
 Procedia Computer Science 18 (2013) 1402 – 1411

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.307

ICCS 2013 - ”Computation at the Frontiers of Science”

Estimation of Volume Rendering Efficiency with GPU in a
Parallel Distributed Environment

Cristian Federico Perez Montea,b,c, Fabiana Piccolib, Cristian Lucianod, Silvio Rizzid,
Germán Bianchinic, Paola Caymes Scutaric

aGridTICs-Universidad Tecnologica Nacional Regional Mendoza, Mendoza, Argentina
bLIDIC-Universidad Nacional de San Luis, San Luis, Argentina

cLICPaD-Universidad Tecnologica Nacional Regional Mendoza, Mendoza, Argentina
dDepartment of Mechanical and Industrial Engineering-University of Illinois at Chicago, Chicago, IL, USA

Abstract

Visualization methods of medical imagery based on volumetric data constitute a fundamental tool for medical diagnosis,

training and pre-surgical planning. Often, large volume sizes and/or the complexity of the required computations present se-

rious obstacles for reaching higher levels of realism and real-time performance. Performance and efficiency are two critical

aspects in traditional algorithms based on complex lighting models. To overcome these problems, a volume rendering algo-

rithm, PD-Render intra for individual networked nodes in a parallel distributed architecture with a single GPU per node is

presented in this paper. The implemented algorithm is able to achieve photorealistic rendering as well as a high signal-to-

noise ratio at interactive frame rates. Experiments show excellent results in terms of efficiency and performance for rendering

medical volumes in real time.
c© 2012 The Authors. Published by Elsevier B.V.

Selection and/or peer-review under responsibility of the [Organiser Name].

Keywords: Volume Rendering; Monte Carlo Method; Ray Tracing; GPU; Scientific Visualization; Cluster Computing;

Parallel Processing; efficiency;

1. Introduction

Visualization methods of medical imagery based on volumetric data -obtained from magnetic resonance imag-

ing (MRI), computed tomography (CT) scanners, and other techniques- constitute a fundamental tool for medical

diagnosis, training and pre-surgical planning.

Volume rendering is a set of techniques and methods to obtain a two dimensional image from volumetric

data. Ideally, these must be high-quality images, demanding algorithms that must provide sufficient level of

detail to obtain photorealistic results in an adequate computational time. Often, large volume sizes and/or the

complexity of the required computations present serious obstacles for reaching higher levels of realism and real-

time performance.

∗Cristian Federico Perez Monte. Tel.: +54-261-428-1093 ; fax: +0-000-000-0000 .

E-mail address: cristian.perez@gridtics.frm.utn.edu.ar.

E-mail address: cdlt23@gmail.com.

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on
Computational Science

1403 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

There are different High-Performance Computing (HPC) techniques to improve the performance of these

applications. One of them consists of using a parallel distributed architecture with a single Graphics Processing

Unit (GPU) per node. The computational power of these systems is able to achieve photorealistic rendering as

well as a high signal-to-noise ratio at interactive frame rates. Two important issues to be considered are inter-node

and intra-node work. In the former, it is important to study how to efficiently divide the total work and how tasks

are assigned to different nodes in the system. In the latter, the work assigned to a node must take advantage of all

the available resources in each GPU. This paper presents a modification of the approach in [1] for a distributed

system with GPUs. We have focused on improving the efficiency and resource usage of each node in the system.

In addition, we present an analysis of the maximum theoretical efficiency of GPUs for a volume rendering process

in a graphics distributed system with GPUs.

The paper is organized as follows: Sections 2.1, 2.2 and 2.3 describe related work and some fundamental

concepts used in this work, Section 3 introduces the overall PD-Render and details PD-Render intra, Section 4

analyses and establishes the performance parameters and in section 5, we show experimental results. Finally, the

conclusions and future work are presented.

2. Background and Related work

In this section, we present some fundamental concepts along with related work from other researchers.

