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Abstract

As the disk formation mechanism(s) in Be stars is(are) as yet unknown, we investigate the role of rapidly rotating
radiation-driven winds in this process. We implemented the effects of high stellar rotation on m-CAK models
accounting for the shape of the star, the oblate finite disk correction factor, and gravity darkening. For a fast
rotating star, we obtain a two-component wind model, i.e., a fast, thin wind in the polar latitudes and an Ω-slow,
dense wind in the equatorial regions. We use the equatorial mass densities to explore Hα emission profiles for
the following scenarios: (1) a spherically symmetric star, (2) an oblate star with constant temperature, and (3) an
oblate star with gravity darkening. One result of this work is that we have developed a novel method for solving the
gravity-darkened, oblate m-CAK equation of motion. Furthermore, from our modeling we find that (a) the oblate
finite disk correction factor, for the scenario considering the gravity darkening, can vary by at least a factor of two
between the equatorial and polar directions, influencing the velocity profile and mass-loss rate accordingly, (b) the
Hα profiles predicted by our model are in agreement with those predicted by a standard power-law model for
following values of the line-force parameters:   a ~k1.5 3, 0.6, and d 0.1, and (c) the contribution of the
fast wind component to the Hα emission line profile is negligible; therefore, the line profiles arise mainly from the
equatorial disks of Be stars.
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1. Introduction

A classical Be star has historically been defined as “a non-
supergiant” B star whose spectrum has, or had at some time,
one or more Balmer lines in emission (Collins 1987).
Currently, there is consensus that Be stars are very rapidly
rotating and non-radially pulsating B stars (of luminosity class
V–III), forming a decretion disk of outwardly flowing gas
rotating in a Keplerian fashion (Rivinius et al. 2013). It is
generally accepted that Be star disks are geometrically thin and
produced from material ejected from the central star.

An observational feature of these stars is the presence of
emission lines from the optical to the near-IR wavelength
regions of the spectrum. These lines can be formed in a region
very close to the star (helium and doubly ionized metal lines),
in a large part of the disk (hydrogen lines), or relatively far
from the star (singly ionized metal lines, Rivinius et al. 2013).
One of the predominant emission lines is the aH line, and
because it forms in a large region of the disk, it is often
modeled to obtain average disk properties. Currently, Be star
disks are frequently modeled by assuming a simple power-law
density distribution in the radial direction (µ -r n) following the
works of Waters (1986), Cote & Waters (1987), Waters et al.
(1987), Jones et al. (2008), and Silaj et al. (2014b). Typically,
the values for the radial power-law index n are found to be in
the range 2.0–3.5, based on fits to Hα or the IR continuum
(Waters 1986; Silaj et al. 2014b).

Another observational feature of Be stars is the structure of
their stellar winds. Observations of broad shortward shifted UV
lines of superionized elements (C IV, Si IV, and N V) demon-
strate the presence of high-velocity stellar winds, even for later
Be spectral types, whereas in normal B stars they are typically

observed only in the early spectral types (Prinja 1989).
Furthermore, these winds also suggest a trend of increasing
¥v vesc (ratio of terminal velocity to escape velocity) as a
function of v i vsin crit (ratio of projected rotational velocity to
critical rotation speed), which is in contradiction with the
radiation-driven wind theory or m-CAK theory (Friend &
Abbott 1986; Pauldrach et al. 1986), based on the pioneering
CAK theory of Castor et al. (1975), who predict a decrease in
the terminal velocity as a function of rotational velocity (Prinja
1989). Interferometric observations have revealed some
circumstellar envelopes with large-scale asymmetries along
the polar directions that suggest an enhanced polar wind
(Kervella & Domiciano de Souza 2006; Meilland et al. 2007).
Polar winds from Be and normal B stars can properly be
described by the current radiation-driven wind theory for
massive stars (Rivinius et al. 2013). In contrast to this, at the
equator, Be stars present a much slower and denser mass flux,
which is not in agreement with the standard radiation-driven
wind theory.
The precise mechanism to explain the formation of Be star

disks is still under debate, and many attempts to link the
radiation-driven wind theory to these disks have been made.
One such example is the wind-compressed disk (WCD) model
proposed by Bjorkman & Cassinelli (1993). This model
suggested that the wind from both hemispheres of a rapidly
rotating star is deflected toward the equatorial plane, producing
an outflowing equatorial disk. However, Owocki et al. (1996)
investigated the effects of non-radial line forces on the
formation of a WCD, and their results showed that these
forces (enhanced by the gravity darkening effect) may lead to
an inhibition of the outflowing equatorial disk. Later, Krtička
et al. (2011) examined the mechanisms of mass and angular
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momentum loss via an equatorial decretion disk associated with
near-critical rotation. The authors emphasized the role of
viscous coupling in outward angular momentum transport in
the decretion disk and radiative ablation of the inner disk from
the bright central star. In this context, it has been shown that
radiation-driven disk-ablation models may lead to the destruc-
tion of an optically thin Be star disk on a dynamical timescale
of the order of months to years (Kee et al. 2016), without
invoking anomalously strong viscous diffusion.

Viscous disk models with radiation-driven ablation are
currently based on a non-rotating m-CAK wind solution that
assumes a power-law distribution in line strength. It is then
important to stress that when the finite disk approximation for
the line acceleration (m-CAK theory, Friend & Abbott 1986;
Pauldrach et al. 1986) is combined with the term of the
centrifugal force on a rapidly rotating star (i.e., for W 75% of
the critical rate, with W = v vcrit), they cause the termination of
the m-CAK wind solution (fast solution) in the equatorial
plane, and a new solution—the Ω-slow solution—is established
(Curé 2004).

The Ω-slow solution results in higher mass-loss rates and
lower terminal velocities than those from a conventional fast
wind solution, so it could provide proper physical conditions to
form a dense disk in Keplerian rotation via angular momentum
transfer.

Our model is then based on the assumption that, as main-
sequence B stars evolve, with moderately rapid initial rotation
and mass loss, they can bring angular momentum to the surface
and spin up even to critical rotation (Ekström et al. 2008).
Under this condition, stars rotating near the critical rotation
speed may develop a latitude-dependent wind density structure
and a dense decretion disk via transfer of angular momentum.
We will assume that the governing processes of a Be star wind
at high latitudes are the same as in the m-CAK wind (fast
solution).

At equatorial latitudes, the rotation term in the equation of
motion (EoM) will increase the mass-loss rate and decrease the
terminal velocity. However, as the centrifugal term ( qµ ( )v rrot

2 3)
increases with latitude, because q( )vrot has larger values
than ~75% of the critical speed, the fast solution no longer
exists and the Ω-slow wind solution arises. This abrupt change in
the wind regime naturally produces a two-component wind.

It is worthwhile investigating whether the resulting density
structure injected via the Ω-slow solution for a fast rotating star
is able to reproduce the Hα emission line observed in Be stars.

