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a b s t r a c t

This work proposes a nonlinear controller, based on the Theory of Lyapunov, to stabilize a quadrotor
when accomplishing positioning and trajectory tracking tasks restricted to a vertical plane. The
maneuvers addressed here are commonly accomplished by PVTOL (Planar Vertical Take-off and Landing)
vehicles due to the flight constraints: movement restricted to the Z-axis or to the XZ/YZ planes. The
contributions of the paper are the nonlinear controller itself, the proof of stability of the equilibrium of
the closed-loop system, and the proposal of an analytical solution to saturate the control signals to
prevent the saturation of the physical actuators. Experimental results are also presented, which validate
the proposed controller.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Recently, some research effort has been devoted to the use of
controllers to guide rotorcrafts in an autonomous way, creating the
so-called UAVs – Unmanned Aerial Vehicles. Trajectory tracking
and/or set-point stabilization continue to be great control pro-
blems for rotary-wing machines, and for that reason they are still
being extensively investigated. A few years ago, the concept of
planar vertical takeoff and landing (PVTOL) tasks was introduced
in [11]. It has been an important benchmark for control design,
aiming at stabilizing a rotorcraft in a vertical axis or plane. The
difficulty lies in the fact that it is not possible to apply straight-
forwardly the nonlinear control techniques, such as feedback
linearization or sliding mode control [26]. Thus, many control
strategies have been proposed. In [21] Liouvillian systems are
adopted to guide a miniature helicopter with a simplified dynamic
model (PVTOL) during a trajectory tracking mission. In [9] a robust
controller based on classical and adaptive pole placement techni-
ques is proposed to control the yaw angle and the altitude of a
miniature helicopter, whose dynamic model was obtained using
the Euler–Lagrange equation. In [15] a pose controller is proposed,
based on the linearization of the PVTOL model, and a stability

analysis is performed using the theory of Lyapunov for linear
systems. In [7] a path-following controller is designed and simu-
lated applying the concept of smooth Jordan curves with vertical
symmetry. In their previous work [8], such authors used C2 closed
curves in the proposition of a trajectory tracking controller for a
VTOL vehicle in an iterative way. In [26] a trajectory tracking
controller is proposed based on the first-order Padé approximation
and Lyapunov concepts to deal with attitude measurement delays
and input disturbances as a robust stabilization problem, and
validated through numerical simulations. The limitation of such a
proposal comes out when a high tracking accuracy is required due
to the attitude approximation. Experimental results are obtained
in [19] for a PVTOL vehicle controlled by a chain of cascaded
integrators using bounded input. More recently, a new stabiliza-
tion design for PVTOL aircrafts has been proposed [25], which has
been validated through simulation. In such work an equivalent
feedforward system is obtained, and a set of saturation levels is
assigned to get a faster convergence during positioning tasks.

Other researchers have already proposed controllers to perform
the navigation of quadrotors [3,6,12,17,1]. However, the controller
proposed here is quite different from those ones: just a planar
movement of the aircraft is considered here when designing the
controller, whereas in those cases 3-D controllers are proposed. In
particular, the controller proposed in [6] has some similarity with
the one proposed here. There the controller is considered as a
combination of four stages. The first one controls just the altitude
of the aircraft, and the second one controls its yaw angle. The third
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stage controls the roll angle and the y position (indirectly),
whereas the last one controls the pitch angle and the x position
(indirectly). Combining the altitude control and the pitch angle
and x-position control, one could generate a controller for PVTOL
maneuvers in the XZ plane, like it is done here. However, two
important differences should be stressed. The first one is that the
controller proposed in [6] does not consider variations in the
desired altitude (the desired altitude zd is always constant), so that
only positioning tasks are possible. The authors themselves tell
that their objective is to stabilize the aircraft at hover, what
supposes a constant altitude. By its turn, our controller considers
the possibility of a time varying altitude, like it is shown in one of
the experiments reported here, in which the aircraft tracks a
trajectory in the XZ plane. In addition, the controller proposed in
[6] has constant gains in the altitude control stage, for instance,
which is a problemwhen big variations are imposed to the desired
altitude because this generates large errors to be compensated by
the controller. In such a case, high control signals could be gene-
rated, which can cause the saturation of the actuators of the air-
craft. This would introduce an unforeseen non-linearity in the
control loop, which could drive the control system out of stability.
Our controller is designed to avoid this problem, for including a
saturation in the control signal, using the tanh function. As our
control system is proven to be stable when such non-linearity is
included in the control loop, there is no risk that the control
system loses stability since suitable initial conditions and refer-
ence profiles are given.