2.1. Light Propagation Models
There are many optical models of Direct Volume Rendering (DVR)[2][3]. The next list shows some of them

and their main characteristics:

• Absorption Only: The volume is assumed to consist of cold, perfectly black material that may absorb

incident light. No light is emitted or scattered.

• Emission Only: The volume is formed by gas that only emits light but is completely transparent. Absorption

and scattering are neglected.

• Emission-Absorption Model: It is the most common model in volume rendering. The gas can emit light and

absorb incident light, but scattering and indirect illumination are disregarded.

• Single Scattering and Shadowing: This model includes single scattering of light from an external light

source. The shadows are modeled taking into account the light attenuation that is incident from an external

light source.

• Multiple Scattering: The goal of this method is to evaluate the complete illumination model for volumes,

including emission, absorption, and scattering.

The Emission-Absorption model is the most widely used because it provides a good compromise between

generality and performance of computation. However, its main disadvantage is that its results do not have the

expected level of quality.

Single Scattering and Shadowing provide better level of quality at the expense of a much higher amount of

processing. Recently, research and improvement of volume rendering techniques with illumination has grown

significantly, e.g. shadows [4], ambient occlusion [5], global illumination [6], realistic scattering [7][8] and depth

of field [9].

In contrast to many existing approaches, Monte Carlo rendering algorithms are capable of processing differ-

ent materials, lighting, and camera configurations simulating complex light interaction with high accuracy and

generating photorealistic images. However, rendered frames with a lower number of iterations show larger errors

compared to fully converged rendered frames. Therefore, they also have a low signal-to-noise ratio.

Using the Monte Carlo method to render in GPU results in good interactivity and efficiency [10]. In [1],

the authors implement multiple visualization improvements in a novel framework. Their work proposes a GPU

solution for visualization in medical environments using Single Scattering and Shadowing combined with Hybrid

Scattering.

Although [1] uses all GPU power with the most common resolutions, this is not enough to achieve a visualiza-

tion with a high signal-to-noise ratio and a good interactivity for all cases. Our work extends [1] using intra-node

optimizations to improve performance and visualization of the output images.

1404 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

2.2. A Parallel Distributed Environment

High-performance computing (HPC) is the use of parallel or distributed processing for solving complex com-

putational problems and improving their efficiency, reliability and the execution time. A Parallel Distributed

Environment provides mechanisms for exploiting the inherent parallelism in many scientific and engineering ap-

plications. Among different parallel distributed systems, a Graphic Distributed System is formed by multiple

independent units consisting of a CPU-GPU combination. All CPU-GPU systems are connected through a high

performance network.

A CPU-GPU computing system consists of two basic components: (i) the traditional CPU (with one or more

processors or cores) and (ii) one or more GPUs (Streaming Processor Array). The GPU can be considered as a

manycore processor able to support fine grain parallelism, where a large number of threads run in parallel, each

contributing to the solution of a given problem [11][12].

GPUs are different than other parallel architectures, providing flexibility in the local resources allocation to

its threads. In general, a GPU multiprocessor consists of several stream multiprocessors with multiple process-

ing units, registers and on-chip memory. In this work we have used the Compute Unified Device Architecture

environment by Nvidia [13] to develop our GPU applications.

2.3. Distribution Techniques in Graphics Computing

In parallel distributed rendering it is important to determine how the distribution is made, specially in real

time applications. The Molnar’s taxonomy [14] defines sorting methods to distribute the work among the different

nodes of a distributed system. Distribution can be classified as Sort First, Sort Last or Sort Middle.