To test this hypothesis, Silaj et al. (2014a) constructed a set
of models for a spherical star using only density distributions
coming from the Ω-slow solution and computed the Hα line
using the code BEDISK (Sigut & Jones 2007). Then they
compared the resulting Hα line with synthetic line profiles
computed with the ad hoc power-law model described above
(see, e.g., Silaj et al. 2014b). In these models, line-force
parameters were taken as free parameters. These authors found
that the density distribution produced by the Ω-slow solution
can explain the structure of a Be star disk when (unphysically)
high values for the line-force parameter k are assumed
(k=4.0, 5.0, and even ∼9.0), in contrast to the typical k
values self-consistently calculated ( k 0.5) for the fast
solutions (see, e.g., Abbott 1982; Pauldrach et al. 1986). In
this work, we extend the study done by Silaj et al. (2014a)
using broader combinations of line-force parameters, and we

discuss the effects of the star’s oblate geometry and gravity
darkening. Therefore, we will consider the following scenarios:
(a) a spherically symmetric central star with constant temper-
ature; (b) an oblate central star with constant temperature and
(c) an oblate central star with gravity darkening. In this
framework, we also show that the contribution to the line
emission coming from other latitudes above and below the
equator, where the m-CAK solution governs the outflowing
wind, can be neglected.
The paper is organized as follows: Section 2 presents our

model approximations and describes the theory for the
radiation-driven stellar winds, deriving the equations that
account for the oblateness of the star, the oblate finite disk
correction factor, and the gravity darkening effect. In addition,
we present an overview of an ad hoc power-law model usually
used to describe the disk density structure of Be stars. In
Section 3, we build, using the hydrodynamic code HYDWIND,
a grid of models with different values of the line-force
parameters, and the equatorial density structures calculated for
this grid are used as input in the BEDISK code to obtain a grid
of Hα line profiles. This Hα line grid is compared with the
synthetic line profiles computed from the ad hoc disk density
scenario that follows a power-law distribution. Section 4
summarizes the results of the hydrodynamic models and the
emergent line profiles predicted from the grid of equatorial
mass density. In addition, we show that the contribution of the
fast wind component to the emergent emission Hα line profile
is negligible. Finally, we discuss future perspectives.

2. Hydrodynamic Model

2.1. Model Approximations

Throughout this work we adopt the following approxima-
tions to describe the wind from a massive star with a large
rotation rate.

1. In this two-component stationary and isothermal wind
model, we neglect the effects of viscosity, heat conduction,
and magnetic fields. At the polar regions, the wind is
described by the fast wind solution from the standard
m-CAK model, while at the equator, due to the high
rotational speed, the outflowing disk-like wind is described
by the Ω-slow solution.

2. The hydrodynamic wind equations are solved in the 1D
m-CAK model, only for polar and equatorial directions.
The wind regime for other latitudes needs to be calculated
using a 2D model that takes into account all non-radial
forces (see, e.g., Bjorkman & Cassinelli 1993; Cranmer
& Owocki 1995; Petrenz & Puls 2000), and this is
beyond the scope of this work.

3. Line-force parameters for the fast solutions correspond to
the calculated values (see, e.g., Lamers & Cassinelli 1999
and references therein). As the line-force parameters for
the Ω-slow solution have so far no self-consistent
calculations, we adopt ranges:  a0.5 0.7 and
 d0 0.2 (see Kudritzki 2002), while k is varied

within a wider range.
4. The m-CAK model with rotation assumes conservation of

angular momentum.

In the following sections, we incorporate the effect of the
distortion of the star’s shape caused by its high rotational speed
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and the gravity darkening effect into the radiation-driven wind
theory.

2.2. Radiation-driven Wind Equations

The 1D m-CAK hydrodynamic equations for rotating radiation-
driven winds, namely conservation of mass and of radial
momentum, considering spherical symmetry, and neglecting the
gravity darkening effect and non-radial velocities, are

r
p

= ( )r v
F

4
12 m

and

r

r

= - -
- G

+

+

f( ) ( )

( ) ( )

v
dv

dr

dp

dr

GM
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v r

r

g dv dr n

1 1
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E
2

2
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where r is the radial coordinate, Fm is the local mass-loss rate, v
is the fluid radial velocity, dv/dr is the velocity gradient, and
gline is the radiative acceleration as a function of ρ and nE, the
mass density and electron number density, respectively. GE, the
Eddington factor, is the Thomson electron scattering force
divided by the gravitational force. The gas pressure, p, is given
in terms of the sound speed, a, for an ideal gas as r=p a2 . The
variables v p, , and ρ are functions of position and co-latitude
angle. In addition, the variables a and GE become functions of
co-latitude when gravity darkening is taken into account. The
rotational speed *q=f ( )v v R rrot is calculated assuming
conservation of angular momentum, where q( )vrot is the star’s
surface rotational speed at co-latitude θ, expressed by

q q=( ) ( ) ( )v v eq sin 3rot rot

with ( )v eqrot being the stellar rotational speed at the equator.
The CAK theory assumes that the radiation emerges directly

from the star (as a point source) and multiple scatterings in
different lines are not taken into account. A later improvement
to this theory (m-CAK) considers the radiation emanating from
a stellar disk, and therefore we adopt the m-CAK standard
parameterization for the line-force term, following the descrip-
tions of Abbott (1982), Friend & Abbott (1986), and Pauldrach
et al. (1986), namely

=
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here Fm is calculated once the eigenvalue is obtained. In these
equations, W(r) is the dilution factor, nE is given in units of

- - v10 cm ,11 3
th is the mean thermal velocity of the protons, and

GE is expressed as

s
p

G = ( )L

cGM4
, 6E

E

where sE is the electron scattering opacity per unit mass.
The line-force parameters (Abbott 1982; Puls et al. 2000) are

given by α (the ratio between the line-force from optically thick

lines and the total line force), k (which is related to the number
of lines effectively contributing to the driving of the wind),
and δ (which accounts for changes in the ionization throughout
the wind).
The finite disk correction factor, fSFD, for a spherical star, is

defined as

*
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All other variables have their standard meaning. (For detailed
derivations and definitions of variables, constants, and func-
tions, see, e.g., Curé 2004).
In addition, we can define the normalised stellar angular

velocity as

W =
( ) ( )v

v

eq
, 9rot

crit

where vcrit is the critical rotational speed for a spherical star,
defined, e.g., by Maeder & Meynet (2000) as

*
= - Gk

⎛
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⎞
⎠⎟( ) ( )v

GM

R
1 , 10crit

1 2

where Gk considers the mean opacity of the total flux, κ, instead
of the electron scattering opacity per unit mass used in the
theory of radiatively driven winds given in Equation (6).
Because of the difficulty of knowing the exact value of κ, our
values for vcrit are calculated assuming G @ Gk E. This approx-
imation represents a minor underestimation of the value of Ω,
since in our models both Gk and GE are1.