The main reason to propose our controller is to get a simpler
controller to guide the aerial vehicle, although being limited in
terms of degrees of freedom. Indeed, after being correctly oriented
towards the goal, one can consider that the aircraft moves ahead
following a vertical plane, so that only the altitude and the pitch
angle should be controlled, as it is considered in this paper. Our
main motivation is to associate three simple controllers to perform
3-D flights: two of them to guide the UAV in the XZ and YZ planes
and the other to guide the vehicle in the Z-axis. However, this
paper deals just with the navigation in the XZ plane, but the other
two controllers can be derived from it.

Thus, this work aims at stabilizing a quadrotor, illustrated in
Fig. 1(a), during the accomplishment of the tasks of positioning,
trajectory tracking and hovering, restricted to the XZ plane, using a
nonlinear controller based on the Theory of Lyapunov. The con-
tribution of the paper is threefold: (a) the proposition of a single
nonlinear controller suitable to accomplish all these PVTOL tasks;
(b) the proof of stability of the equilibrium of the correspondent
closed-loop system; and (c) an analytical solution to the problem
of control signal saturation (such saturation is necessary to avoid
the saturation of the physical actuators of the aircraft). To deal

with such topics, Section 2 presents simplifications of the dynamic
model of a quadrotor (previously proposed in [4]) to get the PVTOL
model. Following, Section 3 discusses the controller proposed to
stabilize the aircraft during flight. In the sequel, Section 4 presents
experimental results obtained using the proposed controller to
guide the rotorcraft and, finally, some concluding remarks are
highlighted in Section 5.

2. The quadrotor model

According to [13,1], a rotary wing machine, like the one in Fig. 1
(a) (a quadrotor), can be represented as a cascade of four inter-
connected subsystems, as shown in Fig. 2. The two first blocks can
be understood as a linear low-level dynamic model, whereas the
two last ones correspond to the high-level dynamic model. In this
work, the focus is on the high-level dynamic model of the
quadrotor (the last two blocks of Fig. 2), which is obtained from
the Euler–Lagrange equation, as detailed in [4,16], in a way quite
similar to those in [6,17].

Aerial vehicles able to takeoff and land vertically, remain in a
fixed position during a flight task, and move along a specified path in
a vertical plane are called PVTOL vehicles. Such denomination was
introduced in [11] as a benchmark for the design of controllers in
aerospace engineering, and still represents a challenge for set-point
stabilization and trajectory tracking missions, due to the fact that this
system is underactuated, nonlinear, as well as non-minimum-phase
when controlling some specific outputs (which is aimed at in
this work).

The quadrotor used in this work is an aircraft able to perform
such maneuvers, although not being a true PVTOL device. Thus, it
is necessary to apply some flight restrictions to it in order to force
it to navigate as a PVTOL vehicle (as shown in Fig. 1(b)). Consider-
ing a PVTOL task being accomplished in the XZ plane, the trans-
lational and rotational dynamic model of the aircraft is simplified
to

u sin θ¼m €x ð1Þ

u cos θ¼m€zþmg ð2Þ

τθ ¼ Iyy €θ ; ð3Þ
where u¼∑4

i ¼ 1f i and τθ ¼ k1ð� f 1þ f 2þ f 3� f 4Þ are the control
signals. In such a case, x¼ ½x z θ _x _z _θ �T is the vector of state
variables.