In the Sort First or 2D distribution the division is made according to the output image, which is divided in

disjoint regions. A pre-transformation is done during geometry processing to determine which regions of the

output are covered. Initially, the primitives are assigned arbitrarily to be later redistributed over the network to

the correct renderer (processor). Each node performs the work of the entire pipeline for that primitive. Generally,

Sort First is adequate for Image Order rendering algorithms [2]. There are many parallel implementations of Sort
First[15][16]

On the other hand, in the Sort Last, or (DB) method, the division depends on the input volume, which is

divided into subsets. Each subset is distributed to different processors (renderers) in the system. The renderers

operate independently until the visibility stage, with each parallel task computing pixel values for its subset,

independently of the pixel locations in the final image. These pixels are transmitted over an interconnected network

to compositing processors which resolve the visibility of pixels from each renderer. It is worth mentioning that

the interconnect network must handle all of the pixel data generated in every processor. Therefore, for interactive

or real-time applications rendering high-quality images, Sort Last could require very large data communication

rates. Moreover, as the image resolution grows, the compositing overhead also grows. Sort Last is adequate to

Object Order rendering algorithms and it is also a good option for large volumes [17].

Lastly, in Sort Middle the primitives are redistributed in the middle of the rendering pipeline, between geometry

processing and rasterization.

Another technique is Alternate Frame rendering (AFR). It is commonly used in environments consisting of

one PC and multiple GPUs [18], rendering multiple frames at the same time, and then alternating the display of the

frames on a single monitor, to accelerate the rendering performance. The distribution is made at the frame level.

AFR has good scalability but the latency between the input and final visualization may be high. Even though [19]

shows a better performance than Sort First/Sort Last method, the latency problem can be important in real time

applications.

In this work we use the Sort First technique based on considerations of low latency and the properties of the

volumes used in this project.

3. Parallel Distributed Volumen Rendering System

We have developed a Parallel Distributed Volume Rendering System (PD-Rend). It works in a graphics dis-

tributed environment and converts a volume in a high resolution image. PD-Rend has been designed to achieve

photorealistic rendering as well as to provide a high signal-to-noise ratio. In PD-Rend, the distribution is made

1405 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

using the Sort First method (inter-node relation). Each node (intra-node relation) uses the Single Scattering and
Shadowing model combined with Hybrid Scattering, and the Monte Carlo method to improve the signal-to-noise

ratio and user interactivity. We have divided PD-Rend in two components: (i) PD-Rend inter, which considers

the inter-node relation, and (ii) PD-Rend intra, which takes into account the intra-node relation. In this work, we

have focused on analyzing the intra-node relation (i.e. PD-Rend intra)

In a distributed system, each node renders a portion of an image according to the Sort First distribution

model. The resolution per node is a fraction of the whole image. The Kroes’ approach [1] does not show a good

efficiency for low resolutions. In those cases, the frame rate increases but it is not proportional to the reduction

in resolution, impacting GPU efficiency. Accomplishing maximum use of node resources was one of the design

goals for PD-Rend intra.

Also, there are two design constraints for PD-Rend intra. Firstly, it must obtain the best performance when

nodes with massively parallel architecture as GPUs are used. Secondly, as part of a distributed system, it must

speed up the convergence of the Monte Carlo method to achieve high frame rate and high signal-to-noise ratio.

3.1. Rendering Process Stages

Reference [1] proposes a method that obtains excellent performance and quality in GPU. As previously men-

tioned, our rendering process is based on their approach. The rendering process is divided into different stagesffff

which are iteratively repeated frame by frame. Figure 1 shows the different stages in the rendering process,ffff

namely:

• Stochastic Raycasting Stage: This process yields a High Dynamic Range (HDR) Monte Carlo estimate of

the light arriving at the vision plane.

• Monte Carlo Integration Stage: It is performed by computing the cumulative moving average.

• Tone Mapping - Gamma Correction Stage: Used to generate an image of low dynamic range for visualiza-

tion from high dynamic range images.

Fig. 1. Stages of Rendering Process

The CPU and GPU are connected through the PCI-express bus. There is an initial data transfer where the

volume and initial rendering variables are sent from CPU memory to GPU global memory. Once frames are

rendered, they are sent from GPU global memory to CPU memory. As the first rendered frames are low quality,

PD-Rend intra only transfers those frames with high quality, i.e., those frames that are the result of n iterations

1406 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

of Stochastic Raycasting Stage and Monte Carlo Integration Stage, and one Tone Mapping - Gamma Correction
Stage.