2.3. Oblateness and Gravity Darkening Effects

When we take high rotation into account, the star becomes
oblate and its shape becomes roughly similar to a rotating
ellipsoid. The von Zeipel theorem states that the radiative flux
 at some co-latitude in a rotating star is proportional to the
local effective gravity, geff (von Zeipel 1924). This oblateness
changes the local effective gravity, = +g g geff grav rot (sum of
the gravitational and centrifugal accelerations), and hence the
local temperature at the stellar surface (von Zeipel 1924, for
shellular rotation see Maeder 1999). For this reason, when we
consider both effects, it is convenient to redefine some
parameters as a function of co-latitude θ and rotational speed.
Thus, the star’s local rotational speed is given by

q
q

qW =
W
W
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( )
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R

R
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,
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, eq sin , 11rot rot

and the normalized stellar angular velocity is expressed as

w
w
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, 12rot

crit

rot

crit

eq
max

where, in a Roche model, =R R3 2eq
max

pole is the maximum
equatorial radius when a star is rotating at the critical velocity,
i.e., W = 1 (see, e.g., Puls et al. 2008; Müller & Vink 2014).
Rpole is the polar radius, and as a first approximation it is
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assumed to be independent of the rotational velocity.6 Then,
the critical rotational velocity for a uniform radiation field,
where the effect of gravity darkening is omitted, is expressed as

= - G = - Gk k

⎛
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1 . 13crit
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1 2
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1 2

It is important to note that when gravity darkening is
considered, vcrit requires special attention. Puls et al. (2008)
state: “After some controversial discussions arising from the
suggestion of an Ω limit by Langer (1997, 1998) which has
been criticized by Glatzel (1998) (because of disregarding
gravity darkening), Maeder & Meynet (2000) performed a
detailed study on the issue.” Maeder & Meynet (2000) state
that some authors write the critical rotational velocity as in
Equation (10), but they emphasize that this relation is true only
if it is assumed that the brightness of the rotating star is uniform
over its surface. This is in contradiction with the von Zeipel
theorem, which predicts a decrease in the effect of radiation
pressure at the equator. Surprisingly for Maeder & Meynet
(2000), some authors use this relation simultaneously with the
von Zeipel theorem. Maeder & Meynet (2000) establish that
the critical rotational velocity is reached when the total gravity

=g 0tot , i.e.,

q- G =W[ ( )] ( )g 1 0, 14eff

where qGW( ) is the local Eddington factor. Their study finds that
for moderate values of Gk (which is our case) the critical speed
can be calculated, independently from Gk, from the condition

=g 0eff , in agreement with Glatzel (1998), as
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The stellar radius can be approximated as a function of co-
latitude and rotational speed as

q
q

p q
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(Cranmer & Owocki 1995; Petrenz & Puls 1996; Müller &
Vink 2014).

The local effective gravity at a given co-latitude, directed
inward along the local surface normal, is given by the negative
gradient of the effective potential

w qF = - - ( ) ( )GM
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(Cranmer & Owocki 1995; Maeder & Meynet 2000). Thus, the
two-components of the local effective gravity in spherical
coordinates are
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On the other hand, to derive the dependence of Teff on the
co-latitude at the surface of the star, we follow the work of
Espinosa Lara & Rieutord (2011), who assume that the radiative
flux in the envelope of a rotating star can be expressed, following
von Zeipel (1924), as

 q= - ( ) ( )gf r, 22eff

where q( )f r, is a function of the position to be determined and
satisfies the condition

q
p

h= =


( ) ( )f r
L

GM
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4
23

r 0

and η is a constant that scales the function f and can be
rewritten in a dimensionless form as

q h q= W( ) ( ) ( )f r F r, , . 24

Then for the Roche model, w =· g 2eff rot
2 , an expression for

the local effective temperature can be derived (see Espinosa
Lara & Rieutord 2011):
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and furthermore q qµW
-( ) ( )F tan 2 . This last equation possesses

singularities at the poles and the equator of the star. At these
points, the local effective temperature is respectively given by
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Since the effective gravity, and therefore the flux, varies over
the surface of the rotating star, we still need to determine the
local value of GW for a barotropic case of a nonspherical star that

6 Nevertheless, evolutionary calculations show that Rpole depends slightly on
Ω due to the small changes in internal structure (Maeder 2009).
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can be defined in terms of the reduced mass, M★, as follows:
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where rm is the internal average density (Maeder 1999; Maeder
& Meynet 2000). It is important to note that the value of GW is
independent of latitude.7

In order to account for the oblateness of a gravity-darkened
star, we need to calculate the corresponding oblate finite disk
correction factor fOFD at a given co-latitude,
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The reader is referred to Figure 2 and Section 4.3 from
Pelupessy et al. (2000) for the definition of the various angles.8

Here we neglect the continuum correction factor since it is not
important for low-luminosity stars because GE itself is small.

2.4. Solving the Hydrodynamic Wind Equations

In order to solve the 1D hydrodynamic radiation-driven wind
equations, Curé (2004) introduced the following change of
variables: *= - =u R r w v a, , and ¢ =w dw du, with

=a v arot rot , where a is the isothermal sound speed. Based
on this auxiliary set of variables, we can write an approximate
EoM for an oblate gravity-darkened star valid for
G » GW  1E , where GW is evaluated with sE instead of κ,
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Figure 1. Comparison of the ratio f fOFD SFD (solid line) with the polynomial
interpolation Q(u) (dashed line) at the equator (upper panel) and the pole (lower
panel). Both expressions have been computed for a wind model solution with
W = 0.90 considering oblateness and gravity darkening effects. Note that in the
upper panel the function does not start at = -u 1.0, due to the oblateness of the
star. R* corresponds to the polar radius of an oblate star.

Figure 2. Comparison of the oblate correction factor calculated from
Equation (30) (solid line) with the approximate oblate correction factors
obtained from our iterative method (dashed line) at the equator (upper panel)
and the pole (lower panel) for a model with W = 0.90, including gravity
darkening.

7 This is true for a barotropic case or if κ is the same over the entire stellar
surface (Maeder 1999).

8 Note that Equations (24), (32), and (35) from Pelupessy et al. (2000) differ
in the sign of the exponent α compared to our derivation, because of a typo in
their equations.
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To solve this nonlinear differential equation we adopt =u
-R rpole and define now A and ¢C in terms of GW:

q q
=

- G
W

W[ ]
( ) ( )

( )A
GM

a R

1

,
33

2

and

p q q
q q¢ =

W
W

d
a

-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( )

( ( ) ( )) ( )C C
F D

a R
a R

2

10

,
, , 34m

11

2
2 1

with

p
s

= G
a

W
⎛
⎝⎜

⎞
⎠⎟ ( )C GMk

v F

4
35

E th m

and

=
+
+

⎛
⎝⎜

⎞
⎠⎟ ( )D

Z Y

A Y m

1

1

1
, 36He He

He He H

where YHe is the helium abundance relative to hydrogen, ZHe is
the number of free electrons provided by helium, AHe is the
atomic mass number of helium, and mH is the mass of the
proton.