Remark 1. Notice that the quadrotor is an underactuated system
[4] whose four input variables are ½uθ uϕ u _ψ u _z �T . To make it
accomplish a PVTOL task in the XZ plane one should impose

Fig. 1. Ar.Drone quadrotor: (a) 6-DOF model, with the reference system and the abstract control inputs fi associated with it. The inertial, spatial and body frame are 〈g〉, 〈s〉
and 〈b〉, as indicated by the left superscript in the axes x, y and z. (b) The PVTOL model of the quadrotor.
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uϕ � 0 and u _ψ � 0. This implies that only θ and z can be directly
controlled. However, x can also be controlled, although indirectly,
through controlling θ. This means that the nonlinear PVTOL
controller designed in the sequel will only act over these three
variables, leaving the other variables ϕ; _ψ and y under the control
of the low level control system available onboard the aircraft,
which is not dealt with in this paper.

3. The proposed Lyapunov-based controller

This section presents a position controller whose objective is to
take the aircraft from any initial position to a desired one (besides
having the capability of tracking a desired trajectory), i.e.

x¼ ½x z θ _x _z _θ �T-½xd zd θd _xd _zd _θd�T ¼ xd; ð4Þ
or ~x-0, where ~x ¼ xd�x is the current pose error.

In order to analyze the stability of the equilibrium correspon-
dent to the closed-loop system, the radially unbounded Lyapunov
candidate function is proposed

Vð ~x ; _~x Þ ¼ Kz4 ln coshðKz3K
�1
z4 ~zÞþ1

2
_~z 2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V1

þKx1ln coshðKx2
_~x ÞþKx3ln coshðKx2

_~xþKx4 ~xÞþ
Kx4

2
_~x2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

V2

þKθ4 ln coshðKθ3K
�1
θ4

~θÞþ1
2
_~θ
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V3

40; ð5Þ

where Kij are real positive gains.
A similar Lyapunov function is adopted in [2]. The main

difference is that the function in (5) by itself does not guarantee
directly the asymptotic stability of the equilibrium of the closed-
loop system. However, as the system discussed here is an auton-
omous one, the Theorem of La Salle [24] is applied to demonstrate
the convergence of the states to their desired values, as discussed
in the sequel, thus getting the same conclusions as [2].

The design of the controller is hereinafter split into two steps.
First, the objective is to stabilize the altitude z of the aircraft, and
then to control its longitudinal displacement x, through control-
ling its pitch angle θ.

3.1. Altitude control

Writing (2) in terms of the altitude control errors one gets

mð€zd� €~z Þþmg¼ u cos θ ) €~z� €zd ¼ g� u
m

cos θ; ð6Þ

for which the asymptotic stability of the altitude control can be
guaranteed by using the trivial solution

u¼ m
cos θ

ðηzþgÞ; ð7Þ

where

ηz ¼ €zdþKz1 tanhðKz1K
�1
z2

_~z ÞþKz3 tanhðKz3K
�1
z4 ~zÞ: ð8Þ

Then, the closed-loop system equation becomes

€~zþKz1 tanhðKz1K
�1
z2

_~z ÞþKz3 tanhðKz3K
�1
z4 ~zÞ ¼ 0: ð9Þ

Remark 2. Notice that jθjrπ=2, which implies a movement con-
straint. In this case, the vehicle cannot execute loops or aggressive

maneuvers (the aim of this work is to smoothly control a quadrotor
during a positioning or a trajectory tracking mission). In addition, it is
worth mentioning that smooth maneuvers are commonly less
demanding, in terms of energy, thus extending the total flight time.