3.2. n-Iterative Process
PD-Rend intra has an iterative part that repeats the Stochastic Raycasting Stage and Monte Carlo Integration

Stage n times (See figure 1). Once the loop is finished, the Tone Mapping - Gamma Correction Stage is executed

and the computed frame is transferred to CPU memory. This method improves the signal-to-noise ratio, which is

increased according to the square root of n [20].

The efficiency of PD-Rend intra, especially for low resolutions, is increased by reducing unnecessary opera-

tions inside the loop. This is achieved by moving the Tone Mapping - Gamma Correction Stage and the GPU-CPU

transfer outside the loop. It is crucial to properly design the number of iterations n. If n is very small, the quality

of the output frame is low. If n is large, the quality is high but the frame rate is low, reduced in a factor of n.

We considered other optimizations related to the GPU-CPU data transfers and the use of a filter. Data transfers

from GPU to CPU demand a relatively long time where the GPU must stay idle, and consequently, efficiency is

reduced. Therefore, we have implemented asynchronous buffered copies and overlapping transfers with compu-

tations. Also, rendering variables are transferred only when their values change. Regarding the use of a filter, the

Kroes’ approach uses a set of filters to improve the visualization when the signal-to-noise ratio is low.

However, the use of a filter reduces significantly the image quality. Figure 2(a) shows an example of an image

on which the filter has been applied. Figure 2(b) shows the same image without applying the filter. As PD-
Rend intra has been designed to generate images with a high signal-to-noise ratio, filtering stages are eliminated

to avoid their impact on image quality.

(a) With Filter (b) Without Filter

Fig. 2. Rendered Image

4. Efficiency Analysis

In this section, we derive the equation that characterizes the efficiency of PD-Rend intra. We use it to analyze

the Kroes’ implementation and our optimizations.

4.1. Efficiency Equation
From Figure 2, we can analyze the stages of PD-Rend intra as follows:

• The Monte Carlo’s rendering time, stages 1 and 2, is directly related to the frame resolution and computing

power of the GPU. If the rendering variables do not change, the execution times of every Monte Carlo’s

iteration are similar. This property allows us to make a balanced load distribution among system nodes. In

consequence, the total time of Monte Carlo processing is equal to the time of an iteration multiplied by the

number of iterations.

• Once the image portion has been obtained with an acceptable noise level in a high dynamic range (HDR), it

is converted, for its representation, to an image with low dynamic range (LDR). This is done in stage 3 and

its running time is influenced by the frame resolution and the computing power of the GPU.

• Data transfer times are also important. We distinguish three data transfer times: (i) the time it takes for

GPU-CPU transfer of a rendered image portion (stage 4), (ii) the time for CPU-GPU transfering of new

rendering variables, and (iii) the time required for kernel initialization. In all cases, times are influenced by

the PCI-Express bus latency and speed. In addition, (i) is also affected by the frame resolution.

1407 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

For all these observations, we define the following variables:

• Tp: Useful processing time of Monte Carlo rendering in once iteration

• n: Number of iterations

• m: Number of nodes in the distributed system.

• Tt: Time to transform an image from HDR to LDR.

• Tci: Time to copy a rendered image portion from GPU to CPU memory.

• Tca: Time of other communication and kernel initialization.

• Tc: Total time of communication for each rendering frame.

As we use a modern GPU architecture where Tp � Tci and we implement an overlap between GPU-CPU

transfers and the next computing (for this, we need to use buffers), Tci is ignored. In consequence, Tc is calculated

for Kroes’ approach as Tc = Tci + Tca = Tca and for PD-Render intra as Tc = Tca.