A more general expression for the EoM valid for larger
values of GW can be found in Appendix A. In Appendix B we
show the calculation of GW.
In order to find a physical, continuous solution of w, which

starts at the stellar surface and reaches infinity, it is necessary to
require the solution to pass through a critical (singular) point.
Its location is obtained from the singularity condition,

¶
¶ ¢

¢ =( ) ( )
w

F u w w, , 0, 37

together with a lower boundary condition (at the stellar surface)
by setting the surface mass density to a specific value,

* *
r q r q=( ) ( ) ( )R , . 38

At the critical point a regularity condition must be imposed,
namely,

¢ =
¶
¶

+
¶
¶

¢ +
¶
¶ ¢

 =( ) ( )d

du
F u w w

F

u

F

w
w

F

w
w, , 0, 39

where the last term ¶ ¶ ¢ =F w 0, due to the singularity
condition (Equation (37)).
Depending on the value of Ω, the solution of Equation (31)

leads to either fast or Ω-slow wind solutions. Notice that for
high rotational velocities, the standard (or fast) solution ceases
to exist (Curé 2004). In both cases, we use the stationary
hydrodynamic HYDWIND code (Curé 2004) modified to take
into account the effects of oblateness and gravity darkening.

Figure 3. Similar to Figure 2, but the oblate correction factor (obtained from
Equation (30)) is calculated at the equator (upper panel) and the pole (lower
panel) without considering gravity darkening.

Figure 4. Comparison between fOFD with gravity darkening (solid line) and
fSFD (dotted line) calculated at the equator (upper panel) and the pole (lower
panel) for a rotating star at W = 0.2. The correction factors in the two panels
are very similar.
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2.5. Calculation of the Gravity-darkened and Oblate Finite
Disk Correction Factor

To solve the m-CAK EoM accounting for the gravity
darkening and the oblate distortion of the star that is caused by
its rapid rotation, we implemented the method described by
Araya et al. (2011), who introduced the fOFD factor and its
calculation. In view of the behavior of the fOFD factor, it is
possible to obtain an approximate expression via a sixth-order
polynomial interpolation in the inverse radial variable u, i.e.,

= ( ) ( )f Q u f . 40OFD SFD

With this structure, the different topological solutions of the
m-CAK model, found by Curé (2004), are maintained by the
fSFD term, but modified by the incorporation of this Q(u)
polynomial. This approximation (Equation (40)) allows the
nonlinear m-CAK EoM to be solved in a straightforward way,
instead of calculating the complicated integral of fOFD
(Equation (30)), which would be computationally expensive
and numerically unstable.

In this work we solve the m-CAK EoM for the polar and
equatorial directions (see Section 4), but in the calculation the
latitude dependence of the oblate finite disk correction factor
and the gravity darkening are taken into account.

A finite-difference iterative numerical method, described in
Curé (2004), is used to solve this nonlinear differential
equation. This numerical approach needs to start from an
initial trial velocity profile in order to iterate until convergence.
Therefore, our iterative strategy is as follows:

1. A initial β-law for the velocity profile is used for v(u) and
w(u).

2. fSFD and fOFD are calculated from w(u).
3. Q(u) coefficients are calculated by fitting f fOFD SFD as

function of u.

4. The EoM is solved with our approximate ( )Q u fSFD,
obtaining a new velocity profile w(u).

5. Steps 2 to 4 are repeated until convergence is reached.

A comparison between Q(u) and the ratio f fOFD SFD is shown
in Figure 1 for the equatorial (upper panel) and polar (lower
panel) regions. Both functions were calculated for W = 0.90
considering the oblate finite disk correction factor and gravity
darkening. We find discrepancies of about 2% after four
iterations. The oblate correction factors are depicted in Figure
2: the solid line is calculated by solving Equation (30)
numerically, and the dashed line is obtained from our
approximation. The excellent agreement between the approxi-
mated and the numeric fOFD factors, at the pole and equator,
demonstrates the robustness of this method. It is important to
emphasize the intensity variation that results from the
integration of the fOFD factor with co-latitude when gravity
darkening effects are taken into account. In order to understand
and compare the behavior of the scenario with gravity
darkening in Figure 3 we also show fOFD without considering
the gravity darkening. From the plots we can observe the large
impact of fOFD on the polar direction, where the intensity
between the models with and without gravity darkening
follows a similar behavior. Finally, in order to test our
calculation for fOFD, we show in Figure 4 a comparison
between fOFD with gravity darkening and fSFD, both for a low
value of Ω (W = 0.20) at the equator and the pole. At this
rotational speed, the star remains almost spherical and the

Table 1
Combinations of the Line-force Parameters for the Grid of Models

Parameter Values

α 0.50 0.55 0.58 0.60
δ 0.07 0.10 0.12 0.15 0.17 0.20
k 0.50 0.80 1.00 1.50 2.00 3.00 4.00 5.00

Table 2
Stellar Parameters used in Our Calculations for the Three Different Scenarios

Ω Req Teq Tpole ( )v eqrot Scenario

( )R (K) (K) -( )km s 1

0.80 5.30 25,000 25,000 497.5 Spherical
6.05 25,000 25,000 308.9 Oblate
6.05 22,770 25,802 312.2 Oblate + gravity darkening

0.90 5.30 25,000 25,000 559.6 Spherical
6.44 25,000 25,000 370.2 Oblate
6.44 21,635 26,020 374.3 Oblate + gravity darkening

0.95 5.30 25,000 25,000 590.7 Spherical
6.79 25,000 25,000 411.9 Oblate
6.79 20,617 26,139 416.4 Oblate + gravity darkening

0.99 5.30 25,000 25,000 615.5 Spherical
7.37 25,000 25,000 465.6 Oblate
7.37 18,698 26,240 470.7 Oblate + gravity darkening

Figure 5. Mass density distributions (upper panel) and velocity profiles (lower
panel) in the equatorial direction computed for rotating radiation-driven winds
with W = 0.90 for the three scenarios as a function of the inverse radial
coordinate u.
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temperature essentially constant, confirming that the two
correction factors are similar.

3. Methodology for Modeling a Be Star Disk

3.1. Ad hoc Density Model

In this section we present a short summary of the traditional
method to model a thin rotating circumstellar disk.

An ad hoc disk density model is generally adopted to
describe the stratification of the mass density in the equatorial
plane of a thin disk. This density distribution, originally
developed by Waters et al. (1987) for the interpretation of IR
observations of Be stars, is assumed to follow a power-law
distribution defined by

*
r r=

-
-

⎛
⎝⎜

⎞
⎠⎟( ) ( )( )r z

r

R
e, , 41

n
z H

0
2

where r0 is the equatorial density of the disk at the stellar
surface, n is the adopted power-law index, and H is the scale
height in the z-direction expressed as

a
= ( )H

r2
, 42

3

0

where a0 is defined as

a
m

= ( )GM
m

kT
, 43H

0
0

0

where m0 is the mean molecular weight of the gas and T0 is an
assumed isothermal temperature used for setting the scale
height prior to the calculation of the self-consistent temperature
distribution in the disk.