To analyze the system stability using the theory of Lyapunov,
considering the altitude control, one should obtain the first time
derivative of V1ð~z; _~z Þ and then replace (9), thus obtaining

_V 1ð~z; _~z Þ ¼ Kz3
_~z tanhðKz3K

�1
z4 ~zÞþ _~z €~z ¼ �Kz1

_~z tanhðKz1K
�1
z2

_~z Þr0:

As _V 1ð~z; _~z Þ is negative semi-definite, then ~z and _~z are bounded,
and it is possible to prove that _~z is square integrable. In other
words, ~z; _~zAL1 and _~zAL2. Now, applying the La Salle Theorem for
autonomous systems [24], when observing the dynamics of the
system characterized by (9), the greatest invariant set M in the
region

Ω¼
~z
_~z

� �
: _V 1ð~z; _~z Þ ¼ 0g )

~z
_~z

� �
¼

~z

0

� �� ��
ð10Þ

only takes place for ~z ¼ 0. Therefore, the only invariant set M is the
equilibrium ½~z _~z �T ¼ ½0 0�T , which is, thus, asymptotically stable. In
other words, ~zðtÞ; _~z ðtÞ-0 when t-1.

3.2. Pitch angle control

The next step is to stabilize the pitch angle of the rotorcraft,
forcing θðtÞ-θdðtÞ, or ~θ-0, with ~θ ¼ θd�θ. Aimed at designing a
controller based on the theory of Lyapunov, one takes the first
time derivative of V3ð ~θ ; _~θ Þ and then replaces (3), thus obtaining

_V 3ð ~θ ; _~θ Þ ¼ Kθ3
_~θ tanhðKθ3K

�1
θ4

~θÞþ _~θ €~θ

¼ _~θ Kθ3 tanhðKθ3K
�1
θ4

~θÞþ €θd�
τθ
Iyy

� �
: ð11Þ

Now, adopting the control signal

τθ ¼ Iyyηθ ; ð12Þ
with

ηθ ¼ €θdþKθ1 tanhðKθ1K
�1
θ2

_~θ ÞþKθ3 tanhðKθ3K
�1
θ4

~θÞ; ð13Þ
and introducing it in (11), one gets

_V 3ð ~θ ; _~θ Þ ¼ �Kθ1
_~θ tanhðKθ1K

�1
θ2

_~θ Þr0; ð14Þ
which is negative semi-definite. Thus, ~θ ; _~θ AL1 and _~θ AL2. Analyzing
the closed-loop system equation

€~θ þKθ1 tanhðKθ1K
�1
θ2

_~θ ÞþKθ3 tanhðKθ3K
�1
θ4

~θÞ ¼ 0; ð15Þ
and applying the La Salle Theorem for autonomous systems once
more, one observes that the greater invariant set M in

Ω¼
~θ
_~θ

" #
: _V 3ð ~θ ; _~θ Þ ¼ 0g )

~θ
_~θ

" #
¼

~θ
0

" #( )(
ð16Þ

exists uniquely for ~θ ¼ 0. Therefore, the equilibrium ½ ~θ _~θ �T ¼ ½0 0�T of
such a system is asymptotically stable, i.e., ~θðtÞ; _~θ ðtÞ-0 when t-1.

3.3. Horizontal displacement control

As both control inputs have already been defined, in order to
control the horizontal displacement one should define the profile

Fig. 2. Block diagram representing the dynamic model of a quadrotor.
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of the pitch angle, guided by the altitude and horizontal errors. In
such a case, considering (1) and (7), one has

€x ¼ ðηzþgÞ tan ðθd� ~θÞ ) €x ¼ ðηzþgÞ tanθd� tan ~θ

1þ tanθd tan ~θ
;

or

€x�ðηzþgÞ tan θd ¼ �ðηzþgþ €x tanθdÞ tan ~θ : ð17Þ
Notice that there is no external signal available to control x. Adopting

θd ¼ tan �1 ηx
ηzþg

� �
ð18Þ

with

ηx ¼ €xdþKx1 tanhðKx2
_~x ÞþKx3 tanhðKx2

_~xþKx4 ~xÞ;
and replacing it in (17), the closed-loop system equation

€~xþKx1 tanhðKx2
_~x ÞþKx3 tanhðKx2

_~xþKx4 ~xÞ ¼ δ ð19Þ
is obtained, where δ¼ ðηzþgþ €x tan θdÞ tan ~θ .