We define the Efficiency (E) of the rendering process as the ratio of total rendering time and total execution

time, it is

E =
n ∗ Tp

n ∗ Tp + Tt + Tc
(1)

Generally, E is smaller than the occupation percentage of GPU because the GPU power is used for the render-

ing process and Tone Mapping-Gamma Correction. Thus, when n is large, the GPU occupation is comparable to

E.

Other interesting performance parameters of PD-Render intra are the number of rendered frames per second

(FPS) and the number of iterations per second (IPS). Also, IPS is determinant of image quality.

As previously mentioned, we have designed PD-Render considering a Sort First as its distribution model.

Therefore all nodes generate a stream of screen portions with the same frame-rate to each other and the same

frame-rate that final stream of complete. The FPS and IPS and can be calculated respectively as

FPS =
1

n ∗ Tp + Tt + Tc
(2) IPS =

n
n ∗ Tp + Tt + Tc

(3)

From the above, we can deduce that when n is large, the output image has less noise and E is better, but the

frame-rate is reduced. The following expression relates the frame-rate and E from equations 1 and 2

E = 1 − FPS ∗ (Tt + Tc) (4)

Thus, the efficiency has two characteristics, (i) it is dependent on the FPS , the communication times, and prepa-

ration of the output image; and (ii) it is independent on the frame rendering time. Therefore, it is important

to minimize Tt and Tc. Tt is dependent on GPU power and Tc is determined by the time required for kernel

initialization and PCI-Express transfers.

If we increase the number of nodes for a specific output resolution and a particular signal-to-noise ratio defined

by n, then the resolution is decreased for each node, then Tp and Tt are reduced and can be neglected. In this case,

for a large number of nodes (nodes �), the maximum efficiency per node is expressed as:

Enodes� = 1 − FPS ∗ Tc (5)

For small resolutions in each node, we may obtain an unnecessarily high frame-rate and a reduced node efficiency

with risk to saturate the network. A good solution in this case is to increase n and consequently increase the

efficiency and signal-to-noise ratio of each frame.

Besides, when there is a large number of nodes, Tc plays an important role as the limiting factor of node

efficiency and the whole system.

4.2. Estimation of Times
In order to estimate efficiency, it is important to determine Tc and Tt. If we considered n large enough (n �),

we can approximate Tp as (Tp(approx))

1408 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

Tp(approx) =
1

(n ∗ FPS n�)
(6)

Then, if n = 1 we get

Tt + Tc =
1

FPS n=1

− Tp (7)

From these values, we can obtain the maximum efficiency and frame rate for a specific resolution using equa-

tion 4. When the rendering resolutions are smaller, Tt is proportional to the resolution and it becomes negligible

compared with Tc. In this case it can be depreciated. In equation 6, we express Tp and from the following equation,

we determine Tc.

Tc =
1

FPS (n=1&reduced resolution)

− Tp (8)

From Tc and using equation 5, it is possible to obtain the theoretical maximum efficiency for a particular frame

rate and for any resolution and number of nodes.

From the practical measurement of FPS (for large n) and FPS (n=1), we have obtained every time involved

in PD-Render intra and, from them we can establish the efficiency and maximum performance for a GPU.

5. Experimental Results

In this section we present and analyze experimental results for PD-Render intra. We consider two parameters:

FPS and GPULoad. This analysis was performed in two different scenarios, each configuration is:

Table 1. Scenarios Description of Experimental Setup

Scenario CPU GPU

Sc I

AMD FX 8120 RAM 8GB GTX 560 TI - SPs: 384

Shader/Clock/Memory freq: 1.76Ghz/880Mhz/1.05Ghz

Sc II

AMD Phenom II X2 545 RAM: 4 GB GTS 250 - SPs: 128

Shader/Clock/Memory freq: 1.836Ghz/740Mhz/1.1Ghz

The testing was performed in OS Microsoft Windows 7 (64-bits version) and Nvidia Drivers v306.97. Medical

Data Sets for testing are obtained from Osirix Imaging Software [21]. The model utilized is called Manix and it

has been obtained from a CT scan. Its volume was resampled at 50% resulting in a volume of 256x230x256

voxels.

