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We present a perceptron model with processing units consisting of coupled phase oscillators.
The processing units are able to compute the input signals through a high order synapse mechanism.
We show how a network of these elements can be used in analogy to the classical multilayer feedforward
neural network. The main characteristics of the classical multilayer perceptron model are conserved,

be seen as a generic study in order to use different kind of oscillators for computational tasks.
& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The perceptron is one of the first models of artificial neural
networks, inspired in biological neural systems, widely accepted [1].
Its use in multilayer feedforward networks with the backpropaga-
tion algorithm for learning is a paradigmatic model in this field [2].
Although this model has been quite well understood for theore-
tical studies and applications, it has strong simplifications as
artificial dynamics (updating schemes) and simple node operation.
On the other hand, realistic models considering spiking neural
networks also have been developed, allowing the use of a
modified backpropagation algorithm for learning [3].

Phase oscillator models can be seen as a middle level of
description between simple and realistic models. The importance
of this intermediate level consists on the generality of the results.
In effect, a phase oscillator is a generic description for a wide
variety of oscillators on the onset of their limit cycle behavior. On
the other hand, its low level allows us to apply, directly, the results
of simple models and powerful algorithms.

As a matter of example, phase oscillator networks based on the
Kuramoto model have shown to be a good first approximation for
oscillatory artificial neural networks and they have been used to
perform some kind of computational operations [4]. Hopfield-like
models of associative memory [5] have been developed using phase
oscillator networks (Aoyagi [6], Aonishi [7] and Nishikawa [8]).
Additionally, a phase oscillator model has been used in the
construction of a central pattern generator by using the symmetry
ll rights reserved.
breaking of a pacemaker, allowing to the system evolves between
its fixed points [9].

The aim of this work is to combine oscillatory models of nodes
with the results of classical feedforward neural networks. This
combination is a step forward in order to extent the utility of
powerful computational algorithms to more realistic models of
neural systems. Our approach is to use processing units of phase
oscillators in multilayer feedforward networks. In order to use in
this way these oscillators, we encode their activities as phase
differences between them. As result we show that a phase
oscillator perceptron behaves in analogy to the classical percep-
tron model, important fact that allows us to construct feedforward
networks, and use the backpropagation algorithm for learning.

This work is organized as following. We present in the second
section a model of interaction between phase oscillators, the phase
oscillator perceptron model and the feedforward networks. In the
section numerical study, we show a network able to solve the XOR
logic problem. In the fourth section, we show a linear stability
analysis for this model. Finally, we present a discussion and the
conclusions in the last section.
2. The model

Consider the case of two phase oscillators, a processing
oscillator ϕP and a reference oscillator ϕR (ϕi∈½0 : 2πÞ, with
i¼ P,R). We design a dynamics for them where its fixed points
are located in the phase difference relationships ΔϕPR ¼ π and
ΔϕPR ¼ 0 (with ΔϕPR ¼ ϕR−ϕP). We get this by using the following
energy function:

LðϕP ,ϕRÞ ¼ 2f PRcosðϕR−ϕPÞ−
1
2
cos2ðϕR−ϕPÞ: ð1Þ
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In this expression, f PR ¼ f RP is the coupling that controls the
interaction between the oscillators. When f PR ¼ 0, LðΔϕPRÞ has two
minima for ΔϕPR ¼ 0 and ΔϕPR ¼ π, and, a maximum exists
between these two points. This case corresponds to a Kuramoto
model with twice the periodicity.

Eq. (1) allows us to control the nature of the extreme points
(maxima or minima) by tunning the coupling f PR. In order to have
ΔϕPR ¼ 0 the only minimum of the system (unique fixed point of
the dynamics) we have to use f PR ≤−1. In case that the only
minimum should be ΔϕPR ¼ π, we must set f PR≥1.

The dynamics of the phase oscillators is given by the negative
gradient of Eq. (1) as

_ϕ i ¼ sin 2ðϕj−ϕiÞ−2f ijsinðϕj−ϕiÞ ð2Þ

with i¼ P,R, j¼ P,R and i≠j. The dynamics of this system corre-
sponds to a phase-locked motion of the oscillators. Eqs. (1) and (2)
show clearly that the proposed energy function and dynamics
have a second order Fourier term. It is well known that this term
in systems of phase oscillators can fall in cases of cluster partitions
[10–12]. As a result we have a system of oscillator in which we can
control the localization of the stable fixed point of the dynamics as
a function of the coupling f PR.