The signals ηzðtÞ and tan θdðtÞ are, by design, bounded. It was
shown in Section 3.2 that the signal tan ~θðtÞ is bounded and tends
to zero. Finally, for suitable initial conditions the signal €xðtÞ ¼
tan θðtÞðηzðtÞþgÞ is bounded. Indeed, θðtÞ�θdðtÞ-0, and since
θdAð�π=2;π=2Þ, for suitable initial conditions tan θðtÞ is bounded
as well. In conclusion, for suitable initial conditions θð0Þ, the signal
δðtÞ is bounded and tends to zero. Since €~x is bounded, system (19)
has no finite escape times (i.e., the solution exists for all tZ0).

Viewing (19) as a forced systemwith input δ, let X ¼ ½x; _x�T , andwrite

_~X ¼A ~XþBδþΔð ~XÞ;
where

A¼
0 1

�Kx3Kx4 �Kx1Kx2 �Kx2Kx3

" #
; B¼ 0

1

� �
;

and Δð ~XÞ is the linearization error. Taking into account that A is Hurwitz,
there exists a positive definite solution P to Lyapunov's equa-
tion ATPþPA¼ �I. Define V ¼ ~X

T
P ~X . Then, there exist constants

c1; c240 such that

_V r�‖ ~X‖2ð‖ ~X‖2�c1‖Δð ~XÞ‖2�c2‖δ‖2Þ:
Since Δð ~XÞ is a linearization error, one has

‖Δð ~XÞ‖2
‖ ~X‖2

-0 as ‖ ~X‖2-0:

For any μ40, there exists r40 such that ‖Δð ~XÞ‖2rμ‖ ~X‖2 for all
‖ ~X‖2or. Pick μo1=ð2c1Þ, then there exists r40 such that

_V r�1
2
‖ ~X‖2ð‖ ~X‖2�2c2‖δ‖2Þ

for all ‖ ~X‖2or. Pick c40 and r140, such that

f ~X : ‖ ~X‖2or1g �Ωc≔f ~X : Vð ~XÞocg � f ~X : ‖ ~X‖2org:
For suitable initial conditions, one has ‖δðtÞ‖2or1=ð2c2Þ for all tZ0, so
that all solutions originating in Ωc stay there for all tZ0. Moreover, as
one now shows, ~XðtÞ-0 for all such initial conditions. Let ϵAð0; rÞ be
arbitrary. There exist c⋆Að0; cÞ and r2Að0; r1Þ such that

f ~X : ‖ ~X‖2or2g �Ωc⋆ � f‖ ~X‖2oϵg:
Since δðtÞ-0, there exist T140 such that, for all t4T1,
‖δðtÞ‖2or2=ð2c2Þ which implies that, for all t4T1,

_V r�1
2
‖ ~X‖2ð‖ ~X‖2�r2Þ:

Due to the choice of r2 and c⋆ above, the latter inequality implies that
there exists T24T1 such that ‖ ~XðtÞ‖2oϵ for all t4T2. This proves that
~XðtÞ-0.

3.4. Selecting the gains of the controllers

The gains of the controllers are chosen in order to avoid the
saturation of the control signals and to get a critically damped
system response.

Before starting the gain analysis, one should have in mind that
the hyperbolic tangent function (used as saturation function) can
be approximated by a linear function ðtanh α� αÞ for small input
values or by a threshold function ðtanh α� sign αÞ for great input
values.

Now, considering the closed loop system of the altitude con-
troller (9), in the linear region corresponding to small ð~z; _~z Þ errors,
the first condition K2

z3K
�1
z4 ¼ 1

4ðK2
z1K

�1
z2 Þ2 should be respected to

accomplish the response statement. In contrast, in the saturation
region, the second condition Kz3 ¼ 1

4K
2
z1 should also be regarded.