Each reported value is the average of the frames per second when the program runs for a relatively long time.

GPU load was measured with GPU-Z v0.6.2 [22].

First, we present our performance evaluation. Table 2 show FPS -IPS and GPU Load parameters for Kroes’

approach and PD-Render intra in the two scenarios. The number of iterations is 1 as considered in [1]. The

results show that the Kroes’ approach increases FPS when the resolutions are reduced, but the reduction is not

proportional. Furthermore, the available computing power is not fully utilized, caused by an intra-node problem.

Table 3 displays the FPS , IPS and LoadGPU of PD-Render intra in the two scenarios and for a different

number of iterations, n.

From table 3, we can observe that the frame rate is reduced proportionally to the increase of n, the number

of rendered frames is n times lesser, and there is a better signal-to-noise ratio. Moreover, we notice a higher

GPULoad when the resolutions are low, indicating a better usage of GPU computing power.

The table 4 shows the Tp using equation 6.

As previously mentioned, table 4 shows that Tp is proportional to the number of pixels of the output image.

Tc is determined by equation 8. The obtained values for each implementation (Kroes and PD-Render intra)

are respectively Tc=3.98 ms and Tc=Tca=922 μs in S cI and Tc=1.96 ms and Tc=Tca=510 μs in S cII. The ob-

served differences are due to optimizations in PD-Render intra: including communication, overlapping technique

and use of buffers. We also notice that S cII, using less capable GPUs, shows a smaller Tc than S cI with more

1409 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

Table 2. Kroes’ Implementation vs. PD-Render intra in S cI and S cII

Kroes’ Implem. - n=1 PD-Render Intra - n=1

Scenario Resolution FPS-IPS Load GPU FPS-IPS Load GPU

Sc I

1920x1080 7.8 92% 9.8 98%

960x540 28.41 86% 37.18 92%

480x270 80.3 66% 118 81%

240x135 151.7 40% 299.8 62%

120x67 197.0 25% 474.3 43%

60x34 228 18% 756.4 37%

Sc II

1920x1080 1.233 96% 1.516 99%

960x540 4.61 96% 5.95 97%

480x270 16.6 93% 21.23 94%

240x135 52.88 83% 72.61 90%

120x67 134.9 71% 211.0 80%

60x34 301.8 64% 537.6 75%

Table 3. PD-Render intra in two scenarios for a different number of iterations

PD-Render Intra - n=10 PD-Render Intra - n=100

Scenario Resolution FPS IPS Load GPU FPS IPS Load GPU

Sc I

1920x1080 1.060 10.60 99% 0.1079 10.79 100%

960x540 4.03 40.3 99% 0.4144 41.44 99%

480x270 15.08 150.8 97% 1.53 153 99%

240x135 48.05 480.5 92% 5.35 535 98%

120x67 106.7 1067 84% 12.7 1270 97%

60x34 192.5 1925 77% 24.98 2498 96%

Sc II

1920x1080 0.1735 1.735 100% 0.01735 1.735 100%

960x540 0.69 6.9 99% 0.0702 7.02 100%

480x270 2.58 25.8 99% 0.263 26.3 99%

240x135 9.16 91.6 97% 0.945 94.5 99%

120x67 28.75 287.5 94% 3.1 310 97%

60x34 68.93 689.3 91% 7.36 736 95%

powerful GPUs. Modern GPU architectures have higher latencies, which increases Tc and reduces efficiency. The

GPU parameter Cpone−one [23] illustrates this problem.

Determining the maximum efficiency and frame rate from equation 4 implies to calculate spent time in other

tasks than rendering process. Table 5 shows that extra time for both implementations in our two scenarios.

For these results, we can observe that Tc + Tt is influenced by the image resolution, because the time Tt uses

the GPU and is proporcional to the total number of pixels (i.e. x-resolution * y-resolution) of the output image.