This simple prescription of a density distribution with
power-law fall-off in the radial direction and in approximate
hydrostatic equilibrium in the z-direction has been used
extensively in the literature, so it provides a good basis for
comparison with other works (see, for example, Sigut et al.
2015; Patel et al. 2016; Arcos et al. 2017).

Under the assumption of radiative equilibrium, the level
populations and ionization state of the gas are calculated
throughout the disk with the stellar radiation included using a
Kurucz model atmosphere (Kurucz 1993). In addition, the code
solves the transfer equation along a set of rays parallel to the
star’s rotation axis. Then, by projecting the line flux at different
angles, it is possible to calculate a synthetic line profile as seen
by an external observer from a given line of sight (see Sigut &
Jones 2007 for details).

3.2. Hydrodynamic Density Model

As mentioned in Section 1, the spirit of this work is to extend
the study developed by Silaj et al. (2014a), who modeled a Be
star considering: (i) a spherical star with constant effective
temperature, and (ii) a thin disk using density distributions
provided by the Ω-slow solution at the equatorial plane. They
used these density distributions as input in the BEDISK code to
obtain synthetic Hα line profiles.

In this work we also include the effect of the stellar rotation
on the shape of the star and gravitational darkening. The
resulting radial density structure of the equatorial plane,
obtained from the HYDWIND code, is then used as input in
the BEDISK code, to calculate the vertical densities (z-direction)

and temperature distributions, and then the synthetic Hα line
profiles. It is important to note that the contribution from the
outflowing wind at non-equatorial latitudes (fast wind solution)
to the Hα emission line profile is negligible, as explained in
Section 5. Thus, the Hα emission line-forming region is
primarily in or near the equatorial plane.
Here, it is worth mentioning that the radial density

distribution obtained with the HYDWIND code is calculated
assuming conservation of angular momentum. However, based
on observations, it is commonly accepted that the disks of Be

Figure 6. Mass density distributions as a function of *r R for the equatorial
direction computed for rotating radiation-driven winds with W = 0.90 and
different sets of line-force parameters. The equatorial mass density distributions
are compared with the ad hoc mass density structure (solid black line). These
models correspond to the best-fit line profile to the ad hoc model, using the
finite disk correction factor for: (i) a spherically symmetric star (top panel), (ii)
an oblate star (middle panel), and (iii) an oblate star with gravity darkening
(bottom panel).
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stars are in Keplerian orbits, and therefore, in order to satisfy
this observational feature, BEDISK computes the synthetic line
profile with a Keplerian rotational distribution to obtain the
emission line as a function of wavelength.

4. Results

In this work we solve an improved rotating radiation-driven
wind model considering three different scenarios: (1) a
spherically symmetric star with constant temperature, (2) an
intermediate scenario that considers an oblate star but neglects
gravity darkening effects, and (3) an oblate star with gravity
darkening. For each scenario we calculate the density
stratification from the EoM (Ω-slow solution, for W > 0.75)
in the equatorial plane and obtain the corresponding synthetic
Hα line profiles from BEDISK. To investigate the results of
these three scenarios, we first build a grid of hydrodynamic
models.

4.1. Grid of Hydrodynamic Models

We adopt the same stellar parameters as Silaj et al. (2014a):
Teff =25,000 K, =glog 4.03, * = ☉R R5.3 , which correspond
to a B1V type star. Furthermore, we set

*
r p =( )2

´ - -5 10 g cm11 3 (see Equation (38)) as a lower boundary
condition for the HYDWIND code. This boundary condition
ensures that the initial surface velocity is less than the sound
speed.

To represent a fast rotating star we use the following Ω
values: 0.80, 0.90, 0.95, and 0.99. Then, the corresponding
values for GW are 0.026, 0.028, 0.030, and 0.032, which are
slightly larger than G = 0.022E .

To date, there are no self-consistent values for the line-force
parameters for the Ω-slow solution. Therefore, we adopt values
for α and δ that are within the typical ranges calculated
previously with both LTE (Abbott 1982) and non-LTE
(Pauldrach et al. 1986) approximations, and we let the line-
force parameter k vary in a wider range. The line-force
parameters used to construct the grid of models are shown in
Table 1. A total of 768 models were calculated initially with
HYDWIND for each of our three scenarios.

Table 2 shows the stellar parameters as functions of the
rotational speed for the polar and equatorial directions for all

three scenarios. The values for the equatorial region are taken
directly from Table 2 for our calculations for the three different
scenarios. Rotational velocities are obtained from the values of
Ω and vcrit, and according to Equations (10), (13), and (15) we
derive = - -v 622 km s , 508 km scrit

1 1, and -513 km s 1 for the
spherical, oblate, and oblate plus gravity darkening scenarios,
respectively.
It is worth noting that the HYDWIND code can only obtain

hydrodynamic solutions for some combinations of the para-
meters of our grid, because not all combinations have physical
stationary solutions (Venero et al. 2016).

4.2. Density Distributions

Figure 5 shows the density distribution (upper panel) and
velocity profiles (lower panel) at the equatorial plane for
hydrodynamic models with W = 0.90 for our three scenarios.
These models show similar terminal velocities, =¥v 493, 505,
and -489 km s 1, respectively. Although the models presented in
Figure 5 have the same set of line-force parameters, their mass-
loss rates are different, namely = ´ ´- -Ṁ 2.36 10 , 3.46 106 6,
and ´ -

M1.63 10 6 yr−1. Both oblate models show very similar
velocity profiles, but the mass-loss rate from scenario 3 is about
half the value of scenario 2. This is due to the decrease in effective
temperature with latitude that mainly affects the calculation of
the fOFD factor and the radiative flux coming from the star. The
difference is seen in the density distribution. Notice that in the
oblate scenarios, the stellar surface in the u coordinate starts at
> -u 1 due to the fact that the equatorial radius is larger than the

polar one.
Figure 6 compares some equatorial mass density distribu-

tions from our grid with the ad hoc mass density structure
(solid black line). This ad hoc density model (Equation (41)) is
calculated with

*
r r p= ( )20 and n=3.5 as in Silaj et al.

(2014a). The mass density shows almost the same characteristic
behavior for all the hydrodynamic cases. Near the surface of
the star, the hydrodynamic mass density structures fall faster
than the ad hoc model up to 5–8 stellar radii, and the density
from the ad hoc model decays faster at greater distances.

Figure 7. Comparison of Hα line profiles obtained from the BEDISK code using
the density distributions shown in Figure 5. The intensities of the line profiles
for the three scenarios differ because of the different mass-loss rates.