In the sequence, observing (7) and considering a maximum
thrust umax equal to ag, with aARþ , one gets

jKz1 tanhðKz1K
�1
z2 ~zÞþKz3 tanhðKz3K

�1
z4

_~z Þj

r a
m

cos θmax�1
	 


g� €~z d max :j
���

Notice that the right term of the inequality can be stipulated by
the user, after observing the physical limitations of the mechanical
system. In this work, it is selected a¼ 2:5, and a €~zmax, which
depends of the reference profile.

Assuming the worst case, where the error values are not small
enough to disregard the hyperbolic tangent function, then the
system will operate in the saturation zone. In such a case, one
has the third condition, namely Kz1þKz3r ðða=mÞ cos θmax�1Þ
g�j €~z d maxj.

Consequently, defining a value for Kz2 and manipulating the
three aforementioned conditions, it is possible to attribute the
control gains to the altitude control in order to obtain a critically
damped response and to avoid saturation of the physical actuators.

In the sequel, a similar analysis is done for the pitch angle. Eq.
(15) is used to define the two first conditions: K2

θ3K
�1
θ4 ¼ 1

4ðK2
θ1K

�1
θ2 Þ2

and Kθ3 ¼ 1
4K

2
θ1. The third one is obtained replacing (15) in (3),

considering the saturation zone of the errors. Thus one has Kθ1þ
Kθ3 ¼ τθ max=Iyyþ €θd max. Defining Kθ2, it is possible to have a
critically damped response of θ, without saturating the controllers.

Finally, considering the natural response of (19), δ¼ 0, it is
possible to obtain Kx1þKx3 ¼ ð1=Kx2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kx3Kx4

p
, for the linear zone,

and Kx3 ¼ 1
4K

2
x1, for the saturation one. Then, taking (1) and

replacing (7) and (19), it is possible to obtain for the saturation
zone Kx1þKx3r j €xd maxþðηzþgÞ tan θmaxj, where ηz is already
considered during the altitude gain attribution. Similarly, the
longitudinal displacement response will approximate to a critically
damped one after defining Kx2.

4. Experimental results

The results of two experiments run using a quadrotor, in which
the controller proposed in Section 3 is programmed, are presented
and discussed in the sequel. The flight missions accomplished are
a trajectory tracking one and a positioning one, which are run
using the same controller. The objective of such experiments is to
check the stability of the closed-loop control system when the
proposed controller is adopted, and to check its effectiveness to
guide the aircraft during mission accomplishment as well. The
experiments were run in an indoor environment in the absence of
external disturbance. Moreover, the horizontal displacements
were obtained through odometry (dead reckoning using the
accelerometers of the IMU available onboard the aircraft), while
the vertical displacement was measured using a sonar.
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For the Ar.Drone Parrot quadrotor, the aircraft used as the experi-
mental platform in this work, when using the model presented in
Section 2, the parameters are those shown in Table 1. More details
about the sensors available in the UAV and some suggestions of
applications using this UAV can be found in [5,14]. Complementing the
experimental setup, the codes are written in MatlabÁ, and run in an
external computer, which is linked to the rotorcraft through a Software
Development Kit (SDK) available at the Ar.Drone Parrot web site.

Remark 3. The motors of the Ar.Drone Parrot are not aligned with
the bx- and by-axes. They are rotated 451 with respect to the bx-axis,
around the bz-axis. As a consequence, a coupled actuation of all
motors is necessary to execute a lateral or longitudinal maneuver,
differently from other prototypes found in the literature.

For each experiment reported in this section, the posture state
variables, defined by the position and the orientation of the
aircraft during the mission are presented, as well as the abstract
and the real control signals (respectively the desired forces,
defined by the high-level controller, and the inputs accepted by
the vehicle, defined by the low-level controller). As for the way
used to convert u and τθ to f i, for i¼ 1;…;4, and then to uϕ, uθ , u _ψ ,
u _z , it is similar to the one presented in [20]. Such a step, in this
work, is named the low-level control, as explained in Section 2.