From the above, we can determinate the efficiency of PD-Render intra. In consequence, figure 3 shows the

achieved E in both scenarios and for different n. Figure 3 also shows efficiency for the Kroes’ approach.

We observe that PD-Render intra outperforms Kroes’ approach for large n and small resolutions, e.g. IPS of

PD-Render intra in S cI for n=100 and smaller resolution is ten times higher that Kroes’ approach. The same can

be noted for GPU Load (see tables 2 and 3). Also, we can see that PD-Render intra has a better efficiency for

every value of n and for all resolutions.

We have also analyzed the quality of the output images. In this case, we compare the output image of Kroes’

implementation (using filters) and of PD-Render intra. The figures 4 and 5 show six images, where three of them

are the output of Kroes (figure 4) and the other three correspond to PD-Render intra (figure 5). In both cases,

high, medium and low image resolutions are considered.

The use of a filter improves the quality of the real-time visualization. However, its quality is severely degraded

1410 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

Table 4. Calculation of Tp

�����������Scenario

Resolution
1920x1080 960x540 480x270 240x135 120x67 60x34

Sc I 93.02 ms 24.13 ms 6.54 ms 1.87 ms 785 μs 400μs
Sc II 576 ms 142 ms 38 ms 10.58 ms 3.22 ms 1.35 ms

Table 5. Time spent in tasks other than the Rendering Process

Scenario Implementation 1920x1080 960x540 480x270 240x135 120x67 60x34

Sc I
Kroes 35.2 ms 9.48 ms 5.91 ms 4.72 ms 4.29 ms 3.98 ms

PD − Render intra 9.02 ms 2.76 ms 1.93 ms 1.46 ms 1.32 ms 922 μs

Sc II
Kroes 235 ms 74.9 ms 22.24 ms 8.33 ms 4.19 ms 1.96 ms

PD − Render intra 83.63 ms 26.06ms 9.1 ms 3.19 ms 1.52 ms 510 μs

when the image has a low resolution, as shown in Figures 5(c) and 4(c). These images were obtained for n=25,000.

6. Conclusion and Future Work

In this paper, we present PD-Render intra, as part of PD-Render, a Parallel Distributed Volume Rendering
System. PD-Rend intra takes into account the intra-node relation and its efficiency is analyzed for different GPUs.

According to ours results, we observe that Tt and Tp are proportional to the total number of pixels of the output

image. This is due to the nature of the applied algorithms (Image-Order algorithm). The GPULoad is close to its

optimal value but it decreases when Tca or Tc are not negligible with respect to Tt+Tp. This occurs for small image

resolutions and n = 1. Our optimizations to the Kroes’ approach allow us to reduce Tt and Tc and to improve

the efficiency and performance of each node in the system. In future, we plan to integrated PD-Render intra into

the overall PD-Render followed by a thorough performance analysis. In this context, we will investigate whether

there are other important performance parameters and how to compute them.

Acknowledgements

We would like to thank the UNSL, UTN (LICPaD and GridTICs) and UIC for allowing us to use their com-

putational resources. This research has been partially supported by Project PICT2010/29 and PROICO-30310.

Fig. 3. Efficiency of Rendering Process

1411 Cristian Federico Perez Monte et al. / Procedia Computer Science 18 (2013) 1402 – 1411

(a) High (b) Medium (c) Low

Fig. 4. Images Rendered using Kroes’ method

(a) High (b) Medium (c) Low

Fig. 5. Images Rendered using PD − Render intra method

References

[1] T. Kroes, F. Post, C. Botha, Exposure render: An interactive photo-realistic volume rendering framework, PLoS ONE 7 (2012) e38586.

[2] M. Hadwiger, J. Kniss, C. R. Salama, D. Weiskopf., K. Engel, Real-time Volume Graphics, A. K. Peters, Ltd., Natick, MA, USA, 2006.

[3] N. Max, Optical models for direct volume rendering, Visualization and Computer Graphics, IEEE Transactions on 1 (2) (1995) 99 –108.

