGATA 
TYMP CACCTTGGATAAGCTGGAG CTGACCCACGATACAGCA 
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Table S9: Prediction of non-remission in MDD patients at baseline with gene information 

only.  The accuracy shown is from single loop cross validation and is overly optimistic from 

selection bias. The corrected accuracy of the 13 gene model by nested cross validation is 

79.4%. The threshold was selected to balance sensitivity and specificity such that Youden index 

(sensitivity+specificity-1) was maximized. 

 

Model  
(gene 

number) 

Accuracy (using 
single loop cross 

validation) 
Sensitivity Specificity 

2 0.85 0.73 0.95 
3 0.85 0.80 0.89 
4 0.82 0.73 0.89 
5 0.79 0.73 0.84 
6 0.76 0.60 0.89 
7 0.82 0.67 0.95 
8 0.79 0.60 0.95 
9 0.88 0.80 0.95 

10 0.85 0.73 0.95 
11 0.79 0.67 0.89 
12 0.82 0.80 0.84 
13 0.88 0.80 0.95 
14 0.79 0.67 0.89 
15 0.79 0.67 0.89 
16 0.79 0.67 0.89 
17 0.82 0.73 0.89 
18 0.82 0.73 0.89 
19 0.85 0.80 0.89 
20 0.82 0.80 0.84 
21 0.82 0.80 0.84 
22 0.85 0.80 0.89 
23 0.82 0.73 0.89 
24 0.82 0.73 0.89 
25 0.79 0.73 0.84 
26 0.76 0.73 0.79 
27 0.74 0.67 0.79 
28 0.74 0.67 0.79 
29 0.76 0.67 0.84 
30 0.71 0.67 0.74 
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Table S10: Percentage of blood-cell specific genes showing positive correlation of 

expression changes between groups with genes belonging to the 13-genes model list. 

 

B-Cells T-cells CD8+ T-cells GRANS LYMPHS

428 222 23 411 67

172 124 14 228 26

CD3D 33.1 25.8 35.7 5.3 80.8
CD97 24.4 27.4 7.1 62.3 3.8
GZMA 30.2 24.2 35.7 6.6 76.9
IFITM3 16.9 19.4 0.0 50.0 3.8
MATR3 30.2 23.4 14.3 5.7 76.9
PSMA4 32.6 24.2 28.6 5.3 80.8
PSMA6 32.6 25.8 28.6 5.7 80.8
RPL17 32.6 25.8 28.6 5.7 80.8
RPL24 34.9 26.6 28.6 5.7 80.8
RPL5 31.4 24.2 14.3 5.3 80.8
RPL9 34.3 25.0 35.7 5.3 80.8

TAGLN2 26.2 26.6 0.0 61.4 3.8
TIMP1 15.7 20.2 0.0 47.8 3.8

13 genes 
model list

Number of genes enriched in the population (from Palmer et al., 2006) 

Cell-specific genes displaying similar directional effect across group comparisons (in %)

Number of cell-specific genes detected in our dataset

 
 
GRANS : granulocytes cells 

LYMPHS: lymphoid cells 
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Table S11. Prediction of non-remission in the independent validation cohort with top 13 

gene features from our cohort.  Accuracy represents the percentage of correctly identified 

samples.  Sensitivity represents the ability to predict non-remission. Specificity represents the 

ability to predict remission. 

 
Accuracy Sensitivity Specificity 

2 0.63 0.72 0.52 

3 0.65 0.83 0.41 

4 0.71 0.83 0.56 

5 0.75 0.86 0.59 

6 0.76 0.86 0.63 

7 0.73 0.83 0.59 

8 0.75 0.86 0.59 

9 0.68 0.81 0.52 

10 0.70 0.83 0.52 

11 0.70 0.81 0.56 

12 0.65 0.75 0.52 

13 0.68 0.81 0.52 
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Table S12: Prediction of non-remission in MDD patients at baseline with gene information 

plus clinical information: Top genes frequency for the three features model.  IDS16TOT: 

Quick Inventory of Depressive Symptomatology. 

 

probe_definition matched_geneSymbol freq 

Homo sapiens interferon induced transmembrane 
protein 3 (1-8U) (IFITM3), mRNA. IFITM3 34 

Homo sapiens TIMP metallopeptidase inhibitor 1 
(TIMP1), mRNA. TIMP1 33 

IDS16TOT Clinical variable 34 

 

 

 

Table S13: Prediction of non-remission in MDD patients at baseline with gene information 

plus clinical information.  

 

Features used in prediction 
model 

 
Initial cohort 

(genes & clinical 
information) 

# features used in model 3 

 
Corrected Accuracy (%) 

 
97.1 

Sensitivity (%) 1 

Specificity (%) 94.7 

 

"
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