Figure 8. Comparison of the ad hoc Hα line profile (solid line) with two
models (dotted lines) that lie outside our criteria (shadowed region), i.e., a
discrepancy of±15% between the maximum intensity of the ad hoc line profile
(horizontal dashed line) and the maximum intensity of the profile from a
calculated model.
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4.3. Synthetic Hα Line Profiles

All mass density distributions resulting from our computa-
tions for the different scenarios were used to compute a grid of
Hα line profiles with the BEDISK code.

Figure 7 shows the resulting Hα line profiles from the
different mass density distributions shown in Figure 5. Since
the Hα emission line is very sensitive to the mass density
distribution ( rµ 2), higher densities correspond to stronger
emission. As a consequence, the scenario including the gravity
darkening effect has the lowest intensity in the emission line
profile, because it has a lower mass-loss rate.

To select Hα profiles from our grid that best fit the profile
obtained from the ad hoc density model, we define the
following selection criteria: (a) our computed line profile is
considered similar to the ad hoc synthetic Hα profile when the
discrepancy between the maximum intensities of the line
emission of the two models is lower than 15%, and (b) we
adopt the smallest value of the k parameter to ensure that the k
values remain physically reasonable.

Figure 8 shows the ad hoc Hα line profile compared with
two profiles that are not selected by these criteria.

Table 3 summarizes the model parameters of the best fitting
synthetic Hα profiles. Our results for each scenario are as
follows.
(a) Star with Spherical Symmetry. For this case, we find that

the best models have a value of k=3.0 at W = 0.80, and
k=2.0 for the higher rotation rates. The α parameter varies
from 0.55 to 0.60 with the exception of the model with
W = 0.80, where a = 0.50. The δ parameter ranges from
0.15 to 0.20, except for the case with W = 0.99, which
has d = 0.12.
(b) Oblate Star. The best models have values of k=2.0 for

W = 0.80 and W = 0.90, and values of k between 1.5 and 2.0
for higher values of Ω. The α parameter has values from 0.55
to 0.60 with the exception of one model with a = 0.50 at
W = 0.99. The δ parameters, for this scenario, have a range
from 0.15 to 0.20, except for a case with W = 0.99, which
has d = 0.12.
(c) Oblate Star with Gravity Darkening. For this scenario,

we were not able to obtain appreciable line emission when
W = 0.99. For the other rotation rates, even for models with
similar Ṁ to previous scenarios, the best models have larger
values of k (k=3.0) as a consequence of a reduction in the

Table 3
Wind and Line-force Parameters for W = 0.8, 0.9, 0.95, and 0.99, Showing Synthetic Hα Profiles Similar to the ad hoc Profile

Spherical Shape Oblate Shape
Oblate Shape + Gravity

Darkening

Ω α δ k q = ˙ ( )M 90 q = ¥( )v 90 q = ˙ ( )M 90 q = ¥( )v 90 q = ˙ ( )M 90 q = ¥( )v 90
- -

( )M10 yr6 1 -( )km s 1 - -
( )M10 yr6 1 -( )km s 1 - -

( )M10 yr6 1 -( )km s 1

0.80 0.50 0.17 3.00 2.04 421.22 L L L L
0.55 0.12 3.00 2.44 494.07 L L L L
0.55 0.17 3.00 L L L L 3.17 496.51
0.58 0.15 3.00 L L L L 3.80 534.54
0.58 0.20 2.00 L L 3.69 526.29 L L
0.60 0.17 2.00 L L 3.49 558.34 L L

0.90 0.55 0.17 3.00 L L L L 2.61 438.60
0.55 0.20 2.00 1.95 419.93 3.10 443.01 L L
0.58 0.12 3.00 L L L L 2.53 482.20
0.58 0.15 3.00 L L L L 3.20 471.83
0.58 0.17 2.00 2.19 462.54 3.31 479.51 L L
0.60 0.10 3.00 L L L L 2.76 507.16
0.60 0.12 3.00 L L L L 3.18 500.36
0.60 0.15 2.00 2.36 492.80 3.46 504.56 L L
0.60 0.17 2.00 L L 4.17 498.29 L L

0.95 0.55 0.17 2.00 L L 2.60 419.66 L L
0.55 0.20 2.00 2.02 399.08 L L L L
0.55 0.20 3.00 L L L L 2.58 401.07
0.58 0.15 2.00 1.88 447.03 3.11 450.64 L L
0.58 0.15 3.00 L L L L 2.49 442.28
0.58 0.17 2.00 2.25 439.93 3.78 445.10 L L
0.58 0.17 3.00 L L L L 2.93 435.55
0.60 0.12 3.00 L L L L 2.55 469.50
0.60 0.15 2.00 2.41 469.05 3.89 468.08 L L
0.60 0.15 3.00 L L L L 3.17 459.28
0.60 0.20 1.50 1.89 450.19 3.22 452.46 L L

0.99 0.50 0.20 2.00 L L 2.17 340.64 L L
0.55 0.17 2.00 L L 3.11 385.51 L L
0.58 0.15 2.00 L L 3.62 413.84 L L
0.58 0.20 1.50 L L 2.99 399.77 L L
0.60 0.12 2.00 1.93 462.09 3.42 437.32 L L
0.60 0.17 1.50 L L 2.84 423.22 L L

Note. The models are computed with an equatorial density structure. Terminal velocities are calculated at 100 stellar radii.

10

The Astrophysical Journal, 846:2 (15pp), 2017 September 1 Araya et al.



radiation flux. The α parameters are between 0.55 and 0.60,
and the δ parameters range from 0.12 to 0.20.

The synthetic Hα profiles that correspond to the best
hydrodynamic models (selected by our criteria) with W = 0.90
and W = 0.95 are depicted in Figures 9–11 for scenarios (a)–
(c), respectively. The solid black line corresponds to the
emission line profile computed with the ad hoc density
structure, and the dashed lines represent synthetic profiles
from the hydrodynamic models. All profiles are calculated for
an observer’s line of sight to the star of = i 35 .

In general, for our three scenarios, a combination of the
highest values of α and δ from our grid is necessary to obtain
an emission profile (with a low k) similar to our ad hoc model.
The impact of α and δ on the wind parameters ( ¥Ṁ v, )
corresponding to the Ω-slow solution is similar to the behavior
expected from the fast solution: smaller values of α have
correspondingly smaller Ṁ and v∞, while with smaller d Ṁ, is
smaller and v∞ is higher. For a given k, note that the α value
has a greater impact on the final wind solution than the δ value.

Finally, as our hydrodynamic models have lower density
values than the ad hoc model near the surface of the star (see
Figure 6), the emission in the line wings of our model does not
appear as strong as it does in the ad hoc models.