The first experiment is a trajectory tracking mission in the XZ
plane, described by fxd ¼ 3 sin ððπ=60ÞtÞ; zd ¼ 1:5� cos ððπ=60ÞtÞg,
resulting in an ellipsoidal shape. The desired pitch angle is given
by (18). The posture variables that are not included in the PVTOL
maneuvers have been set to zero. Fig. 3(f) illustrates the desired
(dashed line) and traveled (solid line) paths in the XZ plane, with
the icon representing the UAV plotted each 10 s. It is possible to
observe that the rotorcraft reaches and follows the desired
reference trajectory. Fig. 3(a) shows the time evolution of the Ar.
Drone position in the XZ plane, as well as its pitch angle. Knowing
that the proposed reference signals do not control the vehicle in
the Y-axis, one can notice some errors in Fig. 3(b) as a conse-
quence of the drifting effect associated with the inertial unit
onboard the aircraft. Despite following the reference xd and zd in
phase, the results present some tracking errors. However, such
errors do not compromise the mission accomplishment as one can
see in the figure. In other words, the proposed controller is able to
guide the rotorcraft to follow the reference without delay.

The behavior of the pitch angle, shown in Fig. 3(a), is the most
important one for analysis (it is guided by a control signal). During
analysis one starts noticing the high-frequency components pre-
sent in the signals x(t) and z(t). Thus, as a consequence of (18), the
reference pitch values are not smooth, although still being suitable
to guarantee the accomplishment of the programmed task. It is
important to highlight that, for the quadrotor, it is troublesome to
perform a positive displacement in x (which requires to increase f2
and f3 and decrease f1 and f4), while keeping the negative
displacement in z (which requires to decrease all motor thrusts).
Such an effect can be observed from the time instant 90 s on, in
Fig. 3(a). The time evolution of the roll and yaw angles is shown in
Fig. 3(b), as well as the position in the axis Y (notice that such
variables are not managed by the high-level controller proposed in
this work).

The desired values are computed considering a PVTOL maneu-
ver that takes into account some constraints. Similar observations

are valid for the yaw angle in the case of a controller designed for
maneuvers in the z-axis, i.e., one can control the altitude and the
yaw angle in such a case. Considering the horizontal displacement
constraints, a quadrotor (or a helicopter) model becomes a second
order linear system, which can be controlled using classical control
techniques ([6] show it). Thus, the desired yaw value is given by
such a control strategy. An experimental result is presented in the
sequel to demonstrate it.

Fig. 3(c) illustrates the abstract inputs of the high-level con-
troller. Such inputs cannot be directly applied to the Ar.Drone, thus
they are considered abstract ones (or even auxiliary ones). In the
figure, notice that the tendency of the curve (the forces produced by
the propulsion system) increases/decreases in a sinusoidal way, as
expected for the mission being accomplished. The results of the
abstract/real input transformation are illustrated in Fig. 3(e). It is
possible to observe that the first two references follow the evolution
of the pitch and roll angles shown in Fig. 3(a) and (b), respectively.
Talking about the fourth real input, it is important to mention that
for _z ¼ 0 the rotorcraft is compensating its own weight, and any
change will result in a higher/lower altitude. A similar analysis can
be performed for the third signal u _ψ sent to the vehicle to obtain a
new heading value.

In order to demonstrate the feasibility of the controller for a
positioning task, Fig. 4 illustrates a flight mission whose objective
is to reach the longitudinal xd ¼ ½0 2 �2 0 3 0�m and vertical
zd ¼ ½1 2 0:5 1 1:5 0:5�m positions, while keeping the other pos-
ture variables as zero. As for the changes in the desired position,
the time interval between two subsequent ones is 20 s.