2.1. Phase oscillator perceptron

A phase oscillator perceptron (processing unit) consists on two
phase oscillators ϕR and ϕP as Fig. 1a shows. They are coupled
Fig. 1. (a) An oscillatory perceptron (processing unit). It consists of two oscillators,
the reference ϕR and the processing ϕP ones. They are connected by a symmetric
synapse f PRðsPÞ which is function of the input signal sP . The unit computes the
external signal by this high order synapse mechanism and the result (output signal)
is the phase difference between the oscillators and (b) network able to solve the
XOR problem. All the nodes have the same reference oscillator ϕR (we repeat it in
order to simplify the scheme). The thresholds hi ¼ 0:5. The network computes the
vector ðI1 ,I2Þ of external signals and returns the value ϕ5. The XOR problem consists
on: ð0,0Þ-0, ð0,1Þ-π, ð1,0Þ-π and ð1,1Þ-0.
according with the previous model (Eq. (2)) by a symmetric
synapse f PR. In order to process information with this unit we
have to define firstly the meaning of activation. In the classical
perceptron model, a unit is activated when its output is one, and
when it is zero, the perceptron is inactivated. In analogy, we say
that a processing unit is activated if the phase difference between
its oscillators is π, and inactivated, if this phase difference is zero.

Consider now an external signal sP arriving to the processing
unit. We can compute such signal by making the synapse f PR a
function of it as follows:

f PRðsPÞ ¼ αFðsP−hPÞ: ð3Þ
In this expression FðxÞ is the activation function (FðxÞ ¼ 1 if

x40, and FðxÞ ¼−1 if xo0), hP the threshold of the processing
unit, and α a constant value. In general we use in this work α¼ 2.
It is clear that if sP4hP , f PR ¼ α and the stable configuration
corresponds to a phase difference of π between the oscillators.
This case falls in the activation of the unit. If sPohP , f PR ¼−α and
the unit is inactivated since the stable configuration corresponds
to the configuration with zero phase difference. This system of
phase oscillators behaves in analogy to the classical
perceptron model.

The architecture of the proposed oscillatory perceptron corre-
sponds to an high order synapses mechanism. In effect, the
synapse f PR between the two oscillators is a function of the input
signal sP , that in general as we shall see later, it is the sum of the
synapses coming from other nodes of the system. This way of
computation is quite different from previous models of phase
oscillator networks (Kuramoto-like models) where the synapses or
couplings between nodes are constants. High order synapses are
well known in biological systems and they have been also
considered in artificial neural networks as for example references
[13,14] show.

Despite this work does not intent to claim any biological
interpretation of the model, it is important to note that the effect
of this proposed mechanism is to change the character of the
synapse f PR between excitation and inhibition. Although, we
propose this mechanism just as an effective process, evidence of
this possibility is known in real biological systems as reference
[15] presents. Finally, a similar effect can be reached by cotrans-
mission [16].

2.2. Multilayer feedforward perceptron network

We construct a multilayer feedforward network with the
previous processing units (nodes). In general, a network has N
nodes, and since all these elements have the same reference
oscillator, the network has the same number of oscillators ϕi with
i¼ 1,…,N. The processing units are arrange in k layers with nk

nodes in each one. The input layer k¼ 1 processes the input
signals Il with l¼ 1,‥,n1. Nodes in the output layer return the final
result of the computational process. The network architecture is
completed by a set of synapses with weights wij between the
nodes, and thresholds hi for each processing unit. An example of
these networks is shown in Fig. 1b.