5. Summary and Discussion

We implemented the effect of high stellar rotation on line-
driven winds by adopting a nonspherical central star and
applying gravity darkening and the oblate finite disk correction
factor to the m-CAK model. In order to numerically solve this
improved model we developed an iterative procedure to
calculate the oblate finite disk correction factor. This is a more
general and robust model than the one developed by Müller &
Vink (2014), because it retains the topology of the spherical
m-CAK model, i.e., the model can be used to obtain either fast
solutions (Friend & Abbott 1986), Ω-slow solutions (Curé 2004),
or δ-slow solutions (Curé et al. 2011; Venero et al. 2016). When
W 0.75, our wind model describes a two-component wind

regime similar to that obtained by Curé et al. (2005).
From our results, we highlight the role of the oblate finite

disk correction factor in the hydrodynamic, velocity, and
density profiles, when these are compared with the spherical
cases. In the case of the oblate finite disk correction factor
calculated with gravity darkening, ( )f uOFD varies by at least a
factor of two between the equator and pole. Moreover, this
particular derivation of ( )f uOFD results in a decrease in the
mass-loss rate when compared with the factor obtained from
the oblate case without gravity darkening. This is due to (1) the
decrease in the temperature and (2) the fact that with increasing
distance from the star, larger stellar surfaces with different
temperatures than that in the radial-only direction, contribute.
Next we investigated the influence of oblateness and gravity

darkening effects on the emergent Hα line profile from the

Figure 9. Synthetic Hα profiles computed at W = 0.90 and 0.95 with the
radiative transfer code BEDISK, using the equatorial density structure obtained
from the hydrodynamic code HYDWIND, assuming spherical symmetry for the
star. The adopted rotational velocity is given in the top right corner of each
panel, and the line-force parameters used to calculate the density structure are
given in the legend. Dashed and solid lines correspond to profiles with a lower
and higher intensity than the ad hoc profile, respectively. The thick black line
corresponds to the emission line profile computed with the ad hoc density
structure. An inclination of = i 35 is assumed for all profiles.

Figure 10. Similar to Figure 9, but with the equatorial density structure
calculated assuming an oblate shape for the star and neglecting the gravity
darkening effect.
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circumstellar disk of a Be star. For this, we used the equatorial
mass density distribution as input in the BEDISK code,
neglecting the effects of radial and azimuthal velocities from
the hydrodynamics in the radiative transport calculations.

We created a grid of equatorial Ω-slow models and the
resulting grid of Hα profiles, for three different scenarios: (1) a
spherically symmetric star with constant temperature, (2) an
oblate star with constant temperature, and (3) an oblate star with
gravity darkening. The results from the Hα grid were compared
with the ad hoc line profile, which follows an -r n mass density
distribution with n=3.5 and r = ´ - -5.0 10 g cm0

11 3.
We found an agreement between hydrodynamic and ad hoc

Hα emission profiles (matching our 15% criterion) for values
of ~k 1.5 to 2 for spherical or oblate cases, and ~k 3 for the
oblate case with gravity darkening, and values of a ~ 0.6 and
d 0.1. These results are for an ad hoc model with n=3.5. In

order to explore the variation in the line-force parameters and
match ad hoc models with n=3 (stronger emission line) and
n=4 (weaker emission line), we selected models based on our
selection criteria, explained previously. We obtain good
agreement between the oblate hydrodynamic models with
gravity darkening and ad hoc models for values of k 3 when
n=3 and k 2 when n=4 (see Figure 12). Models with
n=3 have slightly higher values of α and δ than models
with n=3.5.

To date, even though there is no self-consistent calculation
of the line-force parameters for the Ω-slow solution, the values
of k are roughly of order a1 for our scenarios 1 and 2;

according to Puls et al. (2000), this would be a maximum value
if line-overlap effects are neglected. We suggest, for scenario 3,
that the large values found for k may be related to changes in
the ionization structure and possible increments in the opacity
of the absorption lines along the disk together with line-overlap
effects.
On the other hand, to reproduce the emission line from an

ad hoc model with lower values of the exponent n, we require
higher values of k, hence multi-line scattering processes should
be considered for these dense disks. Nevertheless, the values of
k obtained in this study are closer to predicted values than those
obtained by Silaj et al. (2014a). Finally, it is worth noting that
for a given k the effect of α in the final wind solution is
stronger than the effect of δ, generally.
Regarding the effect of the rotational velocity on the mass-

loss rate, it is the corresponding equatorial mass density that
mainly determines the strength of the emission profiles.
However, for the same set of line-force parameters (a dk, , ),
higher Ω values produce greater intensity of the emission line;
this is valid for the scenarios assuming a spherical star and
an oblate star of constant temperature. For the third scenario
(an oblate star with gravity darkening), the maximum line
intensity is attained at a value of W < 1. When Ω tends toward
one, the emission is lower due to the decrease in effective
temperature because of gravity darkening.

Figure 11. Similar to Figure 9, but with the equatorial density structure
calculated assuming an oblate shape for the star and including the gravity
darkening effect.

Figure 12. Hα profiles: the ad hoc model for n=3 is shown by the solid black
line (upper panel). Other profiles from our grid of hydrodynamic models that
satisfy our selection criteria are shown as dashed lines (see legend). The lower
panel is same as the upper panel but for n=4. See text for details.
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The contribution of the fast wind component is expected to
have a negligible effect on the emission profile of the Hα line
due to the low density of this region. In order to test this
argument, we calculated the contribution to Hα using a fast
wind solution with the following line-force parameters:
α=0.565, k=0.32, and δ=0.02, based on the calculations
from Pauldrach et al. (1986) for a model with a similar Teff to
our star. The hydrodynamic calculations with HYDWIND for a
spherical non-rotating case yield a mass-loss rate of 1.2×10−8

M yr−1 and a terminal velocity of 2350 km s−1. Then, this
hydrodynamic solution is used as input in the radiative transfer
code FASTWIND (Puls et al. 2005) with the aim of obtaining the
line profile accounting for the total contribution from the stellar
photosphere and the fast wind (at all latitudes). We obtain an
absorption line profile, which is then convolved with ( )v sin 35
=339 km s−1. This profile is shown in Figure 13 by the black
dashed line. Furthermore, this figure also shows the contrib-
ution to the Hα line from the stellar photosphere (absorption
profile shown by the magenta dotted line) calculated by
BEDISK and the emergent emission profiles from the stellar
photosphere plus the disk (same as the lower panel of
Figure 9). We note that the small difference between the
absorption profiles demonstrates that, as expected, there is
a minimal (negligible) contribution from the fast wind
component.

Finally, we have shown that the mass density distribution
obtained from the Ω-slow wind solution (with ~k 3),
considering a more realistic scenario with gravity darkening,
is able to reproduce Hα line emission features similar to those
predicted by a power-law model. In addition, we also require a
mechanism to provide Keplerian rotation within the disks of
our models to produce reasonable profile shapes, which is an
area of ongoing research in the field of Be stars.

In view of these new results, we are encouraged to further
develop this line of research. In a future work, we plan to
calculate, in a self-consistent way, the line-force parameters of
this Ω-slow solution. In addition, it would be interesting to
analyze the stability of this two-component wind in a 2D time-
dependent frame that includes non-radial forces.