[4] M. Hadwiger, A. Kratz, C. Sigg, K. Bühler, Gpu-accelerated deep shadow maps for direct volume rendering, in: Proceedings of the 21st

ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’06, ACM, New York, NY, USA, 2006, pp. 49–52.

[5] S. Zhukov, A. Iones, G. Kronin, An ambient light illumination model, in: Rendering Techniques, Eurographics, 1998, pp. 45–56.

[6] K. M. Beason, J. Grant, D. C. Banks, B. Futch, M. Y. Hussaini, Pre-Computed Illumination for Isosurfaces, in: VDA ’94: Proceedings

of the conference on Visualization and Data Analysis ’06, 2006, pp. 1–11.

[7] C. R. Salama, Gpu-based monte-carlo volume raycasting, in: Proceedings of the 15th Pacific Conference on Computer Graphics and

Applications, PG ’07, IEEE Computer Society, Washington, DC, USA, 2007, pp. 411–414.

[8] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann, K. Hinrichs, Interactive volume rendering with dynamic ambient occlu-

sion and color bleeding, Comput. Graph. Forum (2008) 567–576.

[9] M. Schott, P. Grosset, T. Martin, C. Hansen, V. Pegoraro, Depth of field effects for interactive direct volume rendering, Computer

Graphics Forum 30 (3) (2010) 941–950.

[10] D. van Antwerpen, Improving simd efficiency for parallel monte carlo light transport on the gpu, in: Proceedings of the ACM SIGGRAPH

Symposium on High Performance Graphics, HPG ’11, ACM, New York, NY, USA, 2011, pp. 41–50.

[11] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Processors, A Hands on Approach, Elsevier, Morgan Kaufmann, 2010.

[12] J. Sanders, E. Kandrot, CUDA by Example, An Introduction to General Purpose GPU Programming, Addison Wesley, 2010.

[13] NVIDIA, Nvidia cuda compute unified device architecture, programming guide version 4.2., in: NVIDIA, 2012, pp. 1–173.

[14] S. Molnar, M. Cox, D. Ellsworth, H. Fuchs, A sorting classification of parallel rendering, IEEE Computer Graphics and Applications 14

(1994) 23–32.

[15] R. Samanta, T. Funkhouser, K. Li, J. P. Singh, Sort-first parallel rendering with a cluster of pcs, in: In SIGGRAPH 2000 Technical

sketches, 2000, pp. 26–0.

[16] N. Schwarz, J. Leigh, Distributed volume rendering for scalable high-resolution display arrays., in: P. Richard, J. Braz, A. Hilton (Eds.),

GRAPP, INSTICC Press, 2010, pp. 211–218.

[17] S. Marchesin, C. Mongenet, J. M. Dischler, Multi-gpu sort-last volume visualization, in: Proceedings of the 8th Eurographics conference

on Parallel Graphics and Visualization, EG PGV’08, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2008, pp. 1–8.

[18] J. R. Monfort, M. Grossman, Scaling of 3d game engine workloads on modern multi-gpu systems, in: Proceedings of the Conference on

High Performance Graphics 2009, HPG ’09, ACM, New York, NY, USA, 2009, pp. 37–46.

[19] C. M. Mocan, D. Gorgan, Cluster based modeling and graphical visualization of interactive large spatial data, in: MIPRO, 2010 Pro-

ceedings of the 33rd International Convention, 2010, pp. 258 –263.

[20] J. S. Liu, Monte Carlo Strategies in Scientific Computing, corrected Edition, Springer, 2008.

[21] Osirix imaging software (last rev dec 2012) url http://www.osirix-viewer.com/datasets/.

[22] Gpu-z video card gpu information(last rev dec 2012) url http://www.techpowerup.com/gpuz/.

[23] C. Perez, F. Piccoli, Towards the specification of the gpu using performance parameters, in: 40 JAIIO Cba, Argentina, 2011, pp. 117–129.