At this point it is important to comment the role of the
reference oscillator ϕR. It is clear that this oscillator has funda-
mental importance in the model since the synapses f iRðsiÞ compute
the input signals. However, from a mathematical point of view, the
existence of the reference is unnecessary. Thus, we take this
reference as a constant ϕR ¼ 0 and we remove it from all the
labels in the equations. We refer to an processing unit i just by its
processing oscillator ϕi. Although we make this simplification in
the notation, we must remember the importance of this oscillator
and the difference between the synapses f iR inside the processing
units and the synapses wij between these units.
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The total input signal siðIi, ϕ
!Þ arriving to the processing unit ϕi

is the following:

siðIi, ϕ
!Þ¼ ∑

N

j ¼ 1

wij

π
mðϕjÞþ Ii: ð4Þ

In this expression Ii is the external input signal arriving to the unit
i (Ii≠0 only for input units). The synapse or connection from node j
to i is weighted by wij (if there is not a connection wij ¼ 0).
The function mðϕÞ returns the smaller phase difference of the
oscillator ϕ in the interval ½0 : π�. Finally, the vector ϕ

!
has N

elements with the phase of the oscillators of the network. The unit
ϕi processes the total input signal siðIi, ϕ

!Þ according to Eq. (3). Thus,
the coupling between this oscillator and the reference is given by

f iðsið Ii
!

, ϕ
!ÞÞ ¼ αFðsið Ii

!
, ϕ
!Þ−hiÞ: ð5Þ

In this equation, the parameter hi is the threshold of the node ϕi.
For this systemwe design a kind of energy or potential for each

layer of the network as follows:

Lkð I
!

, ϕ
!Þ¼ ∑

nk

i ¼ 1
2f iðIi, ϕ

!ÞcosðϕiÞ−
1
2
cos 2ðϕiÞ

� �
: ð6Þ

In this expression the sum is performed on the nk preceding nodes
of the layer k. The nodes of a layer k have couplings f iðIi, ϕ

!Þ which
are function only of the states of the nodes in the preceding layer,
or the corresponding input signals. Thus, the couplings act as an
external field that controls the dynamics of the layer k. Fixing the
external input signals I's, the oscillators in the first layer can only
evolve to phase differences zero or π. The oscillators in the second
layer follow the external field produced by the first layer, and in
consequence, they also can evolve only to phase differences zero
and π. And obviously, this process is repeated downstream
through the network.

The dynamics for a network is imposed by considering the
negative gradient of the potential of each layer (Eq. (6)) as follows:

_ϕ i ¼ 2f iðIi, ϕ
!Þ sinðϕiÞ−sin 2ðϕiÞ: ð7Þ

Since the couplings f iðIi, ϕ
!Þ take constant values 7α, the fixed

points of this dynamics are located on the corners of a hypercube
of N dimensions in the space of phase difference fϕig. It has one
corner in the origin and side of length π. In particular, as we will
see later, this dynamics has only one stable fixed point, all the
other fixed points are at least saddle ones. This is satisfied if we
take the weights and thresholds from a classical feedforward
perceptron network which has learned to solve a specific problem.
Fixing the input values Ii to the nodes of the input layer, the
system evolves to the corresponding learned stable fixed point
independent of the initial conditions.
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Fig. 2. Phase difference evolutions as function of time of the system shown in
Fig. 1b. The input signals change each 25 time units.
3. Numerical study

We present in this section a system able to solve the logic XOR
problem with the phase oscillatory perceptrons. The network is
presented in Fig. 1b. It must process the input signals I1 and I2 and
returns the result in the node ϕ5. The weights, thresholds and
architecture have been taken from a classical multilayer feedfor-
ward network given as example in the book of Rojas [17]. Our
hypothesis is that we can use the set of weights fwijg and thresh-
olds fhig coming from a functional classical multilayer perceptron
network. Thus, the backpropagation algorithm can be used to
learn the weights in an equivalent classical network and then use
these parameters in our model.

We use the dynamics of Eq. (7) adding a stochastic term as
follows:

_ϕ i ¼ 2f iðIi, ϕ
!Þ sinðϕiÞ−sin 2ðϕiÞþTηiðtÞ: ð8Þ
In this expression T is the noise intensity and ηiðtÞ is a stochastic
variable with 〈ηiðtÞ〉¼ 0 and 〈ηiðtÞ,ηjðt′Þ〉¼ δijδðt−t′Þ. The system has
been integrated using a stochastic Euler method with Δt ¼ 0:01
and noise intensity T¼0.001.

Fig. 2 shows the evolutions of the phase differences as function
of time. As initial conditions for the oscillators we take random
phases with uniform distribution between zero and π. Initially,
at t ¼ 0 and during 25 time units, we set the input signals as I1 ¼ 0
and I2 ¼ 0. We observe in Fig. 2 how the phase differences evolve
to zero, in particular, the output node (Fig. 2e) evolves to ϕ5 ¼ 0
solving the XOR problem for these input signals.