As shown in Fig. 4, the proposed controller (without any gain
changing) is also capable of accomplishing positioning tasks. Notice
that there is a delay to reach the target, but it is done smoothly. In
this experiment, an important situation to be observed occurs
between 40–50 s and 100–110 s. At these moments, the desired
forces to be produced by each motor are zero, which means that the
Ar.Drone starts executing an auto-rotation, which is enough to go
down towards a new desired altitude (lower than the last one). This
situation, however, does not compromise the accomplishment of the
positioning task, as one can notice.

An important aspect of reaching the target in a smooth way is
related to energy consumption. One of the key challenges that has
prevented engineers from coming up with convincing aerial solu-
tions is the “energetic cost of flying”, which is orders of magnitude
higher than the one correspondent to terrestrial locomotion. More-
over, compared with other types of UAVs, the quadrotor is the one
with higher energy consumption, as shown in [23].

Some authors have compared control strategies developed and
used for certain tasks in UAV control, focusing on performance and
power consumption, to determine the amount of energy needed for
computing, thus providing a rationale to introduce an energy-aware
computation scheme [22]. The percentage of overall power con-
sumption needed for computing can be as high as 20% (rotorcraft) in
mini-UAVs. Therefore, suitable navigation strategies and control
algorithms should be adopted whenever possible (especially during
the cruising phase), switching to more accurate methods only when
needed (when accurate trajectory tracking or precise vehicle stability
is required). Aiming at such objectives, in [10] tracking control of a
PVTOL aircraft using a technique based on linear algebra theory has
been proposed in order to achieve a control law of easy implementa-
tion and less computing power, allowing high performance on-board

Table 1
UAV model parameters (moments of inertia are in [kg m2]).

m¼ 0:380 ðkgÞ k1 ¼ 0:1782 ðmÞ k2 ¼ 0:0290 ðmÞ Ixx ¼ 9:57� 10�3 Iyy ¼ 18:57� 10�3 Izz ¼ 25:55� 10�3
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computing and energy-saving. In [18] a minimum-energy controller
is designed and built for a class of electrically driven vehicles, whose
characteristics include the smooth response of the controller.

Taking these ideas in mind, it is interesting to notice that the
controller proposed in this work has the possibility of adjusting
the gains Kij. Therefore, a set of optimal gains can be selected to
save energy, whereas a different set of gains may be adopted when
aggressive maneuvers are required. This is something we are
currently working on, to take into account in future works.

5. Concluding remarks

This work proposes a high-level nonlinear controller based on the
Theory of Lyapunov to be applied to an unmanned aerial vehicle, in
this case an autonomous quadrotor, to execute PVTOL tasks. The
problem of the saturation of the control signals and an analytical
solution for it are also addressed. The control law designed showed to
be able to guide the aircraft while executing maneuvers of takeoff,
hovering and landing in a vertical plane during the accomplishment of

Fig. 3. Posture and control signals of the Ar.Drone Parrot during a trajectory tracking mission. (a) Planar position and pitch angle, (b) posture variables not being controlled,
(c) abstract forces generated by the high-level controller, (d) designed control signals, (e) real input signals applied to the vehicle, (f) path traveled in the XZ plane during the
PVTOL trajectory tracking task.
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the tasks of positioning and trajectory tracking. Experimental results
allowed assessing the performance of the proposed controller during
the planned missions.

The next steps of this work are related to 3-D navigation. First,
the PVTOL controller for the XZ plane will be switched with the
controller of the Z-axis. In such a case, to reach a 3-D Cartesian
reference, the UAV should orientate itself to a desired yaw angle,
and then execute a PVTOL maneuver to perform a longitudinal
displacement (considering its own reference frame). Notice that a
stability analysis for switched systems should be performed in
order to guarantee the asymptotic convergence of the state
variables to their desired values. It could be performed using

multiple Lyapunov functions, for instance. Another proposal for a
3-D navigation is to implement a control system comprising the
whole set of state variables. Knowing that a quadrotor is an
underactuated system (has more degrees of freedom than actua-
tors), a suitable controller could be designed based on the Theory
of Lyapunov and the partial feedback linearization technique.
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