The authors would like to thank the referee, Dr. Joachim
Puls, for his thoughtful comments and suggestions that helped
to improve the paper significantly. This research was supported
by the Canada–Chile Leadership Exchange Scholarship
program from Government of Canada. I.A. acknowledges
support from Fondo Institucional de Becas FIB-UV and
Gemini-Conicyt 32120033. C.E.J. thanks support from
NSERC, the National Sciences and Engineering Research
Council of Canada. M.C. acknowledges support from Centro
de Astrofísica de Valparaíso. L.C. and M.C. thank support from
the project CONICYT+PAI/Atracción de capital humano
avanzado del extranjero (folio PAI80160057). L.C. also
acknowledges financial support from Universidad Nacional
de La Plata (Programa de incentivos 11/G137) and from
CONICET (PIP 0177). A.G. acknowledges support from the
Swiss National Science Foundation through the Advanced
Postdoc Mobility fellowship, project P300P2_158443. A.J.
acknowledges support from CONICYT FONDECYT/POST-
DOCTORADO 3150673, Nucleo Milenio ICR RC130003 and
Proyecto Anillo ACT 1112.
Software:HYDWIND (Curé 2004), BEDISK (Sigut & Jones

2007), FASTWIND (Puls et al. 2005).

Appendix A
EoM for an Oblate Gravity-darkened Star

To derive the EoM to account for gravity darkening and the
oblate distortion of the star in the radial direction, we start by
analyzing the total (radial) acceleration (sum of effective and
radiative accelerations) on the barotropic stellar layers, the
photosphere. Following the work of Maeder & Meynet (2000),
we have

= + » - GW( ) ( )g g g g 1 , 44tot eff rad eff

where we have evaluated GW with sE. This is a reasonable
approximation within the following context, due to the
difficulty of knowing the exact value of κ, and because the
upper photosphere of hot stars is dominated by electron
scattering and to a lesser degree by line processes. As the line
contribution is small below the sonic point we can generalize
the expression of Maeder & Meynet (2000) for the wind region
by adding an appropriate approximation for the line accelera-
tion term that takes into account the increasing line force due to
Doppler effects, allowing >g 0tot , i.e.,

» - G +W( ) ( )g g g1 . 45tot eff rad
line

In the m-CAK formalism, the radiative line acceleration can
be expressed in terms of the continuum radiative acceleration
due to Thomson scattering times a multiplication factor M(t),
the so-called force-multiplier that is a function of the optical
depth parameter t,

º ( ) ( )g g M t 46rad
line

rad
Th

with

º( ) ( ) ( )M t M t f , 47point FD

where ( )M tpoint is the force-multiplier when the star is assumed
to be a point source and fFD is the finite disk correction factor
for a spherical or oblate star (see, e.g., Lamers & Cassinelli

Figure 13. Hα profiles: (a) absorption profile obtained for the non-disk region
of a spherical rotating model atW = 0.95, computed using the FASTWIND code
(black dashed line); (b) absorption profile of the stellar photosphere calculated
by BEDISK (magenta dotted line); (c) emission profiles obtained for the disk
plus photosphere calculated by BEDISK (see details in Figure 9). Note that the
absorption profile calculated by FASTWIND from the non-disk region includes
the photospheric contribution, demonstrating that the overall contribution from
the wind of the non-disk region is minimal.
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1999; Pelupessy et al. 2000). Then, considering the expression

s
º = G ( )g

c
g , 48rad

Th E
E grav

we have

= G ( ) ( )g g M t f , 49rad
line

E grav point FD

which, in turn, can eventually be generalized to consider
gravity darkening if the local radiative flux and the appropriate
finite disk correction factor are used. Thus, the radiative line
acceleration can be expressed as

q q= G( ) ( ) ( ) ( )g g M t f , 50rad
line

E grav point OFD

where qG ( )E is a function of the local flux. Considering this
expression, Equation (A2) can then be written in the following
way:

q

q

»- - G + - G

+ G
W W( ) ( ) ( )

( ) ( ) ( )
g g g

g M t f

1 1

. 51
tot grav rot

E grav point OFD

Equation (A8) is more general and matches the conditions
expected in the upper photosphere and in the wind, and is a
function of the local Eddington ratio. Then, an EoM accounting
for the gravity darkening and the oblate distortion of the star,
with the variables u w, , and ¢w , can be derived in a similar way
to Curé (2004) for a spherical case with a uniform surface
brightness, using gtot given by Equation (A8) in the equation of
momentum,

r
q= - + ( ) ( )v

dv

dr

dp

dr
g

1
. 52tot

It is important to note that in our study we use a simpler, but
different approximation for q( )gtot , i.e.,

q » - - G + + GW W( ) ( ) ( ) ( )g g g g M t f1 , 53tot grav rot grav point OFD

where for small GW, grot is not too different from - GW( )g 1rot .
Our expression is similar to Equation (A8) if we assume that
G » GW  1E , as in the cases considered in this study (see
Section 4.1). Finally, note that Equation (A8) needs to be

carefully tested when it is applied to cases with considerable
values of both GE and GW.

Appendix B
Calculation of GW

The definition given for GW in Equations (28) and (29)
includes the ratio w p rG2rot

2
m, which is not easily calculated

because of the term rm. According to Maeder & Meynet (2000)
this ratio can be expressed in terms of the rotational and critical
rotational velocities as

w
p r

=
W

¢ W
W

( ) ( )
( )

( )
G

v

v
V

R

R2

4

9

, eq

, eq
, 54rot

2

m

rot
2

crit
2

pole
2

2

where vcrit is the classical critical rotational velocity indepen-
dent of GE (Equation (15)). ¢ W( )V is the ratio of the actual
volume of a star rotating at Ω to the volume of a sphere of
radius Rpole. The term ¢ W W( ) ( )V R R , eqpole

2 2 varies from 1 to
0.813 as vrot goes from zero to vcrit. For low or moderate
velocities this term tends to 1, but for higher rotational
velocities it is necessary to calculate the value of
¢ W W( ) ( )V R R , eqpole

2 2 . To this purpose, we perform a poly-

nomial fit to the ratio w p rG2rot
2

m, whose form is

w
p r

= + + - ( )
G

x x x
2

0.0022 0.4052 0.1478 0.1877 55rot
2

m

2 3

with = W W( ( ) )x R R, eq eq
max 2 . Now, the values of GW are

easily calculated based on this polynomial fit. Figure 14 shows
the comparison among the ratio w p rG2rot

2
m, the polynomial fit

given in Equation (B2), and the term W( ) ( )v v4 9 , eqrot
2

crit
2 as a

function of Ω. From this figure, we observe that for values of Ω
higher than ∼0.9 the term W( ) ( )v v4 9 , eqrot

2
crit
2 ceases to be a

good approximation and the polynomial fit has excellent
agreement with the ratio w p rG2rot

2
m for the whole range of Ω.
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