At t¼25 and during the next 25 time units we set the new
input signals as I1 ¼ 0 and I2 ¼ 1. We observe that the phase
differences evolve to a new state as it is required by the XOR
problem. Now, the output oscillator has a phase difference of
ϕ5 ¼ π at t≈40. Note that without noise, the system cannot escape
from the previous fixed point that is now unstable. Therefore,
in order to process a series of input signals, we need to have
stochastic dynamics. We change again the input signals at t¼50
(I1 ¼ 1 and I2 ¼ 0) and t ¼ 75 (I1 ¼ 1 and I2 ¼ 1), and during 25
times unit each. We observe that the network can follow the input
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signals and process them properly as it is required by the XOR
problem (ϕ5 ¼ π at t≈70, and ϕ5 ¼ 0 at t≈90 respectively).

In Fig. 3 we focus in the signaling change at time t¼25, from
I1 ¼ 0 and I2 ¼ 0, to I1 ¼ 0 and I2 ¼ 1. Fig. 3a shows the layer
potentials Lkð I

!
, ϕ
!Þ as function of time. We observe that when the

external signals change at t¼25 the potential L1ð I
!

, ϕ
!Þ of the first

layer jumps to a higher value since the actual state of the
oscillators in this layer is now located in an unstable fixed point
(maximum or saddle point of the potential). Under this situation,
the unit ϕ2 escapes from the unstable fixed point because the
noise effect and increases its phase to ϕ2 ¼ π (Fig. 3b) and L1ð I

!
, ϕ
!Þ

decreases to the minimum value again.
The second layer of the network is still in a stable configuration

until t≈29:4. At such instant, the first layer is reaching the new
configuration and changes L2ð I

!
, ϕ
!Þ increasing its energy, since

the actual configuration of the second layer is now located in a
maximum or saddle point of L2ð I

!
, ϕ
!Þ. As in the first layer, the

process is repeated here and the fourth unit evolves to ϕ4 ¼ π at
t≈34. Finally, the potential L3ð I

!
, ϕ
!Þ with the output unit becomes

in an unstable configuration at t≈33:4 when the oscillators of the
second layer are reaching their stable configuration. At such
instant, L3ð I

!
, ϕ
!Þ increases its value, and by the gradient dynamics,

the output node evolves to the new stable configuration ϕ5 ¼ π
and L3ð I

!
, ϕ
!Þ gets its minimum value at t≈38.

The noise helps to escape from the unstable fixed points of the
dynamics. Thus, the noise intensity T has been taken very low in
order to perform such function. The noise effect, however, consists
on breaking down the phase-locked motion of the oscillators.
If the noise intensity is low, the system ϕ

!ðtÞ evolves very close to
the fixed point ϕ

!n

, allowing the binary information to be properly
retrieved. As a result, low noise intensities do not change the
stability properties of the system. A more detailed study of the
noise effect in systems of phase oscillators can be found in
Ref. [11].

With this example we have shown how the system is able to
work in analogy with a classical feedforward perceptron network.
The network has the ability to process sequentially, and in
continuous time, different input signals. Finally, we want to note
that the delay between the input signals and the output response
(processing time) can be controlled by the noise intensity T and
the coupling constants of the dynamics. In effect, high noise
intensity T helps to escape faster from the unstable fixed points.
On the other hand, the characteristic time of the dynamics of a
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Fig. 3. Layer potentials (a) and phase differences (b) as function of time for the
system shown in Fig. 1b. At t¼25 the input signals change from I1 ¼ 0 and I2 ¼ 0, to
I1 ¼ 0 and I2 ¼ 1.
layer l is controlled by some coupling strength Kl that multiplied
the second member of Eq. (7) (we have used Kl ¼ 1 in this work).
Thus, the response time of each layer can be controlled by tuning
the Kl 's constants.
4. Stability analysis

We consider the Eq. (7) in the general case of a network with
many layers and nodes per layer. Because the feedforward struc-
ture of the network, the Jacobian of the system is a triangular
matrix, so thus, the diagonal elements of this matrix are the
eigenvalues fλig which determine the linear stability of the system.
They are:

λi ¼
∂ _ϕi

∂ϕi
¼ 2f iðIi, ϕ

!Þ cosðϕiÞ−2 cosð2ϕiÞ: ð9Þ

This analysis of stability must be performed taking into account
that under perturbations around the fixed points the functions
f iðIi, ϕ

!Þ could change their sign. However, this possibility can be
considered annulled by the network construction during the
learning. In effect, the learning process does not use a step
function as we use in Eq. (3), but a sigmoidal one, as for example,
FðxÞ ¼ tanhðβxÞ with β in the order of the unity. That activation
function during the learning process ensures that the total input
signal arriving to a processing unit is relatively far from its
threshold value h. In consequence, small perturbations in these
networks do not invalidate our linear stability analysis.

As we have seen, the fixed points are located on the corners of
the hypercube in the space of phase differences where ϕi ¼ 0 or
ϕi ¼ π. In a correct configuration over these points the functions
f iðIi, ϕ

!Þ and the phase differences should be compatible. That
means that only the pairs: f iðIi, ϕ

!Þ¼ α and ϕi ¼ π, and f iðIi, ϕ
!Þ¼−α

and ϕi ¼ 0, are found. So thus, the eigenvalues λi ¼−2ðαþ1Þ are
always negative for any value of α40 and the fixed point is stable.
In case of an incorrect configuration we have incompatible pairs:
f iðIi, ϕ

!Þ¼ −α and ϕi ¼ π, and f iðIi, ϕ
!Þ¼ α and ϕi ¼ 0. Thus, the

eigenvalues are λi ¼ 2ðα−1Þ and the fixed point is unstable for
α41.

By construction, only one corner of the hypercube can have all
these pairs compatible and there is only one stable fixed point in
the system. All the other fixed points have at least one incompa-
tible pair, and in consequence, at least one unstable direction.
5. Discussion and conclusion

We have shown that a pair of phase oscillators can work in
analogy to the classic perceptron model. The new system does not
have only a continuous time dynamics, but also it is modeled by
oscillatory elements. This characteristic can open the possibility to
employ more realistic models of oscillators as processing units in
order to construct networks with computational capacity. In effect,
phase oscillators can describe complex oscillatory systems of limit
cycles when they are coupled by weak interactions. Note that our
approach with oscillators is different from Bohtea et al. [3] where
information is encoded as time sequences (intervals between
spikes). In our model, the phase difference has the meaning of
mean activity of neurons, as the original perceptron model has.

The model can process sequentially different input signals by
switching between the fixed points of the system. The effect of the
input signals (external fields) is to drive the system by changing the
stability of the fixed points, through a processes of symmetry
breaking. This computational method has been used to generate
sequential patterns in a network of phase oscillators [9], and
recently, in a more general way, studied by Neves et al. [18].
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By using as processing units the phase oscillator perceptrons
we have constructed a network able to solve the logic XOR
problem. We show that we can use a classical feedforward
perceptron network in order to learn the problem, and further,
to use the weights and thresholds in our model. Thus, we have a
robust system that combines a gradient dynamics for its operation
and a very well know algorithm for learning.

The perceptron convergence theorem is satisfied by the presented
model. In effect, the processing task done by a classical perceptron
unit can be performed by an oscillatory unit by using its weights and
threshold. We have to note that the equivalence of the computational
properties between a feedforward network of classical perceptrons
and one with oscillatory units is ensured only if the activation
function is a step function, otherwise, the Kolmogorov's theorem
for multilayer networks [19] cannot be immediately applied in our
model. The main difference is that using sigmoidal functions the
phase oscillator perceptron presents a bistable behavior for
jαFðxÞjo1 (two stable fixed points at ϕ¼ 0 and ϕ¼ π). Under this
situation, the analogy between these two systems breaks down.

Although the presented model is essentially a theoretic one, it
can be used to process continuous time input signals in real time.
Additionally, the internal dynamics of the network allows to tune
the delay between the input signals and the responses on the
output layer. Finally, we want to note the possibility of hardware
implementation of this model in real physical devices. In effect,
devices of electronic oscillators with synchronization properties
have been recently proposed for fast sensing and labeling of image
objects [20]. Thus, this model is also very interesting from the
practical point of view.
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